ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-08
    Description: The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kuhner, Sebastian -- van Noort, Vera -- Betts, Matthew J -- Leo-Macias, Alejandra -- Batisse, Claire -- Rode, Michaela -- Yamada, Takuji -- Maier, Tobias -- Bader, Samuel -- Beltran-Alvarez, Pedro -- Castano-Diez, Daniel -- Chen, Wei-Hua -- Devos, Damien -- Guell, Marc -- Norambuena, Tomas -- Racke, Ines -- Rybin, Vladimir -- Schmidt, Alexander -- Yus, Eva -- Aebersold, Ruedi -- Herrmann, Richard -- Bottcher, Bettina -- Frangakis, Achilleas S -- Russell, Robert B -- Serrano, Luis -- Bork, Peer -- Gavin, Anne-Claude -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1235-40. doi: 10.1126/science.1176343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965468" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*analysis/isolation & purification/metabolism ; Computational Biology ; *Genome, Bacterial ; Mass Spectrometry/methods ; Metabolic Networks and Pathways ; Microscopy, Electron ; Models, Biological ; Models, Molecular ; Multiprotein Complexes/*analysis/metabolism ; Mycoplasma pneumoniae/*chemistry/*genetics/metabolism/ultrastructure ; Pattern Recognition, Automated ; Protein Interaction Mapping ; *Proteome ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-08
    Description: To understand basic principles of bacterial metabolism organization and regulation, but also the impact of genome size, we systematically studied one of the smallest bacteria, Mycoplasma pneumoniae. A manually curated metabolic network of 189 reactions catalyzed by 129 enzymes allowed the design of a defined, minimal medium with 19 essential nutrients. More than 1300 growth curves were recorded in the presence of various nutrient concentrations. Measurements of biomass indicators, metabolites, and 13C-glucose experiments provided information on directionality, fluxes, and energetics; integration with transcription profiling enabled the global analysis of metabolic regulation. Compared with more complex bacteria, the M. pneumoniae metabolic network has a more linear topology and contains a higher fraction of multifunctional enzymes; general features such as metabolite concentrations, cellular energetics, adaptability, and global gene expression responses are similar, however.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yus, Eva -- Maier, Tobias -- Michalodimitrakis, Konstantinos -- van Noort, Vera -- Yamada, Takuji -- Chen, Wei-Hua -- Wodke, Judith A H -- Guell, Marc -- Martinez, Sira -- Bourgeois, Ronan -- Kuhner, Sebastian -- Raineri, Emanuele -- Letunic, Ivica -- Kalinina, Olga V -- Rode, Michaela -- Herrmann, Richard -- Gutierrez-Gallego, Ricardo -- Russell, Robert B -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1263-8. doi: 10.1126/science.1177263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra, Avenida Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965476" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Bacterial Proteins/*metabolism ; Culture Media ; Energy Metabolism ; Enzymes/genetics/metabolism ; Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; *Genome, Bacterial ; Glycolysis ; *Metabolic Networks and Pathways ; Mycoplasma pneumoniae/*genetics/growth & development/*metabolism ; RNA, Bacterial/genetics/metabolism ; Signal Transduction ; Systems Biology ; Transcription, Genetic ; rRNA Operon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-05
    Description: Bacteria and archaea have evolved adaptive immune defenses, termed clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems, that use short RNA to direct degradation of foreign nucleic acids. Here, we engineer the type II bacterial CRISPR system to function with custom guide RNA (gRNA) in human cells. For the endogenous AAVS1 locus, we obtained targeting rates of 10 to 25% in 293T cells, 13 to 8% in K562 cells, and 2 to 4% in induced pluripotent stem cells. We show that this process relies on CRISPR components; is sequence-specific; and, upon simultaneous introduction of multiple gRNAs, can effect multiplex editing of target loci. We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mali, Prashant -- Yang, Luhan -- Esvelt, Kevin M -- Aach, John -- Guell, Marc -- DiCarlo, James E -- Norville, Julie E -- Church, George M -- P50 HG005550/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):823-6. doi: 10.1126/science.1232033. Epub 2013 Jan 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23287722" target="_blank"〉PubMed〈/a〉
    Keywords: Caspase 9/*chemistry/genetics ; Chromosomes, Human, Pair 19/genetics ; Codon/genetics ; DNA Cleavage ; Exons ; Gene Targeting/*methods ; Genetic Engineering/*methods ; Genetic Loci ; Genome, Human/*genetics ; Humans ; Induced Pluripotent Stem Cells ; Inverted Repeat Sequences/*genetics ; K562 Cells ; RNA/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-13
    Description: The shortage of organs for transplantation is a major barrier to the treatment of organ failure. Although porcine organs are considered promising, their use has been checked by concerns about the transmission of porcine endogenous retroviruses (PERVs) to humans. Here we describe the eradication of all PERVs in a porcine kidney epithelial cell line (PK15). We first determined the PK15 PERV copy number to be 62. Using CRISPR-Cas9, we disrupted all copies of the PERV pol gene and demonstrated a 〉1000-fold reduction in PERV transmission to human cells, using our engineered cells. Our study shows that CRISPR-Cas9 multiplexability can be as high as 62 and demonstrates the possibility that PERVs can be inactivated for clinical application of porcine-to-human xenotransplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Luhan -- Guell, Marc -- Niu, Dong -- George, Haydy -- Lesha, Emal -- Grishin, Dennis -- Aach, John -- Shrock, Ellen -- Xu, Weihong -- Poci, Jurgen -- Cortazio, Rebeca -- Wilkinson, Robert A -- Fishman, Jay A -- Church, George -- P50 HG005550/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub 2015 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. gchurch@genetics.med.harvard.edu luhan.yang@egenesisbio.com. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ; Transplant Infectious Disease and Compromised Host Program, Massachusetts General Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26456528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Cas Systems ; Cell Line ; Endogenous Retroviruses/*genetics ; Epithelial Cells/virology ; Gene Dosage ; Gene Targeting/*methods ; Genes, pol ; HEK293 Cells ; Humans ; Kidney/virology ; Molecular Sequence Data ; Retroviridae Infections/*prevention & control/transmission/virology ; Swine/*virology ; Transplantation, Heterologous/*methods ; *Virus Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9672
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The CEPPAD Experiment consists of four sensors for investigating energetic particle phenomena on the POLAR mission. These sensors provide 3-D proton and electron angular distributions in the energy range of 20 keV to 1 MeV, energetic proton and electron measurements extending to energies greater than 10 MEV, high angular and time resolution measurements in the loss-cone, and data on energetic neutral particles. All sensors operate in conjunction with special on-board data processing units which control sensor data acquisition modes while performing in-flight data processing, data compression, and telemetry formatting. Presented here is a CEPPAD system overview together with descriptions of the individual sensors, the in-flight data processing, and examples of sensor calibration data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-19
    Description: Efficient strategies for precise genome editing in human-induced pluripotent cells (hiPSCs) will enable sophisticated genome engineering for research and clinical purposes. The development of programmable sequence-specific nucleases such as Transcription Activator-Like Effectors Nucleases (TALENs) and Cas9-gRNA allows genetic modifications to be made more efficiently at targeted sites of interest. However, many opportunities remain to optimize these tools and to enlarge their spheres of application. We present several improvements: First, we developed functional re-coded TALEs (reTALEs), which not only enable simple one-pot TALE synthesis but also allow TALE-based applications to be performed using lentiviral vectors. We then compared genome-editing efficiencies in hiPSCs mediated by 15 pairs of reTALENs and Cas9-gRNA targeting CCR5 and optimized ssODN design in conjunction with both methods for introducing specific mutations. We found Cas9-gRNA achieved 7–8 x higher non-homologous end joining efficiencies (3%) than reTALENs (0.4%) and moderately superior homology-directed repair efficiencies (1.0 versus 0.6%) when combined with ssODN donors in hiPSCs. Using the optimal design, we demonstrated a streamlined process to generated seamlessly genome corrected hiPSCs within 3 weeks.
    Keywords: Synthetic Biology and Assembly Cloning, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-04
    Description: : Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have revolutionized human genome engineering and opened countless possibilities to basic science, synthetic biology and gene therapy. Albeit the enormous potential of these tools, their performance is far from perfect. It is essential to perform a posterior careful analysis of the gene editing experiment. However, there are no computational tools for genome editing assessment yet, and current experimental tools lack sensitivity and flexibility. We present a platform to assess the quality of a genome editing experiment only with three mouse clicks. The method evaluates next-generation data to quantify and characterize insertions, deletions and homologous recombination. CRISPR Genome Analyzer provides a report for the locus selected, which includes a quantification of the edited site and the analysis of the different alterations detected. The platform maps the reads, estimates and locates insertions and deletions, computes the allele replacement efficiency and provides a report integrating all the information. Availability and implementation: CRISPR-GA Web is available at http://crispr-ga.net . Documentation on CRISPR-GA instructions can be found at http://crispr-ga.net/documentation.html Contact: mguell@genetics.med.harvard.edu
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-01
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...