ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (2,037)
  • Binding Sites  (1,445)
  • Chemical Engineering
  • American Association for the Advancement of Science (AAAS)  (3,364)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2016-04-30
    Description: Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang I -- van de Geijn, Bryce -- Raj, Anil -- Knowles, David A -- Petti, Allegra A -- Golan, David -- Gilad, Yoav -- Pritchard, Jonathan K -- R01MH084703/MH/NIMH NIH HHS/ -- R01MH101825/MH/NIMH NIH HHS/ -- U01HG007036/HG/NHGRI NIH HHS/ -- U54CA149145/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. ; Department of Computer Science, Stanford University, Stanford, CA, USA. Department of Radiology, Stanford University, Stanford, CA, USA. ; Genome Institute, Washington University in St. Louis, St. Louis, MO, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. gilad@uchicago.edu pritch@stanford.edu. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Biology, Stanford University, Stanford, CA, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. gilad@uchicago.edu pritch@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27126046" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/metabolism ; *Gene Expression Regulation ; *Genetic Variation ; Genome-Wide Association Study ; Humans ; Immune System Diseases/*genetics ; Lymphocytes/immunology ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; RNA Splicing/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delatte, Benjamin -- Wang, Fei -- Ngoc, Long Vo -- Collignon, Evelyne -- Bonvin, Elise -- Deplus, Rachel -- Calonne, Emilie -- Hassabi, Bouchra -- Putmans, Pascale -- Awe, Stephan -- Wetzel, Collin -- Kreher, Judith -- Soin, Romuald -- Creppe, Catherine -- Limbach, Patrick A -- Gueydan, Cyril -- Kruys, Veronique -- Brehm, Alexander -- Minakhina, Svetlana -- Defrance, Matthieu -- Steward, Ruth -- Fuks, Francois -- R01 GM089992/GM/NIGMS NIH HHS/ -- T32 CA117846/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):282-5. doi: 10.1126/science.aac5253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. ; Laboratory of Molecular Biology of the Gene, Faculty of Sciences, Universite Libre de Bruxelles, Gosselies, Belgium. ; Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Marburg, Germany. ; Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ffuks@ulb.ac.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*abnormalities/metabolism ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; Dioxygenases/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/metabolism ; Methylation ; RNA, Messenger/genetics/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-28
    Description: Genes encoding human beta-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal gamma-globin genes and maintains the nucleosome density necessary for gamma-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masuda, Takeshi -- Wang, Xin -- Maeda, Manami -- Canver, Matthew C -- Sher, Falak -- Funnell, Alister P W -- Fisher, Chris -- Suciu, Maria -- Martyn, Gabriella E -- Norton, Laura J -- Zhu, Catherine -- Kurita, Ryo -- Nakamura, Yukio -- Xu, Jian -- Higgs, Douglas R -- Crossley, Merlin -- Bauer, Daniel E -- Orkin, Stuart H -- Kharchenko, Peter V -- Maeda, Takahiro -- R01 AI084905/AI/NIAID NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R56 DK105001/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):285-9. doi: 10.1126/science.aad3312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. ; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia. ; Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org. ; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816381" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/genetics ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Erythroblasts/cytology ; Erythropoiesis/genetics ; Fetal Hemoglobin/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Knockout ; Nuclear Proteins/genetics/*metabolism ; Repressor Proteins/genetics/*metabolism ; Sequence Deletion ; Thalassemia/genetics ; Transcription Factors/genetics/*metabolism ; gamma-Globins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-19
    Description: Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pakulska, Malgosia M -- Miersch, Shane -- Shoichet, Molly S -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):aac4750. doi: 10.1126/science.aac4750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989257" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Engineering ; Combinatorial Chemistry Techniques ; Delayed-Action Preparations/*chemistry ; Directed Molecular Evolution ; *Drug Design ; Humans ; Lactic Acid/*chemistry ; Microspheres ; Polyglycolic Acid/*chemistry ; Proteins/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-30
    Description: p97 is a hexameric AAA+ adenosine triphosphatase (ATPase) that is an attractive target for cancer drug development. We report cryo-electron microscopy (cryo-EM) structures for adenosine diphosphate (ADP)-bound, full-length, hexameric wild-type p97 in the presence and absence of an allosteric inhibitor at resolutions of 2.3 and 2.4 angstroms, respectively. We also report cryo-EM structures (at resolutions of ~3.3, 3.2, and 3.3 angstroms, respectively) for three distinct, coexisting functional states of p97 with occupancies of zero, one, or two molecules of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) per protomer. A large corkscrew-like change in molecular architecture, coupled with upward displacement of the N-terminal domain, is observed only when ATPgammaS is bound to both the D1 and D2 domains of the protomer. These cryo-EM structures establish the sequence of nucleotide-driven structural changes in p97 at atomic resolution. They also enable elucidation of the binding mode of an allosteric small-molecule inhibitor to p97 and illustrate how inhibitor binding at the interface between the D1 and D2 domains prevents propagation of the conformational changes necessary for p97 function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Soojay -- Bartesaghi, Alberto -- Merk, Alan -- Rao, Prashant -- Bulfer, Stacie L -- Yan, Yongzhao -- Green, Neal -- Mroczkowski, Barbara -- Neitz, R Jeffrey -- Wipf, Peter -- Falconieri, Veronica -- Deshaies, Raymond J -- Milne, Jacqueline L S -- Huryn, Donna -- Arkin, Michelle -- Subramaniam, Sriram -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):871-5. doi: 10.1126/science.aad7974. Epub 2016 Jan 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ; Small Molecule Discovery Center, Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143, USA. ; University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA. ; Leidos Biomedical Research Inc., Frederick, MD 21702, USA. ; Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD 20892, USA. ; Division of Biology and Biological Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91107, USA. ; Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892, USA. ss1@nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26822609" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/chemistry ; Adenosine Triphosphatases/*antagonists & inhibitors/*chemistry ; Adenosine Triphosphate/analogs & derivatives/chemistry ; Allosteric Regulation ; Binding Sites ; Cryoelectron Microscopy ; Enzyme Inhibitors ; Humans ; Models, Molecular ; Nuclear Proteins/*antagonists & inhibitors/*chemistry ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-01-03
    Description: Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zickermann, Volker -- Wirth, Christophe -- Nasiri, Hamid -- Siegmund, Karin -- Schwalbe, Harald -- Hunte, Carola -- Brandt, Ulrich -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):44-9. doi: 10.1126/science.1259859.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. ; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany. ; Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl. ; Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands. zickermann@med.uni-frankfurt.de carola.hunte@biochemie.uni-freiburg.de ulrich.brandt@radboudumc.nl.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554780" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Electron Transport Complex I/*chemistry/ultrastructure ; Mitochondria/*enzymology ; Mitochondrial Membranes/*enzymology ; Protein Structure, Secondary ; Protons ; Ubiquinone/chemistry ; Yarrowia/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-04
    Description: Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys(184) and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His(200) as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desguin, Benoit -- Zhang, Tuo -- Soumillion, Patrice -- Hols, Pascal -- Hu, Jian -- Hausinger, Robert P -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):66-9. doi: 10.1126/science.aab2272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Institute of Life Sciences, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu. ; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. hujian1@msu.edu hausinge@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26138974" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/genetics ; Binding Sites ; Carbon/chemistry ; Catalysis ; Crystallography, X-Ray ; Histidine/chemistry ; Holoenzymes/chemistry ; Lactic Acid/*biosynthesis/chemistry ; Lactobacillus plantarum/*enzymology/genetics ; Ligands ; Lysine/chemistry ; Metalloproteins/*chemistry/genetics ; Niacin/*chemistry ; Nickel/*chemistry ; Nicotinamide Mononucleotide/analogs & derivatives/chemistry ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Racemases and Epimerases/*chemistry/genetics ; Spectrometry, Mass, Electrospray Ionization ; Sulfur
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-03-15
    Description: TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Yin Yao -- Pike, Ashley C W -- Mackenzie, Alexandra -- McClenaghan, Conor -- Aryal, Prafulla -- Dong, Liang -- Quigley, Andrew -- Grieben, Mariana -- Goubin, Solenne -- Mukhopadhyay, Shubhashish -- Ruda, Gian Filippo -- Clausen, Michael V -- Cao, Lishuang -- Brennan, Paul E -- Burgess-Brown, Nicola A -- Sansom, Mark S P -- Tucker, Stephen J -- Carpenter, Elisabeth P -- 084655/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1256-9. doi: 10.1126/science.1261512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK. ; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonic Acid/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Fluoxetine/analogs & derivatives/chemistry/metabolism/pharmacology ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-01-24
    Description: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uhlen, Mathias -- Fagerberg, Linn -- Hallstrom, Bjorn M -- Lindskog, Cecilia -- Oksvold, Per -- Mardinoglu, Adil -- Sivertsson, Asa -- Kampf, Caroline -- Sjostedt, Evelina -- Asplund, Anna -- Olsson, IngMarie -- Edlund, Karolina -- Lundberg, Emma -- Navani, Sanjay -- Szigyarto, Cristina Al-Khalili -- Odeberg, Jacob -- Djureinovic, Dijana -- Takanen, Jenny Ottosson -- Hober, Sophia -- Alm, Tove -- Edqvist, Per-Henrik -- Berling, Holger -- Tegel, Hanna -- Mulder, Jan -- Rockberg, Johan -- Nilsson, Peter -- Schwenk, Jochen M -- Hamsten, Marica -- von Feilitzen, Kalle -- Forsberg, Mattias -- Persson, Lukas -- Johansson, Fredric -- Zwahlen, Martin -- von Heijne, Gunnar -- Nielsen, Jens -- Ponten, Fredrik -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. mathias.uhlen@scilifelab.se. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, D-44139 Dortmund, Germany. ; Lab Surgpath, Mumbai, India. ; Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden. ; Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613900" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Line ; *Databases, Protein ; Female ; Genes ; Genetic Code ; Humans ; Internet ; Male ; Membrane Proteins/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Neoplasms/genetics/metabolism ; Protein Array Analysis ; Protein Isoforms/genetics/metabolism ; Proteome/genetics/*metabolism ; Tissue Distribution ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-10-17
    Description: Transcriptional enhancers direct precise on-off patterns of gene expression during development. To explore the basis for this precision, we conducted a high-throughput analysis of the Otx-a enhancer, which mediates expression in the neural plate of Ciona embryos in response to fibroblast growth factor (FGF) signaling and a localized GATA determinant. We provide evidence that enhancer specificity depends on submaximal recognition motifs having reduced binding affinities ("suboptimization"). Native GATA and ETS (FGF) binding sites contain imperfect matches to consensus motifs. Perfect matches mediate robust but ectopic patterns of gene expression. The native sites are not arranged at optimal intervals, and subtle changes in their spacing alter enhancer activity. Multiple tiers of enhancer suboptimization produce specific, but weak, patterns of expression, and we suggest that clusters of weak enhancers, including certain "superenhancers," circumvent this trade-off in specificity and activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farley, Emma K -- Olson, Katrina M -- Zhang, Wei -- Brandt, Alexander J -- Rokhsar, Daniel S -- Levine, Michael S -- GM46638/GM/NIGMS NIH HHS/ -- NS076542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):325-8. doi: 10.1126/science.aac6948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. msl2@princeton.edu ekfarley@princeton.edu. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. ; Department of Medicine, University of California, San Diego, CA 92093-0688, USA. ; Department of Chemistry, University of California, Berkeley, CA 94720-3200, USA. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Ciona intestinalis/genetics/*growth & development ; Consensus Sequence ; Enhancer Elements, Genetic/genetics/*physiology ; Fas-Associated Death Domain Protein/metabolism ; Fibroblast Growth Factors/*metabolism ; GATA Transcription Factors/*metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Organ Specificity/genetics/physiology ; Otx Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-09-01
    Description: Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and alpha-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Dong -- Shao, Lin -- Chen, Bi-Chang -- Zhang, Xi -- Zhang, Mingshu -- Moses, Brian -- Milkie, Daniel E -- Beach, Jordan R -- Hammer, John A 3rd -- Pasham, Mithun -- Kirchhausen, Tomas -- Baird, Michelle A -- Davidson, Michael W -- Xu, Pingyong -- Betzig, Eric -- GM-075252/GM/NIGMS NIH HHS/ -- R01 GM075252/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):aab3500. doi: 10.1126/science.aab3500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315442" target="_blank"〉PubMed〈/a〉
    Keywords: Actinin/analysis ; Actins/analysis ; Animals ; Cell Line ; Clathrin/analysis ; Clathrin-Coated Vesicles/chemistry/ultrastructure ; Coated Pits, Cell-Membrane/chemistry/ultrastructure ; Cytoskeleton/chemistry/metabolism/*ultrastructure ; *Endocytosis ; Endosomes/chemistry/ultrastructure ; Golgi Apparatus/ultrastructure ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional/instrumentation/*methods ; Microscopy, Fluorescence/instrumentation/*methods ; Mitochondria/chemistry/ultrastructure ; Organelles/chemistry/metabolism/*ultrastructure ; rab5 GTP-Binding Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-01-31
    Description: The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)--〉Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fei -- Liu, Jian -- Zheng, Yi -- Garavito, R Michael -- Ferguson-Miller, Shelagh -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- GM094625/GM/NIGMS NIH HHS/ -- GM26916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):555-8. doi: 10.1126/science.1260590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. fergus20@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cholesterol/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Polymorphism, Single Nucleotide ; Porphyrins/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protoporphyrins/metabolism ; Receptors, GABA/chemistry/genetics ; Rhodobacter sphaeroides/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-10-31
    Description: Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigova, Alla A -- Abraham, Brian J -- Ji, Xiong -- Molinie, Benoit -- Hannett, Nancy M -- Guo, Yang Eric -- Jangi, Mohini -- Giallourakis, Cosmas C -- Sharp, Phillip A -- Young, Richard A -- HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02140, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Consensus Sequence ; DNA/metabolism ; Embryonic Stem Cells/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; Mice ; *Promoter Regions, Genetic ; RNA, Messenger/*metabolism ; *Transcription, Genetic ; YY1 Transcription Factor/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-01-09
    Description: Naive and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naive pluripotency. Mettl3 knockout preimplantation epiblasts and naive embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naive state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naive pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naive and primed pluripotency in an opposing manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geula, Shay -- Moshitch-Moshkovitz, Sharon -- Dominissini, Dan -- Mansour, Abed AlFatah -- Kol, Nitzan -- Salmon-Divon, Mali -- Hershkovitz, Vera -- Peer, Eyal -- Mor, Nofar -- Manor, Yair S -- Ben-Haim, Moshe Shay -- Eyal, Eran -- Yunger, Sharon -- Pinto, Yishay -- Jaitin, Diego Adhemar -- Viukov, Sergey -- Rais, Yoach -- Krupalnik, Vladislav -- Chomsky, Elad -- Zerbib, Mirie -- Maza, Itay -- Rechavi, Yoav -- Massarwa, Rada -- Hanna, Suhair -- Amit, Ido -- Levanon, Erez Y -- Amariglio, Ninette -- Stern-Ginossar, Noam -- Novershtern, Noa -- Rechavi, Gideon -- Hanna, Jacob H -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1002-6. doi: 10.1126/science.1261417. Epub 2015 Jan 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. ; Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. The Department of Pediatrics and the Pediatric Immunology Unit, Rambam Medical Center, and the B. Rappaport Faculty of Medicine, Technion, Haifa, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25569111" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Animals ; Blastocyst/enzymology ; Cell Differentiation/genetics/*physiology ; Cell Line ; Embryo Loss/genetics ; Epigenesis, Genetic ; Female ; Gene Knockout Techniques ; Male ; Methylation ; Methyltransferases/genetics/*physiology ; Mice ; Mice, Knockout ; Pluripotent Stem Cells/*cytology/enzymology ; RNA, Messenger/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-02-24
    Description: Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor-like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luca, Vincent C -- Jude, Kevin M -- Pierce, Nathan W -- Nachury, Maxence V -- Fischer, Suzanne -- Garcia, K Christopher -- 1R01-GM097015/GM/NIGMS NIH HHS/ -- R01 GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):847-53. doi: 10.1126/science.1261093.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. kcgarcia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700513" target="_blank"〉PubMed〈/a〉
    Keywords: Alagille Syndrome/genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Fucose/chemistry ; Glucose/chemistry ; Glycosylation ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Molecular Sequence Data ; Molecular Targeted Therapy ; Polysaccharides/chemistry ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Notch1/*chemistry/genetics/ultrastructure ; Serine/chemistry/genetics ; Threonine/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-02-14
    Description: Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arner, Erik -- Daub, Carsten O -- Vitting-Seerup, Kristoffer -- Andersson, Robin -- Lilje, Berit -- Drablos, Finn -- Lennartsson, Andreas -- Ronnerblad, Michelle -- Hrydziuszko, Olga -- Vitezic, Morana -- Freeman, Tom C -- Alhendi, Ahmad M N -- Arner, Peter -- Axton, Richard -- Baillie, J Kenneth -- Beckhouse, Anthony -- Bodega, Beatrice -- Briggs, James -- Brombacher, Frank -- Davis, Margaret -- Detmar, Michael -- Ehrlund, Anna -- Endoh, Mitsuhiro -- Eslami, Afsaneh -- Fagiolini, Michela -- Fairbairn, Lynsey -- Faulkner, Geoffrey J -- Ferrai, Carmelo -- Fisher, Malcolm E -- Forrester, Lesley -- Goldowitz, Daniel -- Guler, Reto -- Ha, Thomas -- Hara, Mitsuko -- Herlyn, Meenhard -- Ikawa, Tomokatsu -- Kai, Chieko -- Kawamoto, Hiroshi -- Khachigian, Levon M -- Klinken, S Peter -- Kojima, Soichi -- Koseki, Haruhiko -- Klein, Sarah -- Mejhert, Niklas -- Miyaguchi, Ken -- Mizuno, Yosuke -- Morimoto, Mitsuru -- Morris, Kelly J -- Mummery, Christine -- Nakachi, Yutaka -- Ogishima, Soichi -- Okada-Hatakeyama, Mariko -- Okazaki, Yasushi -- Orlando, Valerio -- Ovchinnikov, Dmitry -- Passier, Robert -- Patrikakis, Margaret -- Pombo, Ana -- Qin, Xian-Yang -- Roy, Sugata -- Sato, Hiroki -- Savvi, Suzana -- Saxena, Alka -- Schwegmann, Anita -- Sugiyama, Daisuke -- Swoboda, Rolf -- Tanaka, Hiroshi -- Tomoiu, Andru -- Winteringham, Louise N -- Wolvetang, Ernst -- Yanagi-Mizuochi, Chiyo -- Yoneda, Misako -- Zabierowski, Susan -- Zhang, Peter -- Abugessaisa, Imad -- Bertin, Nicolas -- Diehl, Alexander D -- Fukuda, Shiro -- Furuno, Masaaki -- Harshbarger, Jayson -- Hasegawa, Akira -- Hori, Fumi -- Ishikawa-Kato, Sachi -- Ishizu, Yuri -- Itoh, Masayoshi -- Kawashima, Tsugumi -- Kojima, Miki -- Kondo, Naoto -- Lizio, Marina -- Meehan, Terrence F -- Mungall, Christopher J -- Murata, Mitsuyoshi -- Nishiyori-Sueki, Hiromi -- Sahin, Serkan -- Nagao-Sato, Sayaka -- Severin, Jessica -- de Hoon, Michiel J L -- Kawai, Jun -- Kasukawa, Takeya -- Lassmann, Timo -- Suzuki, Harukazu -- Kawaji, Hideya -- Summers, Kim M -- Wells, Christine -- FANTOM Consortium -- Hume, David A -- Forrest, Alistair R R -- Sandelin, Albin -- Carninci, Piero -- Hayashizaki, Yoshihide -- P30 CA010815/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1010-4. doi: 10.1126/science.1259418. Epub 2015 Feb 12.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Cell Differentiation/*genetics ; Dogs ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Developmental ; Mice ; RNA, Messenger/genetics/metabolism ; Rats ; Stem Cells/*cytology/metabolism ; Transcription Factors/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-06-20
    Description: During clathrin-mediated endocytosis (CME), plasma membrane regions are internalized to retrieve extracellular molecules and cell surface components. Whether endocytosis occurs by direct clathrin assembly into curved lattices on the budding vesicle or by initial recruitment to flat membranes and subsequent reshaping has been controversial. To distinguish between these models, we combined fluorescence microscopy and electron tomography to locate endocytic sites and to determine their coat and membrane shapes during invagination. The curvature of the clathrin coat increased, whereas the coated surface area remained nearly constant. Furthermore, clathrin rapidly exchanged at all stages of CME. Thus, coated vesicle budding appears to involve bending of a dynamic preassembled clathrin coat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Schorb, Martin -- Beese, Carsten J -- Briggs, John A G -- Kaksonen, Marko -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1369-72. doi: 10.1126/science.aaa9555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Electron Microscopy Core Facility, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089517" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Clathrin/*chemistry ; Coated Pits, Cell-Membrane/*chemistry ; Electron Microscope Tomography ; *Endocytosis ; Fluorescence Recovery After Photobleaching ; Humans ; Microscopy, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-04-04
    Description: By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katajisto, Pekka -- Dohla, Julia -- Chaffer, Christine L -- Pentinmikko, Nalle -- Marjanovic, Nemanja -- Iqbal, Sharif -- Zoncu, Roberto -- Chen, Walter -- Weinberg, Robert A -- Sabatini, David M -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):340-3. doi: 10.1126/science.1260384. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu. ; Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Broad Institute, Cambridge, MA 02142, USA. The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging/genetics/*physiology ; Cell Division/genetics/*physiology ; Cell Line ; Humans ; Mitochondria/*physiology/ultrastructure ; Stem Cells/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-10-13
    Description: The shortage of organs for transplantation is a major barrier to the treatment of organ failure. Although porcine organs are considered promising, their use has been checked by concerns about the transmission of porcine endogenous retroviruses (PERVs) to humans. Here we describe the eradication of all PERVs in a porcine kidney epithelial cell line (PK15). We first determined the PK15 PERV copy number to be 62. Using CRISPR-Cas9, we disrupted all copies of the PERV pol gene and demonstrated a 〉1000-fold reduction in PERV transmission to human cells, using our engineered cells. Our study shows that CRISPR-Cas9 multiplexability can be as high as 62 and demonstrates the possibility that PERVs can be inactivated for clinical application of porcine-to-human xenotransplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Luhan -- Guell, Marc -- Niu, Dong -- George, Haydy -- Lesha, Emal -- Grishin, Dennis -- Aach, John -- Shrock, Ellen -- Xu, Weihong -- Poci, Jurgen -- Cortazio, Rebeca -- Wilkinson, Robert A -- Fishman, Jay A -- Church, George -- P50 HG005550/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub 2015 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. gchurch@genetics.med.harvard.edu luhan.yang@egenesisbio.com. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ; Transplant Infectious Disease and Compromised Host Program, Massachusetts General Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26456528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Cas Systems ; Cell Line ; Endogenous Retroviruses/*genetics ; Epithelial Cells/virology ; Gene Dosage ; Gene Targeting/*methods ; Genes, pol ; HEK293 Cells ; Humans ; Kidney/virology ; Molecular Sequence Data ; Retroviridae Infections/*prevention & control/transmission/virology ; Swine/*virology ; Transplantation, Heterologous/*methods ; *Virus Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-04-04
    Description: Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greber, Basil J -- Bieri, Philipp -- Leibundgut, Marc -- Leitner, Alexander -- Aebersold, Ruedi -- Boehringer, Daniel -- Ban, Nenad -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):303-8. doi: 10.1126/science.aaa3872. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland. ; Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland. ban@mol.biol.ethz.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837512" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/chemistry ; Animals ; Anti-Bacterial Agents/chemistry ; Binding Sites ; GTP-Binding Proteins/chemistry ; Humans ; Mitochondria/*ultrastructure ; Mitochondrial Membranes/ultrastructure ; Mitochondrial Proteins/*biosynthesis/genetics ; Mutation ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Messenger/chemistry ; RNA, Ribosomal, 16S/chemistry ; RNA, Transfer/chemistry ; Ribosomal Proteins/chemistry ; Ribosome Subunits, Large/chemistry/physiology/*ultrastructure ; Swine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-02-07
    Description: The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably due to their effects on protein expression levels. Yet the impact of genetic variation, including eQTLs, on protein levels remains poorly understood. To address this, we mapped genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or protein abundance (pQTLs). We found that most QTLs are associated with transcript expression levels, with consequent effects on ribosome and protein levels. However, eQTLs tend to have significantly reduced effect sizes on protein levels, which suggests that their potential impact on downstream phenotypes is often attenuated or buffered. Additionally, we identified a class of cis QTLs that affect protein abundance with little or no effect on messenger RNA or ribosome levels, which suggests that they may arise from differences in posttranslational regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Battle, Alexis -- Khan, Zia -- Wang, Sidney H -- Mitrano, Amy -- Ford, Michael J -- Pritchard, Jonathan K -- Gilad, Yoav -- F32 HG006972/HG/NHGRI NIH HHS/ -- F32HG006972/HG/NHGRI NIH HHS/ -- GM077959/GM/NIGMS NIH HHS/ -- HG007036/HG/NHGRI NIH HHS/ -- MH084703/MH/NIMH NIH HHS/ -- R01 GM077959/GM/NIGMS NIH HHS/ -- R01 MH084703/MH/NIMH NIH HHS/ -- U01 HG007036/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):664-7. doi: 10.1126/science.1260793. Epub 2014 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; MS Bioworks, LLC, 3950 Varsity Drive, Ann Arbor, MI 48108, USA. ; Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Department of Biology, Stanford University, Stanford, CA 94305, USA. pritch@stanford.edu gilad@uchicago.edu. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. pritch@stanford.edu gilad@uchicago.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657249" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Flanking Region ; 5' Flanking Region ; Cell Line ; Exons ; *Gene Expression Regulation ; *Genetic Variation ; Humans ; Phenotype ; Protein Biosynthesis/*genetics ; *Quantitative Trait Loci ; RNA, Messenger/*genetics ; Ribosomes/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-01-31
    Description: Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 A resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Youzhong -- Kalathur, Ravi C -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Ginter, Christopher -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):551-5. doi: 10.1126/science.aaa1534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universitat Munchen, Garching 85748, Germany. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635100" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus cereus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry ; Protoporphyrins/metabolism ; Reactive Oxygen Species/metabolism ; Tryptophan/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-11-21
    Description: Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saxton, Robert A -- Knockenhauer, Kevin E -- Wolfson, Rachel L -- Chantranupong, Lynne -- Pacold, Michael E -- Wang, Tim -- Schwartz, Thomas U -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- F31 CA189437/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01CA103866/CA/NCI NIH HHS/ -- S10 RR029205/RR/NCRR NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Leucine/*chemistry/metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/genetics/*metabolism ; Mutation ; Nuclear Proteins/*chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; TOR Serine-Threonine Kinases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-05-24
    Description: Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNA interference with FoxP expression in alphabeta core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision toward commitment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DasGupta, Shamik -- Ferreira, Clara Howcroft -- Miesenbock, Gero -- 090309/Wellcome Trust/United Kingdom -- G0700888/Medical Research Council/United Kingdom -- G0701225/Medical Research Council/United Kingdom -- R01 DA030601/DA/NIDA NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 23;344(6186):901-4. doi: 10.1126/science.1252114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. ; Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. gero.miesenboeck@cncb.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Cell Line ; *Decision Making ; Drosophila Proteins/genetics/*physiology ; Drosophila melanogaster/genetics/*physiology ; Forkhead Transcription Factors/genetics/*physiology ; Mushroom Bodies/growth & development/metabolism ; Mutation ; Neurons/physiology ; Odors ; *Psychomotor Performance ; RNA Interference ; Reaction Time/genetics/*physiology ; Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-03-01
    Description: Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA.DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colak, Dilek -- Zaninovic, Nikica -- Cohen, Michael S -- Rosenwaks, Zev -- Yang, Wang-Yong -- Gerhardt, Jeannine -- Disney, Matthew D -- Jaffrey, Samie R -- R01 GM079235/GM/NIGMS NIH HHS/ -- R01 MH80420/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1002-5. doi: 10.1126/science.1245831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA Methylation ; Embryonic Stem Cells/metabolism ; Fragile X Mental Retardation Protein/*genetics ; Fragile X Syndrome/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neurons/metabolism ; Nuclear Proteins/genetics ; Promoter Regions, Genetic/genetics ; RNA, Messenger/*genetics ; RNA, Small Interfering/genetics ; Trinucleotide Repeats/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-06-28
    Description: Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boissan, Mathieu -- Montagnac, Guillaume -- Shen, Qinfang -- Griparic, Lorena -- Guitton, Jerome -- Romao, Maryse -- Sauvonnet, Nathalie -- Lagache, Thibault -- Lascu, Ioan -- Raposo, Graca -- Desbourdes, Celine -- Schlattner, Uwe -- Lacombe, Marie-Lise -- Polo, Simona -- van der Bliek, Alexander M -- Roux, Aurelien -- Chavrier, Philippe -- 311536/European Research Council/International -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1510-5. doi: 10.1126/science.1253768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. ; Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA. ; Hospices Civils de Lyon, Pierre Benite, France. Universite de Lyon, Lyon, France. ; Institut Curie, Research Center, Paris, France. Structure and Membrane Compartments, CNRS UMR 144, Paris, France. ; Institut Pasteur, Unite de Biologie des Interactions Cellulaires, Paris, France. ; Quantitative Image Analysis Unit, Institut Pasteur, Paris, France. ; Institut de Biochimie et Genetique Cellulaires-CNRS, Universite Bordeaux 2, Bordeaux, France. ; Universite Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France. Inserm, U1055, Grenoble, France. ; Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. ; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy. Dipartimento di Scienze della Salute, Universita' degli Studi di Milano, Milan, Italy. ; Biochemistry Department, University of Geneva, & Swiss National Center for Competence in Research Program Chemical Biology, Geneva, Switzerland. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970086" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Membrane/*metabolism ; Coated Pits, Cell-Membrane/metabolism ; Dynamins/*metabolism ; Endocytosis ; GTP Phosphohydrolases/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Intracellular Membranes/metabolism ; Membrane Fusion ; Mitochondria/metabolism ; NM23 Nucleoside Diphosphate Kinases/genetics/*metabolism ; Nucleoside Diphosphate Kinase D/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-03-08
    Description: Although substantial progress has been achieved in the structural analysis of exporters from the superfamily of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, much less is known about how they selectively recognize substrates and how substrate binding is coupled to ATP hydrolysis. We have addressed these questions through crystallographic analysis of the Atm1/ABCB7/HMT1/ABCB6 ortholog from Novosphingobium aromaticivorans DSM 12444, NaAtm1, at 2.4 angstrom resolution. Consistent with a physiological role in cellular detoxification processes, functional studies showed that glutathione derivatives can serve as substrates for NaAtm1 and that its overexpression in Escherichia coli confers protection against silver and mercury toxicity. The glutathione binding site highlights the articulated design of ABC exporters, with ligands and nucleotides spanning structurally conserved elements to create adaptable interfaces accommodating conformational rearrangements during the transport cycle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4151877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jonas Y -- Yang, Janet G -- Zhitnitsky, Daniel -- Lewinson, Oded -- Rees, Douglas C -- GM45162/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1133-6. doi: 10.1126/science.1246489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, Mail Code 114-96, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604198" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/genetics/metabolism ; Bacterial Proteins/*chemistry/genetics/metabolism ; Binding Sites ; Crystallography, X-Ray ; Glutathione/chemistry ; Inactivation, Metabolic ; Metals, Heavy/*metabolism/*toxicity ; Protein Multimerization ; Protein Structure, Secondary ; Sphingomonadaceae/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-04-05
    Description: Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryson, J Barney -- Machado, Carolina Barcellos -- Crossley, Martin -- Stevenson, Danielle -- Bros-Facer, Virginie -- Burrone, Juan -- Greensmith, Linda -- Lieberam, Ivo -- 095589/Wellcome Trust/United Kingdom -- G0900585/Medical Research Council/United Kingdom -- G1001234/Biotechnology and Biological Sciences Research Council/United Kingdom -- MR/K000608/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):94-7. doi: 10.1126/science.1248523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Cell Line ; Electric Stimulation ; Embryonic Stem Cells/cytology/physiology ; Female ; Hindlimb ; Isometric Contraction ; *Light ; Mice ; Mice, Inbred C57BL ; Motor Neurons/cytology/*physiology/*transplantation ; Muscle Denervation ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/*innervation/*physiology ; Nerve Regeneration ; *Optogenetics ; Rhodopsin/genetics/metabolism ; Sciatic Nerve/physiology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-03-01
    Description: Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Je Hyuk -- Daugharthy, Evan R -- Scheiman, Jonathan -- Kalhor, Reza -- Yang, Joyce L -- Ferrante, Thomas C -- Terry, Richard -- Jeanty, Sauveur S F -- Li, Chao -- Amamoto, Ryoji -- Peters, Derek T -- Turczyk, Brian M -- Marblestone, Adam H -- Inverso, Samuel A -- Bernard, Amy -- Mali, Prashant -- Rios, Xavier -- Aach, John -- Church, George M -- GM080177/GM/NIGMS NIH HHS/ -- MH098977/MH/NIMH NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2HL102815/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 MH098977/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cells, Cultured ; DNA, Complementary ; Fluorescence ; Gene Expression Profiling/*methods ; Humans ; Induced Pluripotent Stem Cells ; RNA, Messenger/genetics/metabolism ; Sequence Analysis, RNA/*methods ; Single-Cell Analysis ; Transcription Initiation Site ; *Transcriptome ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-10-04
    Description: Human mitochondrial ribosomes are highly divergent from all other known ribosomes and are specialized to exclusively translate membrane proteins. They are linked with hereditary mitochondrial diseases and are often the unintended targets of various clinically useful antibiotics. Using single-particle cryogenic electron microscopy, we have determined the structure of its large subunit to 3.4 angstrom resolution, revealing 48 proteins, 21 of which are specific to mitochondria. The structure unveils an adaptation of the exit tunnel for hydrophobic nascent peptides, extensive remodeling of the central protuberance, including recruitment of mitochondrial valine transfer RNA (tRNA(Val)) to play an integral structural role, and changes in the tRNA binding sites related to the unusual characteristics of mitochondrial tRNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246062/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brown, Alan -- Amunts, Alexey -- Bai, Xiao-chen -- Sugimoto, Yoichiro -- Edwards, Patricia C -- Murshudov, Garib -- Scheres, Sjors H W -- Ramakrishnan, V -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- MC_UP_A025_1012/Medical Research Council/United Kingdom -- MC_UP_A025_1013/Medical Research Council/United Kingdom -- WT096570/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):718-22. doi: 10.1126/science.1258026. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. ramak@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Humans ; Mitochondria/genetics/*metabolism ; Mitochondrial Proteins/chemistry/ultrastructure ; Mutation ; Nucleic Acid Conformation ; Protein Conformation ; RNA, Transfer, Val/analysis/*chemistry ; Ribosome Subunits/*chemistry/genetics/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-09
    Description: Molecular chaperones prevent aggregation and misfolding of proteins, but scarcity of structural data has impeded an understanding of the recognition and antiaggregation mechanisms. We report the solution structure, dynamics, and energetics of three trigger factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. Nuclear magnetic resonance (NMR) relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion, but as the number and length of the PhoA regions engaged by TF increase, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and, by acting as unfoldases and holdases, prevent the aggregation and premature (mis)folding of unfolded proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070327/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saio, Tomohide -- Guan, Xiao -- Rossi, Paolo -- Economou, Anastassios -- Kalodimos, Charalampos G -- GM073854/GM/NIGMS NIH HHS/ -- R01 GM073854/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):1250494. doi: 10.1126/science.1250494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812405" target="_blank"〉PubMed〈/a〉
    Keywords: Alkaline Phosphatase/*chemistry ; Binding Sites ; Escherichia coli Proteins/*chemistry ; Hydrophobic and Hydrophilic Interactions ; Intrinsically Disordered Proteins/*chemistry ; Molecular Chaperones/*chemistry ; Nuclear Magnetic Resonance, Biomolecular ; Peptides/chemistry ; Peptidylprolyl Isomerase/*chemistry ; Protein Binding ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-11-15
    Description: In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, Marc R -- Abraham, Brian J -- Anders, Lars -- Berezovskaya, Alla -- Gutierrez, Alejandro -- Durbin, Adam D -- Etchin, Julia -- Lawton, Lee -- Sallan, Stephen E -- Silverman, Lewis B -- Loh, Mignon L -- Hunger, Stephen P -- Sanda, Takaomi -- Young, Richard A -- Look, A Thomas -- 1R01CA176746-01/CA/NCI NIH HHS/ -- 5P01CA109901-08/CA/NCI NIH HHS/ -- 5P01CA68484/CA/NCI NIH HHS/ -- CA114766/CA/NCI NIH HHS/ -- CA120215/CA/NCI NIH HHS/ -- CA167124/CA/NCI NIH HHS/ -- CA29139/CA/NCI NIH HHS/ -- CA30969/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. ; Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA. ; Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA. ; Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25394790" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/*genetics ; Binding Sites ; Cell Line, Tumor ; *DNA, Intergenic ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Neoplastic ; Histones/metabolism ; Humans ; *INDEL Mutation ; Molecular Sequence Data ; *Mutation ; Oncogenes ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-10-18
    Description: Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kopfer, David A -- Song, Chen -- Gruene, Tim -- Sheldrick, George M -- Zachariae, Ulrich -- de Groot, Bert L -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):352-5. doi: 10.1126/science.1254840.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Department of Structural Chemistry, University of Gottingen, 37077 Gottingen, Germany. ; School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK. College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de. ; Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. sc3210@gmail.com u.zachariae@dundee.ac.uk bgroot@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324389" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Molecular Dynamics Simulation ; Potassium/*metabolism ; Potassium Channels/*chemistry/metabolism ; Protein Conformation ; *Static Electricity ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-09-06
    Description: Coupled translocation of messenger RNA and transfer RNA (tRNA) through the ribosome, a process catalyzed by elongation factor EF-G, is a crucial step in protein synthesis. The crystal structure of a bacterial translocation complex describes the binding states of two tRNAs trapped in mid-translocation. The deacylated P-site tRNA has moved into a partly translocated pe/E chimeric hybrid state. The anticodon stem-loop of the A-site tRNA is captured in transition toward the 30S P site, while its 3' acceptor end contacts both the A and P loops of the 50S subunit, forming an ap/ap chimeric hybrid state. The structure shows how features of ribosomal RNA rearrange to hand off the A-site tRNA to the P site, revealing an active role for ribosomal RNA in the translocation process.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jie -- Lancaster, Laura -- Donohue, John Paul -- Noller, Harry F -- GM-17129/GM/NIGMS NIH HHS/ -- GM59140/GM/NIGMS NIH HHS/ -- R01 GM017129/GM/NIGMS NIH HHS/ -- R01 GM059140/GM/NIGMS NIH HHS/ -- R01 GM105404/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1188-91. doi: 10.1126/science.1255030.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA. harry@nuvolari.ucsc.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190797" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/chemistry/metabolism ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Nucleic Acid Conformation ; Peptide Elongation Factor G/*chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Messenger/*chemistry/metabolism ; RNA, Transfer/*chemistry/metabolism ; Ribosome Subunits, Large, Bacterial/*chemistry/metabolism ; Thermus thermophilus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-03-08
    Description: The yeast mitochondrial ABC transporter Atm1, in concert with glutathione, functions in the export of a substrate required for cytosolic-nuclear iron-sulfur protein biogenesis and cellular iron regulation. Defects in the human ortholog ABCB7 cause the sideroblastic anemia XLSA/A. Here, we report the crystal structures of free and glutathione-bound Atm1 in inward-facing, open conformations at 3.06- and 3.38-angstrom resolution, respectively. The glutathione binding site includes a residue mutated in XLSA/A and is located close to the inner membrane surface in a large cavity. The two nucleotide-free adenosine 5'-triphosphate binding domains do not interact yet are kept in close vicinity through tight interaction of the two C-terminal alpha-helices of the Atm1 dimer. The resulting protein stabilization may be a common structural feature of all ABC exporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Srinivasan, Vasundara -- Pierik, Antonio J -- Lill, Roland -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1137-40. doi: 10.1126/science.1246729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Zytobiologie, Philipps-Universitat Marburg, Robert-Koch-Strasse 6, 35032 Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24604199" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry ; Adenosine Triphosphate/chemistry ; Binding Sites ; Crystallography, X-Ray ; Glutathione/*chemistry ; Mitochondria/*metabolism ; Protein Multimerization ; Protein Stability ; Protein Structure, Secondary ; Saccharomyces cerevisiae Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-10-04
    Description: Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Ghaderi, Adel -- Fink, Gerald R -- Stephanopoulos, Gregory -- R01 GM035010/GM/NIGMS NIH HHS/ -- R01-GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Whitehead Institute for Biomedical Research, Cambridge, MA, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278607" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cation Transport Proteins/genetics ; Cell Culture Techniques ; Cell Membrane/metabolism ; Chemical Engineering ; *Drug Resistance, Fungal/genetics ; Ethanol/*metabolism/pharmacology ; Fermentation ; Genetic Engineering ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Phosphates/*metabolism ; Potassium Compounds/*metabolism ; Proton Pumps/genetics ; Proton-Translocating ATPases/genetics ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Up-Regulation ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-12-06
    Description: During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Therizols, Pierre -- Illingworth, Robert S -- Courilleau, Celine -- Boyle, Shelagh -- Wood, Andrew J -- Bickmore, Wendy A -- 102560/Wellcome Trust/United Kingdom -- MC_PC_U127527202/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1238-42. doi: 10.1126/science.1259587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. wendy.bickmore@igmm.ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Line ; Cell Nucleus/*genetics/metabolism/ultrastructure ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Replication ; Embryonic Stem Cells/*cytology/metabolism ; *Epigenesis, Genetic ; Mice ; Nuclear Envelope/genetics/metabolism/ultrastructure ; Trans-Activators/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langer, Robert S -- Gura, Trisha -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1146. doi: 10.1126/science.346.6213.1146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trisha Gura is a freelance writer who lives in Boston. For more on life and careers visit www.sciencecareers.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430772" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology ; *Career Choice ; Chemical Engineering ; *Entrepreneurship ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-09-06
    Description: Lineage-specific stem cells are critical for the production and maintenance of specific cell types and tissues in multicellular organisms. In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by the basic helix-loop-helix transcription factor SPEECHLESS (SPCH). SPCH-driven asymmetric and self-renewing divisions allow flexibility in stomatal production and overall organ growth. How SPCH directs stomatal lineage cell behaviors, however, is unclear. Here, we improved the chromatin immunoprecipitation (ChIP) assay and profiled the genome-wide targets of Arabidopsis SPCH in vivo. We found that SPCH controls key regulators of cell fate and asymmetric cell divisions and modulates responsiveness to peptide and phytohormone-mediated intercellular communication. Our results delineate the molecular pathways that regulate an essential adult stem cell lineage in plants.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4390554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, On Sun -- Davies, Kelli A -- Chang, Jessica -- Adrian, Jessika -- Rowe, Matthew H -- Ballenger, Catherine E -- Bergmann, Dominique C -- 1R01GM086632/GM/NIGMS NIH HHS/ -- 5T32GM007276/GM/NIGMS NIH HHS/ -- R01 GM086632/GM/NIGMS NIH HHS/ -- T32 GM007276/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1605-9. doi: 10.1126/science.1256888. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. ; Department of Biology, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Carnegie Institution for Science, Stanford, CA 94305, USA. dbergmann@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190717" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/*cytology ; Arabidopsis/*cytology/genetics/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Binding Sites ; Cell Communication/drug effects/genetics ; Cell Differentiation/drug effects/*genetics ; Cell Division/drug effects/genetics ; Cell Lineage/drug effects/genetics ; Chromatin Immunoprecipitation ; *Gene Expression Regulation, Plant ; Genome, Plant/genetics ; Plant Growth Regulators/pharmacology/physiology ; Plant Stomata/*cytology/genetics/metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-06-07
    Description: Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segawa, Katsumori -- Kurata, Sachiko -- Yanagihashi, Yuichi -- Brummelkamp, Thijn R -- Matsuda, Fumihiko -- Nagata, Shigekazu -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1164-8. doi: 10.1126/science.1252809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands. ; Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan. snagata@mfour.med.kyoto-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904167" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; *Apoptosis ; Caspases/*metabolism ; Cell Line ; Cell Membrane/*enzymology ; Genetic Testing ; Humans ; Membrane Proteins/*metabolism ; Membrane Transport Proteins ; Phosphatidylserines/*metabolism ; Phospholipid Transfer Proteins/genetics/*metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-12-17
    Description: Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-kappaB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selimkhanov, Jangir -- Taylor, Brooks -- Yao, Jason -- Pilko, Anna -- Albeck, John -- Hoffmann, Alexander -- Tsimring, Lev -- Wollman, Roy -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50-GM085764/GM/NIGMS NIH HHS/ -- R01 GM089976/GM/NIGMS NIH HHS/ -- R01-GM071573/GM/NIGMS NIH HHS/ -- R01-GM089976/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA. rwollman@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504722" target="_blank"〉PubMed〈/a〉
    Keywords: *Calcium Signaling ; Cell Line ; Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; NF-kappa B/*metabolism ; *Signal Transduction ; Signal-To-Noise Ratio ; Single-Cell Analysis ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-03-22
    Description: The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane alpha helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jaremko, Lukasz -- Jaremko, Mariusz -- Giller, Karin -- Becker, Stefan -- Zweckstetter, Markus -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1363-6. doi: 10.1126/science.1248725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Biophysikalische Chemie, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653034" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Biological Transport ; Cholesterol/metabolism ; Hydrophobic and Hydrophilic Interactions ; Isoquinolines/*chemistry/metabolism ; Ligands ; Mice ; Micelles ; Mitochondria/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, GABA/*chemistry/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-02-22
    Description: Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-alpha treatment can clear HBV but is limited by systemic side effects. We describe how interferon-alpha can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-beta receptor activation as a therapeutic alternative. Interferon-alpha and lymphotoxin-beta receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-beta receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucifora, Julie -- Xia, Yuchen -- Reisinger, Florian -- Zhang, Ke -- Stadler, Daniela -- Cheng, Xiaoming -- Sprinzl, Martin F -- Koppensteiner, Herwig -- Makowska, Zuzanna -- Volz, Tassilo -- Remouchamps, Caroline -- Chou, Wen-Min -- Thasler, Wolfgang E -- Huser, Norbert -- Durantel, David -- Liang, T Jake -- Munk, Carsten -- Heim, Markus H -- Browning, Jeffrey L -- Dejardin, Emmanuel -- Dandri, Maura -- Schindler, Michael -- Heikenwalder, Mathias -- Protzer, Ulrike -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1221-8. doi: 10.1126/science.1243462. Epub 2014 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Virology, Technische Universitat Munchen-Helmholtz Zentrum Munchen, 81675 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24557838" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antiviral Agents/*pharmacology/therapeutic use ; Cell Line ; Cell Nucleus/virology ; Cytidine/metabolism ; Cytidine Deaminase/biosynthesis ; DNA, Circular/*metabolism ; DNA, Viral/*metabolism ; Hepatitis B/*drug therapy ; Hepatitis B virus/*drug effects/metabolism ; Hepatocytes/*drug effects/metabolism/virology ; Humans ; Interferon-alpha/*pharmacology/therapeutic use ; Liver/drug effects/metabolism/virology ; Lymphotoxin beta Receptor/*agonists/antagonists & inhibitors ; Mice, SCID ; Proteins ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-06-14
    Description: Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Afonso, Olga -- Matos, Irina -- Pereira, Antonio J -- Aguiar, Paulo -- Lampson, Michael A -- Maiato, Helder -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):332-6. doi: 10.1126/science.1251121. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Center for Mathematics, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal. ; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. maiato@ibmc.up.pt.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925910" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Aurora Kinase B/antagonists & inhibitors/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Chromosome Segregation/genetics/*physiology ; Drosophila ; *Feedback, Physiological ; Humans ; Nuclear Envelope/genetics/*metabolism ; Protein Phosphatase 1/metabolism ; Protein Phosphatase 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-06-21
    Description: Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per year. We used computational modeling, quantitative mass spectrometry, and single-cell microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low rates. This reconciles two fundamental opposing requirements: High cell-to-cell signal variability is needed to generate very low differentiation rates, whereas low signal variability is needed to prevent differentiated cells from de-differentiating. Higher eukaryotes can thus control low rates of near irreversible cell fate decisions through a balancing act between noise and ultrahigh feedback connectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahrends, Robert -- Ota, Asuka -- Kovary, Kyle M -- Kudo, Takamasa -- Park, Byung Ouk -- Teruel, Mary N -- P50 GM107615/GM/NIGMS NIH HHS/ -- P50GM107615/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1384-9. doi: 10.1126/science.1252079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. ; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. mteruel@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948735" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; *Adipogenesis ; Animals ; CCAAT-Enhancer-Binding Proteins/genetics/metabolism ; Cell Communication ; Cell Differentiation ; Cell Line ; Computer Simulation ; Feedback, Physiological ; Mass Spectrometry ; Mice ; *Models, Biological ; PPAR gamma/genetics/metabolism ; RNA, Small Interfering/genetics ; Single-Cell Analysis ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-11-08
    Description: The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual's histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human norovirus infection of B cells required the presence of HBGA-expressing enteric bacteria. Furthermore, mouse norovirus replication was reduced in vivo when the intestinal microbiota was depleted by means of oral antibiotic administration. Thus, we have identified B cells as a cellular target of noroviruses and enteric bacteria as a stimulatory factor for norovirus infection, leading to the development of an in vitro infection model for human noroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Melissa K -- Watanabe, Makiko -- Zhu, Shu -- Graves, Christina L -- Keyes, Lisa R -- Grau, Katrina R -- Gonzalez-Hernandez, Mariam B -- Iovine, Nicole M -- Wobus, Christiane E -- Vinje, Jan -- Tibbetts, Scott A -- Wallet, Shannon M -- Karst, Stephanie M -- R01 AI080611/AI/NIAID NIH HHS/ -- R21 AI103961/AI/NIAID NIH HHS/ -- T90 DE021990/DE/NIDCR NIH HHS/ -- T90 DE021990-02/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):755-9. doi: 10.1126/science.1257147.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. ; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA. Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA. ; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA. ; Department of Medicine, Division of Infectious Diseases, University of Florida, Gainesville, FL, USA. ; Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA. ; Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. skarst@ufl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; B-Lymphocytes/immunology/*virology ; Caliciviridae Infections/*immunology/microbiology/virology ; Cell Line ; Enterobacteriaceae/drug effects/*physiology ; Gastroenteritis/*immunology/microbiology/virology ; Genome, Viral/genetics/physiology ; Homeodomain Proteins/genetics ; Humans ; Intestines/immunology/*microbiology ; Mice ; Mice, Mutant Strains ; Norovirus/*physiology ; Peyer's Patches/immunology/virology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-10-12
    Description: Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang -- Lu, Jinfeng -- Han, Yanhong -- Fan, Xiaoxu -- Ding, Shou-Wei -- AI52447/AI/NIAID NIH HHS/ -- GM94396/GM/NIGMS NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):231-4. doi: 10.1126/science.1241911.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Mice ; Nodaviridae/genetics/*pathogenicity ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Small Interfering/*immunology ; RNA, Viral/genetics/*immunology ; Viral Nonstructural Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-03-23
    Description: Glycosylated alpha-dystroglycan (alpha-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate alpha-DG, but many genes mutated in WWS remain unknown. To identify modifiers of alpha-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated alpha-DG to enter cells. In complementary screens, we profiled cells for absence of alpha-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of alpha-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Riemersma, Moniek -- van Beusekom, Ellen -- Blomen, Vincent A -- Velds, Arno -- Kerkhoven, Ron M -- Carette, Jan E -- Topaloglu, Haluk -- Meinecke, Peter -- Wessels, Marja W -- Lefeber, Dirk J -- Whelan, Sean P -- van Bokhoven, Hans -- Brummelkamp, Thijn R -- AI057159/AI/NIAID NIH HHS/ -- AI081842/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):479-83. doi: 10.1126/science.1233675. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Dystroglycans/*metabolism ; Female ; Glycosylation ; Haploidy ; Host-Pathogen Interactions/*genetics ; Humans ; Infant ; Lassa Fever/*genetics/virology ; Lassa virus/*physiology ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteome/*metabolism ; *Virus Internalization ; Walker-Warburg Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-05-21
    Description: Evidence for transcriptional feedback in circadian timekeeping is abundant, yet little is known about the mechanisms underlying translational control. We found that ATAXIN-2 (ATX2), an RNA-associated protein involved in neurodegenerative disease, is a translational activator of the rate-limiting clock component PERIOD (PER) in Drosophila. ATX2 specifically interacted with TWENTY-FOUR (TYF), an activator of PER translation. RNA interference-mediated depletion of Atx2 or the expression of a mutant ATX2 protein that does not associate with polyadenylate-binding protein (PABP) suppressed behavioral rhythms and decreased abundance of PER. Although ATX2 can repress translation, depletion of Atx2 from Drosophila S2 cells inhibited translational activation by RNA-tethered TYF and disrupted the association between TYF and PABP. Thus, ATX2 coordinates an active translation complex important for PER expression and circadian rhythms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Chunghun -- Allada, Ravi -- R01NS059042/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):875-9. doi: 10.1126/science.1234785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxins ; Cell Line ; *Circadian Rhythm ; Drosophila Proteins/*biosynthesis/genetics/metabolism ; Drosophila melanogaster/metabolism/*physiology ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Period Circadian Proteins/*biosynthesis ; Poly(A)-Binding Proteins/metabolism ; Protein Biosynthesis ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-03
    Description: An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Susan -- Aiello, Daniel -- Atianand, Maninjay K -- Ricci, Emiliano P -- Gandhi, Pallavi -- Hall, Lisa L -- Byron, Meg -- Monks, Brian -- Henry-Bezy, Meabh -- Lawrence, Jeanne B -- O'Neill, Luke A J -- Moore, Melissa J -- Caffrey, Daniel R -- Fitzgerald, Katherine A -- AI067497/AI/NIAID NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 AI067497/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Cyclooxygenase 2/genetics ; Cytokines/genetics/metabolism ; Cytosol/metabolism ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Mice ; Models, Immunological ; RNA Interference ; RNA, Long Noncoding/*genetics/metabolism ; Toll-Like Receptors/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1436. doi: 10.1126/science.342.6165.1436-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation ; Cloning, Organism/*methods ; Female ; Humans ; *Induced Pluripotent Stem Cells ; Nuclear Transfer Techniques ; Pregnancy ; *Research Embryo Creation ; Surrogate Mothers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-05-25
    Description: Ca(2+)/cation antiporters catalyze the exchange of Ca(2+) with various cations across biological membranes to regulate cytosolic calcium levels. The recently reported structure of a prokaryotic Na(+)/Ca(2+) exchanger (NCX_Mj) revealed its overall architecture in an outward-facing state. Here, we report the crystal structure of a H(+)/Ca(2+) exchanger from Archaeoglobus fulgidus (CAX_Af) in the two representatives of the inward-facing conformation at 2.3 A resolution. The structures suggested Ca(2+) or H(+) binds to the cation-binding site mutually exclusively. Structural comparison of CAX_Af with NCX_Mj revealed that the first and sixth transmembrane helices alternately create hydrophilic cavities on the intra- and extracellular sides. The structures and functional analyses provide insight into the mechanism of how the inward- to outward-facing state transition is triggered by the Ca(2+) and H(+) binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishizawa, Tomohiro -- Kita, Satomi -- Maturana, Andres D -- Furuya, Noritaka -- Hirata, Kunio -- Kasuya, Go -- Ogasawara, Satoshi -- Dohmae, Naoshi -- Iwamoto, Takahiro -- Ishitani, Ryuichiro -- Nureki, Osamu -- New York, N.Y. -- Science. 2013 Jul 12;341(6142):168-72. doi: 10.1126/science.1239002. Epub 2013 May 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704374" target="_blank"〉PubMed〈/a〉
    Keywords: Antiporters/*chemistry/genetics/metabolism ; Archaeal Proteins/*chemistry/genetics/metabolism ; Archaeoglobus fulgidus/*metabolism ; Binding Sites ; Calcium/chemistry/metabolism ; Cation Transport Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Hydrogen/chemistry/metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-03-23
    Description: The typical pattern of morphological evolution associated with the radiation of a group of related species is the emergence of a novel trait and its subsequent diversification. Yet the genetic mechanisms associated with these two evolutionary steps are poorly characterized. Here, we show that a spot of dark pigment on fly wings emerged from the assembly of a novel gene regulatory module in which a set of pigmentation genes evolved to respond to a common transcriptional regulator determining their spatial distribution. The primitive wing spot pattern subsequently diversified through changes in the expression pattern of this regulator. These results suggest that the genetic changes underlying the emergence and diversification of wing pigmentation patterns are partitioned within genetic networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arnoult, Laurent -- Su, Kathy F Y -- Manoel, Diogo -- Minervino, Caroline -- Magrina, Justine -- Gompel, Nicolas -- Prud'homme, Benjamin -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1423-6. doi: 10.1126/science.1233749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Aix-Marseille Universite, CNRS, UMR 7288, Institut de Biologie du Developpement de Marseille-Luminy, 13288 Marseille cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520110" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Biological Evolution ; Drosophila/anatomy & histology/genetics/growth & development ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/anatomy & histology/*genetics/growth & ; development/metabolism ; *Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; *Gene Regulatory Networks ; *Genes, Insect ; Homeodomain Proteins/genetics/*metabolism ; Phylogeny ; Pigmentation/*genetics ; Pigments, Biological/analysis/metabolism ; Pupa ; RNA Interference ; Transcription Factors/genetics/*metabolism ; Wings, Animal/*anatomy & histology/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-11-02
    Description: The HIV-1 envelope glycoprotein (Env) trimer contains the receptor binding sites and membrane fusion machinery that introduce the viral genome into the host cell. As the only target for broadly neutralizing antibodies (bnAbs), Env is a focus for rational vaccine design. We present a cryo-electron microscopy reconstruction and structural model of a cleaved, soluble Env trimer (termed BG505 SOSIP.664 gp140) in complex with a CD4 binding site (CD4bs) bnAb, PGV04, at 5.8 angstrom resolution. The structure reveals the spatial arrangement of Env components, including the V1/V2, V3, HR1, and HR2 domains, as well as shielding glycans. The structure also provides insights into trimer assembly, gp120-gp41 interactions, and the CD4bs epitope cluster for bnAbs, which covers a more extensive area and defines a more complex site of vulnerability than previously described.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954647/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954647/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyumkis, Dmitry -- Julien, Jean-Philippe -- de Val, Natalia -- Cupo, Albert -- Potter, Clinton S -- Klasse, Per-Johan -- Burton, Dennis R -- Sanders, Rogier W -- Moore, John P -- Carragher, Bridget -- Wilson, Ian A -- Ward, Andrew B -- GM103310/GM/NIGMS NIH HHS/ -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI82362/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI36082/AI/NIAID NIH HHS/ -- R37 AI036082/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Dec 20;342(6165):1484-90. doi: 10.1126/science.1245627. Epub 2013 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179160" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Antibodies, Neutralizing/chemistry ; Antibodies, Viral/chemistry ; Antigens, CD4/*chemistry/immunology ; Binding Sites ; Cryoelectron Microscopy ; Glycosylation ; Immunodominant Epitopes/chemistry/immunology ; *Models, Molecular ; Polysaccharides/chemistry ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; env Gene Products, Human Immunodeficiency Virus/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-03-23
    Description: Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Chong -- Jiang, Yi -- Ma, Jinming -- Wu, Huixian -- Wacker, Daniel -- Katritch, Vsevolod -- Han, Gye Won -- Liu, Wei -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Gao, Xiang -- Zhou, X Edward -- Melcher, Karsten -- Zhang, Chenghai -- Bai, Fang -- Yang, Huaiyu -- Yang, Linlin -- Jiang, Hualiang -- Roth, Bryan L -- Cherezov, Vadim -- Stevens, Raymond C -- Xu, H Eric -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DA027170/DA/NIDA NIH HHS/ -- R01 DA27170/DA/NIDA NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):610-4. doi: 10.1126/science.1232807. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519210" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Dihydroergotamine/chemistry/*metabolism ; Ergotamine/chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Docking Simulation ; Molecular Sequence Data ; Mutagenesis ; Norfenfluramine/chemistry/metabolism ; Pindolol/analogs & derivatives/chemistry/metabolism ; Propranolol/chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/*chemistry/genetics/*metabolism ; Serotonin 5-HT1 Receptor Agonists/*chemistry/*metabolism ; Tryptamines/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-10-19
    Description: The majority of disease-associated variants lie outside protein-coding regions, suggesting a link between variation in regulatory regions and disease predisposition. We studied differences in chromatin states using five histone modifications, cohesin, and CTCF in lymphoblastoid lines from 19 individuals of diverse ancestry. We found extensive signal variation in regulatory regions, which often switch between active and repressed states across individuals. Enhancer activity is particularly diverse among individuals, whereas gene expression remains relatively stable. Chromatin variability shows genetic inheritance in trios, correlates with genetic variation and population divergence, and is associated with disruptions of transcription factor binding motifs. Overall, our results provide insights into chromatin variation among humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasowski, Maya -- Kyriazopoulou-Panagiotopoulou, Sofia -- Grubert, Fabian -- Zaugg, Judith B -- Kundaje, Anshul -- Liu, Yuling -- Boyle, Alan P -- Zhang, Qiangfeng Cliff -- Zakharia, Fouad -- Spacek, Damek V -- Li, Jingjing -- Xie, Dan -- Olarerin-George, Anthony -- Steinmetz, Lars M -- Hogenesch, John B -- Kellis, Manolis -- Batzoglou, Serafim -- Snyder, Michael -- R01 HG004037/HG/NHGRI NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- T32 HG000044/HG/NHGRI NIH HHS/ -- T32GM07205/GM/NIGMS NIH HHS/ -- U01 HL107393/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):750-2. doi: 10.1126/science.1242510. Epub 2013 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136358" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Cycle Proteins/genetics/metabolism ; Cell Line, Tumor ; Chromatin/*genetics/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; Enhancer Elements, Genetic/genetics ; *Gene Expression Regulation ; Genetic Predisposition to Disease/*genetics ; Genetic Variation ; Histones/genetics/metabolism ; Humans ; Repressor Proteins/genetics/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-06-01
    Description: Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Kinetochore assembly depends on specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A and H2B. We further found that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through hydrophobic interactions facilitated by nucleosome docking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, Hidenori -- Jiang, Jiansheng -- Zhou, Bing-Rui -- Rozendaal, Marieke -- Feng, Hanqiao -- Ghirlando, Rodolfo -- Xiao, T Sam -- Straight, Aaron F -- Bai, Yawen -- R01 GM074728/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- ZIA AI000960-07/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 May 31;340(6136):1110-3. doi: 10.1126/science.1235532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723239" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Autoantigens/metabolism ; Binding Sites ; Centromere/*metabolism ; Chromosomal Proteins, Non-Histone/genetics/*metabolism ; Conserved Sequence ; Drosophila ; Histones/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Molecular Sequence Data ; Nucleosomes/*metabolism ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-01-26
    Description: The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majumdar, Sharmistha -- Singh, Anita -- Rio, Donald C -- R01 GM048862/GM/NIGMS NIH HHS/ -- R01 GM094890/GM/NIGMS NIH HHS/ -- R01 GM097352/GM/NIGMS NIH HHS/ -- R01 GM104385/GM/NIGMS NIH HHS/ -- R01GM094890/GM/NIGMS NIH HHS/ -- R01GM104385/GM/NIGMS NIH HHS/ -- R01GM48862/GM/NIGMS NIH HHS/ -- R01GM61987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):446-8. doi: 10.1126/science.1231789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *DNA Transposable Elements ; Drosophila/genetics ; Genome, Human ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Transfection ; Transposases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-12-07
    Description: The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike alpha2-6-linked receptors and strong preference for a subset of avian-like alpha2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954636/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Rui -- de Vries, Robert P -- Zhu, Xueyong -- Nycholat, Corwin M -- McBride, Ryan -- Yu, Wenli -- Paulson, James C -- Wilson, Ian A -- GM62116/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R56 AI099275/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1230-5. doi: 10.1126/science.1243761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311689" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/*metabolism ; Humans ; Influenza A Virus, H7N9 Subtype/*metabolism/*pathogenicity ; Influenza in Birds/transmission/virology ; Influenza, Human/transmission/virology ; Ligands ; Microarray Analysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Polysaccharides/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-25
    Description: The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruki, Hirohito -- Pedersen, Miriam Gronlund -- Gorska, Katarzyna Irena -- Pojer, Florence -- Johnsson, Kai -- New York, N.Y. -- Science. 2013 May 24;340(6135):987-91. doi: 10.1126/science.1232972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EPFL, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research in Chemical Biology, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704574" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/biosynthesis ; Adult ; Alcohol Oxidoreductases/*antagonists & inhibitors/*chemistry ; Anti-Infective Agents/adverse effects/*pharmacology/therapeutic use ; Biopterin/*analogs & derivatives/biosynthesis ; Cell Line ; Central Nervous System/drug effects ; Crystallography, X-Ray ; Fibroblasts/drug effects/metabolism ; Humans ; Levodopa/biosynthesis ; NADP/chemistry ; Nausea/chemically induced ; Pneumonia, Pneumocystis/drug therapy ; Protein Conformation ; Structure-Activity Relationship ; Sulfamethoxazole/adverse effects/*pharmacology/therapeutic use ; Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology/therapeutic use ; Vomiting/chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-01-26
    Description: Systematic sequencing of human cancer genomes has identified many recurrent mutations in the protein-coding regions of genes but rarely in gene regulatory regions. Here, we describe two independent mutations within the core promoter of telomerase reverse transcriptase (TERT), the gene coding for the catalytic subunit of telomerase, which collectively occur in 50 of 70 (71%) melanomas examined. These mutations generate de novo consensus binding motifs for E-twenty-six (ETS) transcription factors, and in reporter assays, the mutations increased transcriptional activity from the TERT promoter by two- to fourfold. Examination of 150 cancer cell lines derived from diverse tumor types revealed the same mutations in 24 cases (16%), with preliminary evidence of elevated frequency in bladder and hepatocellular cancer cells. Thus, somatic mutations in regulatory regions of the genome may represent an important tumorigenic mechanism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Franklin W -- Hodis, Eran -- Xu, Mary Jue -- Kryukov, Gregory V -- Chin, Lynda -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2OD002750/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33CA126674/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM07753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):957-9. doi: 10.1126/science.1229259. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348506" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carcinoma, Hepatocellular/genetics ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; *Gene Expression Regulation, Neoplastic ; Humans ; Liver Neoplasms/genetics ; Melanoma/*genetics ; *Mutation ; *Promoter Regions, Genetic ; Proto-Oncogene Proteins c-ets/metabolism ; Telomerase/chemistry/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-01-05
    Description: Microtubule-stabilizing agents (MSAs) are efficacious chemotherapeutic drugs widely used for the treatment of cancer. Despite the importance of MSAs for medical applications and basic research, their molecular mechanisms of action on tubulin and microtubules remain elusive. We determined high-resolution crystal structures of alphabeta-tubulin in complex with two unrelated MSAs, zampanolide and epothilone A. Both compounds were bound to the taxane pocket of beta-tubulin and used their respective side chains to induce structuring of the M-loop into a short helix. Because the M-loop establishes lateral tubulin contacts in microtubules, these findings explain how taxane-site MSAs promote microtubule assembly and stability. Further, our results offer fundamental structural insights into the control mechanisms of microtubule dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prota, Andrea E -- Bargsten, Katja -- Zurwerra, Didier -- Field, Jessica J -- Diaz, Jose Fernando -- Altmann, Karl-Heinz -- Steinmetz, Michel O -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):587-90. doi: 10.1126/science.1230582. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287720" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/*chemistry/pharmacology ; Binding Sites ; Bridged Compounds/chemistry/pharmacology ; Cattle ; Chickens ; Crystallography, X-Ray ; Epothilones/*chemistry/pharmacology ; Macrolides/*chemistry/pharmacology ; Microtubules/*drug effects ; Protein Structure, Secondary ; Taxoids/chemistry/pharmacology ; Tubulin/*chemistry ; Tubulin Modulators/*chemistry/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-21
    Description: The development of multicellular animals is initially controlled by maternal gene products deposited in the oocyte. During the maternal-to-zygotic transition, transcription of zygotic genes commences, and developmental control starts to be regulated by zygotic gene products. In Drosophila, the transcription factor Zelda specifically binds to promoters of the earliest zygotic genes and primes them for activation. It is unknown whether a similar regulation exists in other animals. We found that zebrafish Pou5f1, a homolog of the mammalian pluripotency transcription factor Oct4, occupies SOX-POU binding sites before the onset of zygotic transcription and activates the earliest zygotic genes. Our data position Pou5f1 and SOX-POU sites at the center of the zygotic gene activation network of vertebrates and provide a link between zygotic gene activation and pluripotency control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leichsenring, Manuel -- Maes, Julia -- Mossner, Rebecca -- Driever, Wolfgang -- Onichtchouk, Daria -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1005-9. doi: 10.1126/science.1242527. Epub 2013 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Biology Unit, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; DNA Polymerase II/metabolism ; *Gene Expression Regulation, Developmental ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/cytology/physiology ; SOXB1 Transcription Factors/metabolism ; *Transcriptional Activation ; Xenopus Proteins/metabolism ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*metabolism ; Zygote/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-07-28
    Description: A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3826785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Zhen -- Chinoy, Zoeisha S -- Ambre, Shailesh G -- Peng, Wenjie -- McBride, Ryan -- de Vries, Robert P -- Glushka, John -- Paulson, James C -- Boons, Geert-Jan -- AI058113/AI/NIAID NIH HHS/ -- P01 AI058113/AI/NIAID NIH HHS/ -- P41 RR005351/RR/NCRR NIH HHS/ -- P41GM103390/GM/NIGMS NIH HHS/ -- P41RR005351/RR/NCRR NIH HHS/ -- R01 GM090269/GM/NIGMS NIH HHS/ -- R01GM090269/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):379-83. doi: 10.1126/science.1236231.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888036" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carbohydrate Conformation ; Carbohydrate Sequence ; Epitopes ; Glycosylation ; Glycosyltransferases/*metabolism ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*metabolism ; Lectins/chemistry/*metabolism ; Mass Spectrometry ; Microarray Analysis ; Nuclear Magnetic Resonance, Biomolecular ; Oligosaccharides/biosynthesis/*chemical synthesis/*chemistry/metabolism ; Plant Lectins/chemistry/metabolism ; Ribosome Inactivating Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-09
    Description: Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shilagardi, Khurts -- Li, Shuo -- Luo, Fengbao -- Marikar, Faiz -- Duan, Rui -- Jin, Peng -- Kim, Ji Hoon -- Murnen, Katherine -- Chen, Elizabeth H -- R01 GM098816/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):359-63. doi: 10.1126/science.1234781. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470732" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Communication ; Cell Culture Techniques ; *Cell Fusion ; Cell Line ; Cell Surface Extensions/metabolism/physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology ; Immunoglobulins/genetics/metabolism ; Membrane Glycoproteins/genetics/*metabolism ; Membrane Proteins/genetics/metabolism ; Muscle Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, Trisha -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1390. doi: 10.1126/science.340.6139.1390.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788774" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism ; DNA Methylation ; *Embryonic Stem Cells/physiology ; Humans ; Induced Pluripotent Stem Cells/physiology ; Nuclear Transfer Techniques ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-07-28
    Description: Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bassi, C -- Ho, J -- Srikumar, T -- Dowling, R J O -- Gorrini, C -- Miller, S J -- Mak, T W -- Neel, B G -- Raught, B -- Stambolic, V -- R37 CA49152/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Aminopyridines/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/*enzymology/metabolism ; Cisplatin/pharmacology ; DNA Breaks, Double-Stranded ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Doxorubicin/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Morpholines/pharmacology ; Neoplasm Transplantation ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphatidylinositol 3-Kinase/antagonists & inhibitors ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Sumoylation ; Transplantation, Heterologous ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- Vogel, Gretchen -- New York, N.Y. -- Science. 2013 May 31;340(6136):1026-7. doi: 10.1126/science.340.6136.1026.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723209" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Culture Techniques ; Cell Line ; *Cloning, Organism ; Embryonic Stem Cells/*cytology ; Humans ; Oregon ; Peer Review, Research/*standards ; Scientific Misconduct ; Skin/*cytology ; Software ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-01-26
    Description: Cutaneous melanoma occurs in both familial and sporadic forms. We investigated a melanoma-prone family through linkage analysis and high-throughput sequencing and identified a disease-segregating germline mutation in the promoter of the telomerase reverse transcriptase (TERT) gene, which encodes the catalytic subunit of telomerase. The mutation creates a new binding motif for Ets transcription factors and ternary complex factors (TCFs) near the transcription start and, in reporter gene assays, caused up to twofold increase in transcription. We then screened the TERT promoter in sporadic melanoma and observed recurrent ultraviolet signature somatic mutations in 125 of 168 (74%) of human cell lines derived from metastatic melanomas, 45 of 53 corresponding metastatic tumor tissues (85%), and 25 of 77 (33%) primary melanomas. The majority of those mutations occurred at two positions in the TERT promoter and also generated binding motifs for Ets/TCF transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horn, Susanne -- Figl, Adina -- Rachakonda, P Sivaramakrishna -- Fischer, Christine -- Sucker, Antje -- Gast, Andreas -- Kadel, Stephanie -- Moll, Iris -- Nagore, Eduardo -- Hemminki, Kari -- Schadendorf, Dirk -- Kumar, Rajiv -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):959-61. doi: 10.1126/science.1230062. Epub 2013 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23348503" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line, Tumor ; Female ; *Gene Expression Regulation, Neoplastic ; *Germ-Line Mutation ; High-Throughput Nucleotide Sequencing ; Humans ; Male ; Melanoma/*genetics/secondary ; Pedigree ; Polymorphism, Single Nucleotide ; *Promoter Regions, Genetic ; Proto-Oncogene Proteins c-ets/metabolism ; Sequence Analysis, DNA ; Skin Neoplasms/*genetics/pathology ; Telomerase/chemistry/*genetics/metabolism ; Transcription Initiation Site ; Transcription, Genetic ; ets-Domain Protein Elk-1/metabolism ; ets-Domain Protein Elk-4/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-09-14
    Description: The CCR5 chemokine receptor acts as a co-receptor for HIV-1 viral entry. Here we report the 2.7 angstrom-resolution crystal structure of human CCR5 bound to the marketed HIV drug maraviroc. The structure reveals a ligand-binding site that is distinct from the proposed major recognition sites for chemokines and the viral glycoprotein gp120, providing insights into the mechanism of allosteric inhibition of chemokine signaling and viral entry. A comparison between CCR5 and CXCR4 crystal structures, along with models of co-receptor-gp120-V3 complexes, suggests that different charge distributions and steric hindrances caused by residue substitutions may be major determinants of HIV-1 co-receptor selectivity. These high-resolution insights into CCR5 can enable structure-based drug discovery for the treatment of HIV-1 infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819204/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819204/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tan, Qiuxiang -- Zhu, Ya -- Li, Jian -- Chen, Zhuxi -- Han, Gye Won -- Kufareva, Irina -- Li, Tingting -- Ma, Limin -- Fenalti, Gustavo -- Li, Jing -- Zhang, Wenru -- Xie, Xin -- Yang, Huaiyu -- Jiang, Hualiang -- Cherezov, Vadim -- Liu, Hong -- Stevens, Raymond C -- Zhao, Qiang -- Wu, Beili -- R01 AI100604/AI/NIAID NIH HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- U01 GM094612/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1387-90. doi: 10.1126/science.1241475. Epub 2013 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China 201203.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24030490" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cyclohexanes/*chemistry/pharmacology ; HIV Envelope Protein gp120/metabolism ; HIV Fusion Inhibitors/*chemistry/pharmacology ; HIV-1/*drug effects/physiology ; Humans ; Ligands ; Protein Conformation ; Receptors, CCR5/*chemistry/metabolism ; Receptors, CXCR4/chemistry ; Triazoles/*chemistry/pharmacology ; Virus Internalization/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-11-30
    Description: Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold beta sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kong, Leopold -- Giang, Erick -- Nieusma, Travis -- Kadam, Rameshwar U -- Cogburn, Kristin E -- Hua, Yuanzi -- Dai, Xiaoping -- Stanfield, Robyn L -- Burton, Dennis R -- Ward, Andrew B -- Wilson, Ian A -- Law, Mansun -- AI071084/AI/NIAID NIH HHS/ -- AI079031/AI/NIAID NIH HHS/ -- AI080916/AI/NIAID NIH HHS/ -- AI084817/AI/NIAID NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI071084/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R21 AI080916/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U54 GM094586/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1090-4. doi: 10.1126/science.1243876.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288331" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry ; Antigens, CD81/chemistry ; Antiviral Agents/chemistry ; Binding Sites ; Crystallography, X-Ray ; Drug Design ; Epitopes/chemistry/genetics ; Humans ; Immunoglobulin Fab Fragments/chemistry ; Mutagenesis, Site-Directed ; Protein Folding ; Protein Structure, Tertiary ; Viral Envelope Proteins/*chemistry/immunology ; Viral Hepatitis Vaccines/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-11-16
    Description: Transposable elements (TEs) may contribute to evolutionary innovations through the rewiring of networks by supplying ready-to-use cis regulatory elements. Genes on the Drosophila X chromosome are coordinately regulated by the male specific lethal (MSL) complex to achieve dosage compensation in males. We show that the acquisition of dozens of MSL binding sites on evolutionarily new X chromosomes was facilitated by the independent co-option of a mutant helitron TE that attracts the MSL complex (TE domestication). The recently formed neo-X recruits helitrons that provide dozens of functional, but suboptimal, MSL binding sites, whereas the older XR chromosome has ceased acquisition and appears to have fine-tuned the binding affinities of more ancient elements for the MSL complex. Thus, TE-mediated rewiring of regulatory networks through domestication and amplification may be followed by fine-tuning of the cis-regulatory element supplied by the TE and erosion of nonfunctional regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086361/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4086361/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ellison, Christopher E -- Bachtrog, Doris -- F32 GM103186/GM/NIGMS NIH HHS/ -- R01 GM076007/GM/NIGMS NIH HHS/ -- R01 GM093182/GM/NIGMS NIH HHS/ -- R01GM076007/GM/NIGMS NIH HHS/ -- R01GM093182/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):846-50. doi: 10.1126/science.1239552.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233721" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *DNA Transposable Elements ; *Dosage Compensation, Genetic ; Drosophila/*genetics ; Drosophila Proteins/genetics/*metabolism ; Evolution, Molecular ; *Gene Regulatory Networks ; Male ; Regulatory Elements, Transcriptional ; Transcription Factors/genetics/*metabolism ; X Chromosome/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-05-04
    Description: Recent studies have identified several mutations in the hemagglutinin (HA) protein that allow the highly pathogenic avian H5N1 influenza A virus to transmit between mammals by airborne route. Here, we determined the complex structures of wild-type and mutant HAs derived from an Indonesia H5N1 virus bound to either avian or human receptor sialic acid analogs. A cis/trans conformational change in the glycosidic linkage of the receptor analog was observed, which explains how the H5N1 virus alters its receptor-binding preference. Furthermore, the mutant HA possessed low affinities for both avian and human receptors. Our findings provide a structural and biophysical basis for the H5N1 adaptation to acquire human, but maintain avian, receptor-binding properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Wei -- Shi, Yi -- Lu, Xishan -- Shu, Yuelong -- Qi, Jianxun -- Gao, George F -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1463-7. doi: 10.1126/science.1236787. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641058" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Birds ; Carbohydrate Conformation ; Crystallography, X-Ray ; Hemagglutinin Glycoproteins, Influenza Virus/*chemistry/genetics/*metabolism ; Humans ; Influenza A Virus, H5N1 Subtype ; Models, Molecular ; Mutant Proteins/chemistry/metabolism ; Mutation ; Oligosaccharides/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Stability ; Receptors, Cell Surface/chemistry/*metabolism ; Receptors, Virus/chemistry/*metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-07-13
    Description: A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an "eat me" signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8(-/-) cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Jun -- Denning, Daniel P -- Imanishi, Eiichi -- Horvitz, H Robert -- Nagata, Shigekazu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):403-6. doi: 10.1126/science.1236758. Epub 2013 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23845944" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Calcium/metabolism ; Caspases/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Membrane/*metabolism ; CpG Islands ; Humans ; Macrophages/physiology ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Phagocytosis ; Phosphatidylserines/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-02-22
    Description: The lyso-phospholipid sphingosine 1-phosphate modulates lymphocyte trafficking, endothelial development and integrity, heart rate, and vascular tone and maturation by activating G protein-coupled sphingosine 1-phosphate receptors. Here, we present the crystal structure of the sphingosine 1-phosphate receptor 1 fused to T4-lysozyme (S1P(1)-T4L) in complex with an antagonist sphingolipid mimic. Extracellular access to the binding pocket is occluded by the amino terminus and extracellular loops of the receptor. Access is gained by ligands entering laterally between helices I and VII within the transmembrane region of the receptor. This structure, along with mutagenesis, agonist structure-activity relationship data, and modeling, provides a detailed view of the molecular recognition and requirement for hydrophobic volume that activates S1P(1), resulting in the modulation of immune and stromal cell responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hanson, Michael A -- Roth, Christopher B -- Jo, Euijung -- Griffith, Mark T -- Scott, Fiona L -- Reinhart, Greg -- Desale, Hans -- Clemons, Bryan -- Cahalan, Stuart M -- Schuerer, Stephan C -- Sanna, M Germana -- Han, Gye Won -- Kuhn, Peter -- Rosen, Hugh -- Stevens, Raymond C -- AI055509/AI/NIAID NIH HHS/ -- AI074564/AI/NIAID NIH HHS/ -- P50 GM073197/GM/NIGMS NIH HHS/ -- P50 GM073197-08/GM/NIGMS NIH HHS/ -- R01 AI055509/AI/NIAID NIH HHS/ -- R01 AI055509-04/AI/NIAID NIH HHS/ -- U01 AI074564/AI/NIAID NIH HHS/ -- U01 AI074564-04/AI/NIAID NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- U54 GM094618-02/GM/NIGMS NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-04/MH/NIMH NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):851-5. doi: 10.1126/science.1215904.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Receptos, 10835 Road to the Cure, San Diego, CA 92121, USA. mhanson@receptos.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344443" target="_blank"〉PubMed〈/a〉
    Keywords: Anilides/chemistry ; Binding Sites ; Crystallography, X-Ray ; Models, Molecular ; Muramidase/chemistry ; Mutagenesis ; Organophosphonates/chemistry ; Protein Conformation ; Receptors, Lysosphingolipid/agonists/antagonists & inhibitors/*chemistry/genetics ; Recombinant Fusion Proteins/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2012-09-22
    Description: Cytoplasmic dynein is a microtubule-based motor required for intracellular transport and cell division. Its movement involves coupling cycles of track binding and release with cycles of force-generating nucleotide hydrolysis. How this is accomplished given the ~25 nanometers separating dynein's track- and nucleotide-binding sites is not understood. Here, we present a subnanometer-resolution structure of dynein's microtubule-binding domain bound to microtubules by cryo-electron microscopy that was used to generate a pseudo-atomic model of the complex with molecular dynamics. We identified large rearrangements triggered by track binding and specific interactions, confirmed by mutagenesis and single-molecule motility assays, which tune dynein's affinity for microtubules. Our results provide a molecular model for how dynein's binding to microtubules is communicated to the rest of the motor.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redwine, William B -- Hernandez-Lopez, Rogelio -- Zou, Sirui -- Huang, Julie -- Reck-Peterson, Samara L -- Leschziner, Andres E -- 1 DP2 OD004268-1/OD/NIH HHS/ -- DP2 OD004268/OD/NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 21;337(6101):1532-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22997337" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Cytoplasmic Dyneins/*chemistry/metabolism ; Hydrogen Bonding ; Microtubules/*metabolism ; Models, Molecular ; Molecular Dynamics Simulation ; Mutagenesis ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-09-29
    Description: Newly synthesized proteins exit the endoplasmic reticulum (ER) via coat protein complex II (COPII) vesicles. Procollagen (PC), however, forms prefibrils that are too large to fit into typical COPII vesicles; PC thus needs large transport carriers, which we term megacarriers. TANGO1 assists PC packing, but its role in promoting the growth of megacarriers is not known. We found that TANGO1 recruited Sedlin, a TRAPP component that is defective in spondyloepiphyseal dysplasia tarda (SEDT), and that Sedlin was required for the ER export of PC. Sedlin bound and promoted efficient cycling of Sar1, a guanosine triphosphatase that can constrict membranes, and thus allowed nascent carriers to grow and incorporate PC prefibrils. This joint action of TANGO1 and Sedlin sustained the ER export of PC, and its derangement may explain the defective chondrogenesis underlying SEDT.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471527/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471527/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venditti, Rossella -- Scanu, Tiziana -- Santoro, Michele -- Di Tullio, Giuseppe -- Spaar, Alexander -- Gaibisso, Renato -- Beznoussenko, Galina V -- Mironov, Alexander A -- Mironov, Alexander Jr -- Zelante, Leopoldo -- Piemontese, Maria Rosaria -- Notarangelo, Angelo -- Malhotra, Vivek -- Vertel, Barbara M -- Wilson, Cathal -- De Matteis, Maria Antonietta -- AR053696/AR/NIAMS NIH HHS/ -- GGP06166/Telethon/Italy -- GGP07075/Telethon/Italy -- GSP08002/Telethon/Italy -- GTF08001/Telethon/Italy -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1668-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine, Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019651" target="_blank"〉PubMed〈/a〉
    Keywords: Aryl Hydrocarbon Receptor Nuclear Translocator/*metabolism ; COP-Coated Vesicles/metabolism ; Cell Line ; Chondrogenesis/genetics ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/metabolism ; Humans ; Membrane Transport Proteins/genetics/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Mutation ; Osteochondrodysplasias/genetics/metabolism ; Procollagen/*metabolism ; Protein Transport ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...