ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Munksgaard International Publishers
    Physiologia plantarum 118 (2003), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Differential screening was performed on a cDNA library made from RNAs isolated from rice seedlings (variety Yukihikari) grown in submergence condition. A cDNA clone (OsPRP) encoding a repetitive proline-rich protein of 358 amino acids and molecular weight of 39 kDa was obtained. The C-terminal region of OsPRP contains proline (P) residues (40%), and high levels of glutamic acid (E) and lysine (K). The N-terminus was free from proline residues. Sequence analysis indicated that 40 distinct PEPK repetitive sequence motifs were present in the sequence along with other repetitive motifs. Furthermore, four phosphorylation sites were predicted from the sequence. The domain structure of OsPRP was compared with proline-rich proteins from other monocot species. The N-terminus of OsPRP is highly hydrophobic indicating the presence of a signal peptide. Southern blot data indicate that in the Yukihikari genome OsPRP is most likely encoded by a single gene. The expression of OsPRP was relatively uniform in the young seedlings. However, tissue-specific expression of OsPRP indicated that shoot tissue accumulates more mRNA, and the root has relatively low expression. In addition, OsPRP expression is regulated by various environmental factors and is down-regulated under submergence stress. Exogenous application of growth hormones, namely abscisic acid (ABA), methyl jasmonate (MeJ) and ethephon caused significant repression of the OsPRP transcript. The nucleotide sequence reported in this paper has been reported to the NCBI, GenBank under accession number AF 337054.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-25
    Description: We present the first results from the KMOS ( K -band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASH z ), a VLT/KMOS integral-field spectroscopic (IFS) survey of z 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN ( L 2–10 keV = 10 42 –10 45  erg s –1 ), for which we observed [O iii ] ( z 1.1–1.7) or Hα emission ( z 0.6–1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O iii ] targets, 50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths 600 km s –1 ). The most luminous half (i.e. L X 〉 6 x 10 43  erg s –1 ) have a 2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASH z sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z 〈 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to 10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-04
    Description: In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681099/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681099/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forslund, Kristoffer -- Hildebrand, Falk -- Nielsen, Trine -- Falony, Gwen -- Le Chatelier, Emmanuelle -- Sunagawa, Shinichi -- Prifti, Edi -- Vieira-Silva, Sara -- Gudmundsdottir, Valborg -- Krogh Pedersen, Helle -- Arumugam, Manimozhiyan -- Kristiansen, Karsten -- Voigt, Anita Yvonne -- Vestergaard, Henrik -- Hercog, Rajna -- Igor Costea, Paul -- Kultima, Jens Roat -- Li, Junhua -- Jorgensen, Torben -- Levenez, Florence -- Dore, Joel -- MetaHIT consortium -- Nielsen, H Bjorn -- Brunak, Soren -- Raes, Jeroen -- Hansen, Torben -- Wang, Jun -- Ehrlich, S Dusko -- Bork, Peer -- Pedersen, Oluf -- England -- Nature. 2015 Dec 10;528(7581):262-6. doi: 10.1038/nature15766. Epub 2015 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany. ; VIB Center for the Biology of Disease, Katholieke Universiteit Leuven, 3000 Leuven, Belgium. ; Department of Bioscience Engineering, Vrije Universiteit Brussel, 1040 Brussels, Belgium. ; The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark. ; Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium. ; MICALIS, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France. ; Metagenopolis, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France. ; Institute of Cardiometabolism and Nutrition, 75013 Paris, France. ; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Kongens Lyngby, Denmark. ; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark. ; Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany. ; Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany. ; Bejing Genomics Institute (BGI)-Shenzhen, 518083 Shenzhen, China. ; Research Centre for Prevention and Health, Capital Region of Denmark, 2600 Glostrup, Denmark. ; Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, 2600 Copenhagen, Denmark. ; Faculty of Medicine, University of Aalborg, 9100 Aalborg, Denmark. ; Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark. ; Faculty of Health Sciences, University of Southern Denmark, 5000 Odense, Denmark. ; Princess Al Jawhara Albrahim Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, 80205 Jeddah, Saudi Arabia. ; Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China. ; Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong. ; Centre for Host-Microbiome Interactions, Dental Institute Central Office, Guy's Hospital, King's College London, London SE1 9RT , UK. ; Max Delbruck Centre for Molecular Medicine, 13125 Berlin, Germany. ; Department of Bioinformatics, University of Wuerzburg, 97074 Wurzburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633628" target="_blank"〉PubMed〈/a〉
    Keywords: Biodiversity ; Diabetes Mellitus, Type 2/drug therapy/*microbiology ; Female ; Gastrointestinal Microbiome/*drug effects/genetics/*physiology ; Humans ; Hypoglycemic Agents/pharmacology/therapeutic use ; Male ; Metagenome/drug effects/physiology ; Metformin/*pharmacology/therapeutic use ; RNA, Ribosomal, 16S/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-04-22
    Description: Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728647/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728647/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arumugam, Manimozhiyan -- Raes, Jeroen -- Pelletier, Eric -- Le Paslier, Denis -- Yamada, Takuji -- Mende, Daniel R -- Fernandes, Gabriel R -- Tap, Julien -- Bruls, Thomas -- Batto, Jean-Michel -- Bertalan, Marcelo -- Borruel, Natalia -- Casellas, Francesc -- Fernandez, Leyden -- Gautier, Laurent -- Hansen, Torben -- Hattori, Masahira -- Hayashi, Tetsuya -- Kleerebezem, Michiel -- Kurokawa, Ken -- Leclerc, Marion -- Levenez, Florence -- Manichanh, Chaysavanh -- Nielsen, H Bjorn -- Nielsen, Trine -- Pons, Nicolas -- Poulain, Julie -- Qin, Junjie -- Sicheritz-Ponten, Thomas -- Tims, Sebastian -- Torrents, David -- Ugarte, Edgardo -- Zoetendal, Erwin G -- Wang, Jun -- Guarner, Francisco -- Pedersen, Oluf -- de Vos, Willem M -- Brunak, Soren -- Dore, Joel -- MetaHIT Consortium -- Antolin, Maria -- Artiguenave, Francois -- Blottiere, Herve M -- Almeida, Mathieu -- Brechot, Christian -- Cara, Carlos -- Chervaux, Christian -- Cultrone, Antonella -- Delorme, Christine -- Denariaz, Gerard -- Dervyn, Rozenn -- Foerstner, Konrad U -- Friss, Carsten -- van de Guchte, Maarten -- Guedon, Eric -- Haimet, Florence -- Huber, Wolfgang -- van Hylckama-Vlieg, Johan -- Jamet, Alexandre -- Juste, Catherine -- Kaci, Ghalia -- Knol, Jan -- Lakhdari, Omar -- Layec, Severine -- Le Roux, Karine -- Maguin, Emmanuelle -- Merieux, Alexandre -- Melo Minardi, Raquel -- M'rini, Christine -- Muller, Jean -- Oozeer, Raish -- Parkhill, Julian -- Renault, Pierre -- Rescigno, Maria -- Sanchez, Nicolas -- Sunagawa, Shinichi -- Torrejon, Antonio -- Turner, Keith -- Vandemeulebrouck, Gaetana -- Varela, Encarna -- Winogradsky, Yohanan -- Zeller, Georg -- Weissenbach, Jean -- Ehrlich, S Dusko -- Bork, Peer -- 076964/Wellcome Trust/United Kingdom -- 082372/Wellcome Trust/United Kingdom -- England -- Nature. 2011 May 12;473(7346):174-80. doi: 10.1038/nature09944. Epub 2011 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21508958" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*classification/genetics ; Bacterial Typing Techniques ; Biodiversity ; Biomarkers/analysis ; Europe ; Feces/microbiology ; Female ; Humans ; Intestines/*microbiology ; Male ; *Metagenome ; Metagenomics ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-12
    Description: Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short insertions/deletions, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536929/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536929/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schloissnig, Siegfried -- Arumugam, Manimozhiyan -- Sunagawa, Shinichi -- Mitreva, Makedonka -- Tap, Julien -- Zhu, Ana -- Waller, Alison -- Mende, Daniel R -- Kultima, Jens Roat -- Martin, John -- Kota, Karthik -- Sunyaev, Shamil R -- Weinstock, George M -- Bork, Peer -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG004968/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- U54HG004968/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Jan 3;493(7430):45-50. doi: 10.1038/nature11711. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222524" target="_blank"〉PubMed〈/a〉
    Keywords: Europe ; Feces/microbiology ; Genetic Variation/*genetics ; Genome, Bacterial/genetics ; Genotype ; Geographic Mapping ; Humans ; Intestines/*microbiology ; Metagenome/*genetics ; North America ; Polymorphism, Single Nucleotide/genetics ; Reference Standards ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-03-06
    Description: To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779803/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779803/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qin, Junjie -- Li, Ruiqiang -- Raes, Jeroen -- Arumugam, Manimozhiyan -- Burgdorf, Kristoffer Solvsten -- Manichanh, Chaysavanh -- Nielsen, Trine -- Pons, Nicolas -- Levenez, Florence -- Yamada, Takuji -- Mende, Daniel R -- Li, Junhua -- Xu, Junming -- Li, Shaochuan -- Li, Dongfang -- Cao, Jianjun -- Wang, Bo -- Liang, Huiqing -- Zheng, Huisong -- Xie, Yinlong -- Tap, Julien -- Lepage, Patricia -- Bertalan, Marcelo -- Batto, Jean-Michel -- Hansen, Torben -- Le Paslier, Denis -- Linneberg, Allan -- Nielsen, H Bjorn -- Pelletier, Eric -- Renault, Pierre -- Sicheritz-Ponten, Thomas -- Turner, Keith -- Zhu, Hongmei -- Yu, Chang -- Li, Shengting -- Jian, Min -- Zhou, Yan -- Li, Yingrui -- Zhang, Xiuqing -- Li, Songgang -- Qin, Nan -- Yang, Huanming -- Wang, Jian -- Brunak, Soren -- Dore, Joel -- Guarner, Francisco -- Kristiansen, Karsten -- Pedersen, Oluf -- Parkhill, Julian -- Weissenbach, Jean -- MetaHIT Consortium -- Bork, Peer -- Ehrlich, S Dusko -- Wang, Jun -- 085775/Wellcome Trust/United Kingdom -- England -- Nature. 2010 Mar 4;464(7285):59-65. doi: 10.1038/nature08821.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203603" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/isolation & purification/metabolism ; Cohort Studies ; Contig Mapping ; Denmark ; Feces/microbiology ; Gastrointestinal Tract/*microbiology ; Genes, Bacterial/genetics ; Genes, Essential/genetics ; Genome, Bacterial/genetics ; *Genomics ; Health ; Humans ; Inflammatory Bowel Diseases/genetics ; Metagenome/*genetics ; Obesity/genetics ; Open Reading Frames/genetics ; Overweight/genetics ; Sequence Analysis, DNA ; Spain
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-30
    Description: We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Le Chatelier, Emmanuelle -- Nielsen, Trine -- Qin, Junjie -- Prifti, Edi -- Hildebrand, Falk -- Falony, Gwen -- Almeida, Mathieu -- Arumugam, Manimozhiyan -- Batto, Jean-Michel -- Kennedy, Sean -- Leonard, Pierre -- Li, Junhua -- Burgdorf, Kristoffer -- Grarup, Niels -- Jorgensen, Torben -- Brandslund, Ivan -- Nielsen, Henrik Bjorn -- Juncker, Agnieszka S -- Bertalan, Marcelo -- Levenez, Florence -- Pons, Nicolas -- Rasmussen, Simon -- Sunagawa, Shinichi -- Tap, Julien -- Tims, Sebastian -- Zoetendal, Erwin G -- Brunak, Soren -- Clement, Karine -- Dore, Joel -- Kleerebezem, Michiel -- Kristiansen, Karsten -- Renault, Pierre -- Sicheritz-Ponten, Thomas -- de Vos, Willem M -- Zucker, Jean-Daniel -- Raes, Jeroen -- Hansen, Torben -- MetaHIT consortium -- Bork, Peer -- Wang, Jun -- Ehrlich, S Dusko -- Pedersen, Oluf -- England -- Nature. 2013 Aug 29;500(7464):541-6. doi: 10.1038/nature12506.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA, Institut National de la Recherche Agronomique, US1367 Metagenopolis, 78350 Jouy en Josas, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23985870" target="_blank"〉PubMed〈/a〉
    Keywords: Adiposity ; Adult ; Bacteria/classification/genetics/*isolation & purification ; Biomarkers/*metabolism ; Body Mass Index ; Case-Control Studies ; Diet ; Dyslipidemias/microbiology ; Energy Metabolism ; Europe/ethnology ; European Continental Ancestry Group ; Female ; Gastrointestinal Tract/*microbiology ; Genes, Bacterial ; Humans ; Inflammation/microbiology ; Insulin Resistance ; Male ; *Metagenome/genetics ; Obesity/metabolism/microbiology ; Overweight/metabolism/microbiology ; Phylogeny ; Thinness/microbiology ; Weight Gain ; Weight Loss
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-07-23
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-14
    Description: Horsegram (Macrotyloma uniflorum (Lam.) Verdc.) is a drought hardy food and fodder legume of Indo-African continents with diverse germplasm sources demonstrating alternating mechanisms depicting contrasting adaptations to different climatic zones. Tissue specific expression of genes contributes substantially to location specific adaptations. Regulatory networks of such adaptive genes are elucidated for downstream translational research. MicroRNAs are small endogenous regulatory RNAs which alters the gene expression profiles at a particular time and type of tissue. Identification of such small regulatory RNAs in low moisture stress hardy crops can help in cross species transfer and validation confirming stress tolerance ability. This study outlined prediction of conserved miRNAs from transcriptome shotgun assembled sequences and EST sequences of horsegram. We could validate eight out of 15 of the identified miRNAs to demonstrate their role in deficit moisture stress tolerance mechanism of horsegram variety Paiyur1 with their target networks. The putative mumiRs were related to other food legumes indicating the presence of gene regulatory networks. Differential miRNA expression among drought specific tissues indicted the probable energy conservation mechanism. Targets were identified for functional characterization and regulatory network was constructed to find out the probable pathways of post-transcriptional regulation. The functional network revealed mechanism of biotic and abiotic stress tolerance, energy conservation and photoperiod responsiveness.
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...