ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-22
    Description: Quantifying the number of deleterious mutations per diploid human genome is of crucial concern to both evolutionary and medical geneticists. Here we combine genome-wide polymorphism data from PCR-based exon resequencing, comparative genomic data across mammalian species, and protein structure predictions to estimate the number of functionally consequential single-nucleotide polymorphisms (SNPs) carried by each of 15 African American (AA) and 20 European American (EA) individuals. We find that AAs show significantly higher levels of nucleotide heterozygosity than do EAs for all categories of functional SNPs considered, including synonymous, non-synonymous, predicted 'benign', predicted 'possibly damaging' and predicted 'probably damaging' SNPs. This result is wholly consistent with previous work showing higher overall levels of nucleotide variation in African populations than in Europeans. EA individuals, in contrast, have significantly more genotypes homozygous for the derived allele at synonymous and non-synonymous SNPs and for the damaging allele at 'probably damaging' SNPs than AAs do. For SNPs segregating only in one population or the other, the proportion of non-synonymous SNPs is significantly higher in the EA sample (55.4%) than in the AA sample (47.0%; P 〈 2.3 x 10(-37)). We observe a similar proportional excess of SNPs that are inferred to be 'probably damaging' (15.9% in EA; 12.1% in AA; P 〈 3.3 x 10(-11)). Using extensive simulations, we show that this excess proportion of segregating damaging alleles in Europeans is probably a consequence of a bottleneck that Europeans experienced at about the time of the migration out of Africa.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lohmueller, Kirk E -- Indap, Amit R -- Schmidt, Steffen -- Boyko, Adam R -- Hernandez, Ryan D -- Hubisz, Melissa J -- Sninsky, John J -- White, Thomas J -- Sunyaev, Shamil R -- Nielsen, Rasmus -- Clark, Andrew G -- Bustamante, Carlos D -- P50 GM065509/GM/NIGMS NIH HHS/ -- P50 GM065509-070006/GM/NIGMS NIH HHS/ -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HG003229-03/HG/NHGRI NIH HHS/ -- R01 HL072904/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Feb 21;451(7181):994-7. doi: 10.1038/nature06611.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288194" target="_blank"〉PubMed〈/a〉
    Keywords: Africa/ethnology ; Alleles ; Computational Biology ; Emigration and Immigration ; Europe/ethnology ; Exons/genetics ; Genome, Human/*genetics ; Heterozygote ; Homozygote ; Humans ; Polymerase Chain Reaction ; Polymorphism, Single Nucleotide/*genetics ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-10
    Description: Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (〈/=50 years in males and 〈/=60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol 〉 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319990/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319990/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Do, Ron -- Stitziel, Nathan O -- Won, Hong-Hee -- Jorgensen, Anders Berg -- Duga, Stefano -- Angelica Merlini, Pier -- Kiezun, Adam -- Farrall, Martin -- Goel, Anuj -- Zuk, Or -- Guella, Illaria -- Asselta, Rosanna -- Lange, Leslie A -- Peloso, Gina M -- Auer, Paul L -- NHLBI Exome Sequencing Project -- Girelli, Domenico -- Martinelli, Nicola -- Farlow, Deborah N -- DePristo, Mark A -- Roberts, Robert -- Stewart, Alexander F R -- Saleheen, Danish -- Danesh, John -- Epstein, Stephen E -- Sivapalaratnam, Suthesh -- Hovingh, G Kees -- Kastelein, John J -- Samani, Nilesh J -- Schunkert, Heribert -- Erdmann, Jeanette -- Shah, Svati H -- Kraus, William E -- Davies, Robert -- Nikpay, Majid -- Johansen, Christopher T -- Wang, Jian -- Hegele, Robert A -- Hechter, Eliana -- Marz, Winfried -- Kleber, Marcus E -- Huang, Jie -- Johnson, Andrew D -- Li, Mingyao -- Burke, Greg L -- Gross, Myron -- Liu, Yongmei -- Assimes, Themistocles L -- Heiss, Gerardo -- Lange, Ethan M -- Folsom, Aaron R -- Taylor, Herman A -- Olivieri, Oliviero -- Hamsten, Anders -- Clarke, Robert -- Reilly, Dermot F -- Yin, Wu -- Rivas, Manuel A -- Donnelly, Peter -- Rossouw, Jacques E -- Psaty, Bruce M -- Herrington, David M -- Wilson, James G -- Rich, Stephen S -- Bamshad, Michael J -- Tracy, Russell P -- Cupples, L Adrienne -- Rader, Daniel J -- Reilly, Muredach P -- Spertus, John A -- Cresci, Sharon -- Hartiala, Jaana -- Tang, W H Wilson -- Hazen, Stanley L -- Allayee, Hooman -- Reiner, Alex P -- Carlson, Christopher S -- Kooperberg, Charles -- Jackson, Rebecca D -- Boerwinkle, Eric -- Lander, Eric S -- Schwartz, Stephen M -- Siscovick, David S -- McPherson, Ruth -- Tybjaerg-Hansen, Anne -- Abecasis, Goncalo R -- Watkins, Hugh -- Nickerson, Deborah A -- Ardissino, Diego -- Sunyaev, Shamil R -- O'Donnell, Christopher J -- Altshuler, David -- Gabriel, Stacey -- Kathiresan, Sekar -- 090532/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 5U54HG003067-11/HG/NHGRI NIH HHS/ -- G-0907/Parkinson's UK/United Kingdom -- K08 HL114642/HL/NHLBI NIH HHS/ -- K08HL114642/HL/NHLBI NIH HHS/ -- P01 HL076491/HL/NHLBI NIH HHS/ -- P01 HL098055/HL/NHLBI NIH HHS/ -- R01 HL107816/HL/NHLBI NIH HHS/ -- R01HL107816/HL/NHLBI NIH HHS/ -- RC2 HL-102923/HL/NHLBI NIH HHS/ -- RC2 HL-102924/HL/NHLBI NIH HHS/ -- RC2 HL-102925/HL/NHLBI NIH HHS/ -- RC2 HL-102926/HL/NHLBI NIH HHS/ -- RC2 HL-103010/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- T32HL00720/HL/NHLBI NIH HHS/ -- T32HL007604/HL/NHLBI NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Feb 5;518(7537):102-6. doi: 10.1038/nature13917. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [2] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [3] Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114, USA. [4] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; 1] Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark. ; Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Universita degli Studi di Milano, Milano 20122, Italy. ; Division of Cardiology, Ospedale Niguarda, Milano 20162, Italy. ; Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2J, UK. ; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; University of Verona School of Medicine, Department of Medicine, Verona 37129, Italy. ; John &Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 1TN, UK. ; MedStar Health Research Institute, Cardiovascular Research Institute, Hyattsville, Maryland 20782, USA. ; Department of Vascular Medicine, Academic Medical Center, Amsterdam 1105 AZ, The Netherlands. ; Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE3 9QP, UK. ; DZHK (German Research Centre for Cardiovascular Research), Munich Heart Alliance, Deutsches Herzzentrum Munchen, Technische Universitat Munchen, Berlin 13347, Germany. ; Medizinische Klinik II, University of Lubeck, Lubeck 23562, Germany. ; 1] Center for Human Genetics, Duke University, Durham, North Carolina 27708, USA. [2] Department of Cardiology and Center for Genomic Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; Department of Cardiology and Center for Genomic Medicine, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; Department of Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. ; 1] Department of Biochemistry, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. [2] Department of Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada. ; 1] Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine, Heidelberg University, Ludolf Krehl Strasse 7-11, Mannheim D-68167, Germany. [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8036, Austria. [3] Synlab Academy, Mannheim 68259, Germany. ; Medical Faculty Mannheim, Mannheim Institute of Public Health, Social and Preventive Medicine, Heidelberg University, Ludolf Krehl Strasse 7-11, Mannheim D-68167, Germany. ; The National Heart, Lung, Blood Institute's Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; National Heart, Lung, and Blood Institute Center for Population Studies, The Framingham Heart Study, Framingham, Massachusetts 01702, USA. ; Department of Biostatistics and Epidemiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Epidemiology, University of Alabama-Birmingham, Birmingham, Alabama 35233, USA. ; Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA. ; School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27106, USA. ; Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; 1] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. [2] Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota 55455, USA. ; University of Mississippi Medical Center, Jackson, Mississippi 39216, USA. ; Atherosclerosis Research Unit, Department of Medicine, and Center for Molecular Medicine, Karolinska Institutet, Stockholm 171 77, Sweden. ; Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford OX1 2JD, UK. ; Merck Sharp &Dohme Corporation, Rahway, New Jersey 08889, USA. ; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. ; 1] The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. [2] Department of Statistics, University of Oxford, Oxford OX1 2JD, UK. ; National Heart, Lung, and Blood Institute, Bethesda, Maryland 20824, USA. ; 1] Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington 98195, USA. [2] Group Health Research Institute, Group Health Cooperative, Seattle, Washington 98101, USA. ; Section on Cardiology, and Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina 27106, USA. ; Jackson Heart Study, University of Mississippi Medical Center, Jackson State University, Jackson, Mississippi 39217, USA. ; Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22904, USA. ; 1] Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Seattle Children's Hospital, Seattle, Washington 98105, USA. [3] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Biochemistry, University of Vermont, Burlington, Vermont 05405, USA. ; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118, USA. ; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; St Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, Missouri 64111, USA. ; 1] Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA. [2] Department of Genetics, Washington University in St Louis, Missouri 63130, USA. ; Department of Preventive Medicine and Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA. ; Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA. ; 1] Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. ; Ohio State University, Columbus, Ohio 43210, USA. ; Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA. ; 1] Department of Epidemiology, University of Washington, Seattle, Washington 98195, USA. [2] Department of Medicine, School of Medicine, University of Washington, Seattle, Washington 98195, USA. ; 1] Department of Clinical Biochemistry KB3011, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospitals and Faculty of Health Sciences, University of Copenhagen, Copenhagen 1165, Denmark. [2] Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Kobenhavn N, Denmark. ; Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Missouri 48109, USA. ; 1] Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2J, UK. [2] The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Department of Cardiology, Parma Hospital, Parma 43100, Italy. ; 1] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. [2] Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. [2] Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487149" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Age of Onset ; *Alleles ; Apolipoproteins A/*genetics ; Case-Control Studies ; Cholesterol, LDL/blood ; Coronary Artery Disease/genetics ; Exome/*genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Genetics, Population ; Heterozygote ; Humans ; Male ; Middle Aged ; Mutation/genetics ; Myocardial Infarction/blood/*genetics ; National Heart, Lung, and Blood Institute (U.S.) ; Receptors, LDL/*genetics ; Triglycerides/blood ; United States
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-08
    Description: Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maurano, Matthew T -- Humbert, Richard -- Rynes, Eric -- Thurman, Robert E -- Haugen, Eric -- Wang, Hao -- Reynolds, Alex P -- Sandstrom, Richard -- Qu, Hongzhu -- Brody, Jennifer -- Shafer, Anthony -- Neri, Fidencio -- Lee, Kristen -- Kutyavin, Tanya -- Stehling-Sun, Sandra -- Johnson, Audra K -- Canfield, Theresa K -- Giste, Erika -- Diegel, Morgan -- Bates, Daniel -- Hansen, R Scott -- Neph, Shane -- Sabo, Peter J -- Heimfeld, Shelly -- Raubitschek, Antony -- Ziegler, Steven -- Cotsapas, Chris -- Sotoodehnia, Nona -- Glass, Ian -- Sunyaev, Shamil R -- Kaul, Rajinder -- Stamatoyannopoulos, John A -- F31 MH094073/MH/NIMH NIH HHS/ -- P30 DK056465/DK/NIDDK NIH HHS/ -- R01 HL088456/HL/NHLBI NIH HHS/ -- R01HL088456/HL/NHLBI NIH HHS/ -- R24 HD000836/HD/NICHD NIH HHS/ -- R24HD000836-47/HD/NICHD NIH HHS/ -- U01ES01156/ES/NIEHS NIH HHS/ -- U54 HG004592/HG/NHGRI NIH HHS/ -- U54HG004592/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1190-5. doi: 10.1126/science.1222794. Epub 2012 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955828" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromatin/metabolism/ultrastructure ; Crohn Disease/genetics ; DNA/*genetics ; Deoxyribonuclease I/metabolism ; Disease/*genetics ; Electrocardiography ; Fetal Development ; Fetus/metabolism ; Gene Regulatory Networks ; *Genetic Variation ; Genome, Human ; Genome-Wide Association Study ; Humans ; Multiple Sclerosis/genetics ; Phenotype ; *Polymorphism, Single Nucleotide ; Promoter Regions, Genetic ; *Regulatory Elements, Transcriptional ; *Regulatory Sequences, Nucleic Acid ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-25
    Description: The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacArthur, D G -- Manolio, T A -- Dimmock, D P -- Rehm, H L -- Shendure, J -- Abecasis, G R -- Adams, D R -- Altman, R B -- Antonarakis, S E -- Ashley, E A -- Barrett, J C -- Biesecker, L G -- Conrad, D F -- Cooper, G M -- Cox, N J -- Daly, M J -- Gerstein, M B -- Goldstein, D B -- Hirschhorn, J N -- Leal, S M -- Pennacchio, L A -- Stamatoyannopoulos, J A -- Sunyaev, S R -- Valle, D -- Voight, B F -- Winckler, W -- Gunter, C -- P30 DK020595/DK/NIDDK NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- R01 HG007022/HG/NHGRI NIH HHS/ -- R01 HL117626/HL/NHLBI NIH HHS/ -- R01 MH101810/MH/NIMH NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 24;508(7497):469-76. doi: 10.1038/nature13127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; 1] Laboratory for Molecular Medicine, Partners Healthcare Center for Personalized Genetic Medicine, Cambridge, Massachusetts 02139, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98115, USA. ; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] NIH Undiagnosed Diseases Program, National Institutes of Health Office of Rare Diseases Research and National Human Genome Research Institute, Bethesda, Maryland 20892, USA [2] Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Departments of Bioengineering & Genetics, Stanford University, Stanford, California 94305, USA. ; 1] Department of Genetic Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland [2] iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland. ; Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, California 94305, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK. ; Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA. ; Departments of Genetics, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35806, USA. ; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA [2] Departments of Computer Science, Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA. ; Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [2] Divisions of Genetics and Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. ; Department of Genome Sciences, University of Washington, 1705 Northeast Pacific Street, Seattle, Washington 98195, USA. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. ; Department of Pharmacology and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA. ; 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [2] Next Generation Diagnostics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA (W.W.); Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30329, USA (C.G.). ; 1] HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35806, USA [2] Next Generation Diagnostics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA (W.W.); Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30329, USA (C.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759409" target="_blank"〉PubMed〈/a〉
    Keywords: *Disease ; False Positive Reactions ; Genes/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; *Guidelines as Topic ; Humans ; Information Dissemination ; Publishing ; Reproducibility of Results ; Research Design ; Translational Medical Research/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-08
    Description: DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify approximately 2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect approximately 580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3721348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thurman, Robert E -- Rynes, Eric -- Humbert, Richard -- Vierstra, Jeff -- Maurano, Matthew T -- Haugen, Eric -- Sheffield, Nathan C -- Stergachis, Andrew B -- Wang, Hao -- Vernot, Benjamin -- Garg, Kavita -- John, Sam -- Sandstrom, Richard -- Bates, Daniel -- Boatman, Lisa -- Canfield, Theresa K -- Diegel, Morgan -- Dunn, Douglas -- Ebersol, Abigail K -- Frum, Tristan -- Giste, Erika -- Johnson, Audra K -- Johnson, Ericka M -- Kutyavin, Tanya -- Lajoie, Bryan -- Lee, Bum-Kyu -- Lee, Kristen -- London, Darin -- Lotakis, Dimitra -- Neph, Shane -- Neri, Fidencio -- Nguyen, Eric D -- Qu, Hongzhu -- Reynolds, Alex P -- Roach, Vaughn -- Safi, Alexias -- Sanchez, Minerva E -- Sanyal, Amartya -- Shafer, Anthony -- Simon, Jeremy M -- Song, Lingyun -- Vong, Shinny -- Weaver, Molly -- Yan, Yongqi -- Zhang, Zhancheng -- Zhang, Zhuzhu -- Lenhard, Boris -- Tewari, Muneesh -- Dorschner, Michael O -- Hansen, R Scott -- Navas, Patrick A -- Stamatoyannopoulos, George -- Iyer, Vishwanath R -- Lieb, Jason D -- Sunyaev, Shamil R -- Akey, Joshua M -- Sabo, Peter J -- Kaul, Rajinder -- Furey, Terrence S -- Dekker, Job -- Crawford, Gregory E -- Stamatoyannopoulos, John A -- F30 DK095678/DK/NIDDK NIH HHS/ -- GM076036/GM/NIGMS NIH HHS/ -- HG004563/HG/NHGRI NIH HHS/ -- HG004592/HG/NHGRI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- MC_UP_1102/1/Medical Research Council/United Kingdom -- P30 CA016086/CA/NCI NIH HHS/ -- R01 GM076036/GM/NIGMS NIH HHS/ -- R01 HG003143/HG/NHGRI NIH HHS/ -- R01 MH084676/MH/NIMH NIH HHS/ -- R01MH084676/MH/NIMH NIH HHS/ -- U54 HG004563/HG/NHGRI NIH HHS/ -- U54 HG004592/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/nature11232.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955617" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/*genetics/*metabolism ; DNA/*genetics ; DNA Footprinting ; DNA Methylation ; DNA-Binding Proteins/metabolism ; Deoxyribonuclease I/metabolism ; *Encyclopedias as Topic ; Evolution, Molecular ; Genome, Human/*genetics ; Genomics ; Humans ; *Molecular Sequence Annotation ; Mutation Rate ; Promoter Regions, Genetic/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Transcription Factors/metabolism ; Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-12
    Description: Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short insertions/deletions, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536929/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536929/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schloissnig, Siegfried -- Arumugam, Manimozhiyan -- Sunagawa, Shinichi -- Mitreva, Makedonka -- Tap, Julien -- Zhu, Ana -- Waller, Alison -- Mende, Daniel R -- Kultima, Jens Roat -- Martin, John -- Kota, Karthik -- Sunyaev, Shamil R -- Weinstock, George M -- Bork, Peer -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG004968/HG/NHGRI NIH HHS/ -- U54HG003079/HG/NHGRI NIH HHS/ -- U54HG004968/HG/NHGRI NIH HHS/ -- England -- Nature. 2013 Jan 3;493(7430):45-50. doi: 10.1038/nature11711. Epub 2012 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222524" target="_blank"〉PubMed〈/a〉
    Keywords: Europe ; Feces/microbiology ; Genetic Variation/*genetics ; Genome, Bacterial/genetics ; Genotype ; Geographic Mapping ; Humans ; Intestines/*microbiology ; Metagenome/*genetics ; North America ; Polymorphism, Single Nucleotide/genetics ; Reference Standards ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-14
    Description: The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the 'queen', who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat's exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Eun Bae -- Fang, Xiaodong -- Fushan, Alexey A -- Huang, Zhiyong -- Lobanov, Alexei V -- Han, Lijuan -- Marino, Stefano M -- Sun, Xiaoqing -- Turanov, Anton A -- Yang, Pengcheng -- Yim, Sun Hee -- Zhao, Xiang -- Kasaikina, Marina V -- Stoletzki, Nina -- Peng, Chunfang -- Polak, Paz -- Xiong, Zhiqiang -- Kiezun, Adam -- Zhu, Yabing -- Chen, Yuanxin -- Kryukov, Gregory V -- Zhang, Qiang -- Peshkin, Leonid -- Yang, Lan -- Bronson, Roderick T -- Buffenstein, Rochelle -- Wang, Bo -- Han, Changlei -- Li, Qiye -- Chen, Li -- Zhao, Wei -- Sunyaev, Shamil R -- Park, Thomas J -- Zhang, Guojie -- Wang, Jun -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- AG038004/AG/NIA NIH HHS/ -- CA080946/CA/NCI NIH HHS/ -- R01 AG021518/AG/NIA NIH HHS/ -- R01 AG021518-10/AG/NIA NIH HHS/ -- R01 AG038004/AG/NIA NIH HHS/ -- R01 AG038004-02/AG/NIA NIH HHS/ -- R01 CA080946/CA/NCI NIH HHS/ -- R01 CA080946-11/CA/NCI NIH HHS/ -- England -- Nature. 2011 Oct 12;479(7372):223-7. doi: 10.1038/nature10533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993625" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Aging/genetics ; Amino Acid Sequence ; Animals ; Body Temperature Regulation/genetics ; Carbon Dioxide/analysis/metabolism ; Circadian Rhythm/genetics ; Darkness ; Genes/genetics ; Genome/*genetics ; Genomic Instability/genetics ; Genomics ; Humans ; Ion Channels/genetics ; Longevity/*genetics/physiology ; Male ; Mitochondrial Proteins/genetics ; Mole Rats/*genetics/*physiology ; Molecular Sequence Data ; Mutagenesis/genetics ; Oxygen/analysis/metabolism ; Taste/genetics ; Transcriptome/genetics ; Visual Perception/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-01
    Description: Patterns of amino acid conservation have served as a tool for understanding protein evolution. The same principles have also found broad application in human genomics, driven by the need to interpret the pathogenic potential of variants in patients. Here we performed a systematic comparative genomics analysis of human disease-causing missense variants. We found that an appreciable fraction of disease-causing alleles are fixed in the genomes of other species, suggesting a role for genomic context. We developed a model of genetic interactions that predicts most of these to be simple pairwise compensations. Functional testing of this model on two known human disease genes revealed discrete cis amino acid residues that, although benign on their own, could rescue the human mutations in vivo. This approach was also applied to ab initio gene discovery to support the identification of a de novo disease driver in BTG2 that is subject to protective cis-modification in more than 50 species. Finally, on the basis of our data and models, we developed a computational tool to predict candidate residues subject to compensation. Taken together, our data highlight the importance of cis-genomic context as a contributor to protein evolution; they provide an insight into the complexity of allele effect on phenotype; and they are likely to assist methods for predicting allele pathogenicity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jordan, Daniel M -- Frangakis, Stephan G -- Golzio, Christelle -- Cassa, Christopher A -- Kurtzberg, Joanne -- Task Force for Neonatal Genomics -- Davis, Erica E -- Sunyaev, Shamil R -- Katsanis, Nicholas -- R01 DK072301/DK/NIDDK NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 DK095721/DK/NIDDK NIH HHS/ -- R01 EY021872/EY/NEI NIH HHS/ -- R01 GM078598/GM/NIGMS NIH HHS/ -- R01 HD042601/HD/NICHD NIH HHS/ -- R01 MH101244/MH/NIMH NIH HHS/ -- R01DK072301/DK/NIDDK NIH HHS/ -- R01DK075972/DK/NIDDK NIH HHS/ -- R01EY021872/EY/NEI NIH HHS/ -- R01HD04260/HD/NICHD NIH HHS/ -- U01 HG006500/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Aug 13;524(7564):225-9. doi: 10.1038/nature14497. Epub 2015 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Center for Human Disease Modeling, Duke University, Durham, North Carolina 27701, USA. ; Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation, Duke University, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26123021" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics ; Alleles ; Animals ; Disease/*genetics ; Evolution, Molecular ; Genome, Human/genetics ; *Genomics ; Humans ; Immediate-Early Proteins/genetics ; Microcephaly/genetics ; Mutation, Missense/*genetics ; Phenotype ; Proteins/genetics ; Sequence Alignment ; Suppression, Genetic/*genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-20
    Description: Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed uniformly along the human genome. Instead, different human genomic regions vary by up to fivefold in the local density of cancer somatic mutations, posing a fundamental problem for statistical methods used in cancer genomics. Epigenomic organization has been proposed as a major determinant of the cancer mutational landscape. However, both somatic mutagenesis and epigenomic features are highly cell-type-specific. We investigated the distribution of mutations in multiple independent samples of diverse cancer types and compared them to cell-type-specific epigenomic features. Here we show that chromatin accessibility and modification, together with replication timing, explain up to 86% of the variance in mutation rates along cancer genomes. The best predictors of local somatic mutation density are epigenomic features derived from the most likely cell type of origin of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are much stronger determinants of cancer mutation profiles than chromatin features of matched cancer cell lines. Furthermore, we show that the cell type of origin of a cancer can be accurately determined based on the distribution of mutations along its genome. Thus, the DNA sequence of a cancer genome encompasses a wealth of information about the identity and epigenomic features of its cell of origin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405175/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405175/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Polak, Paz -- Karlic, Rosa -- Koren, Amnon -- Thurman, Robert -- Sandstrom, Richard -- Lawrence, Michael S -- Reynolds, Alex -- Rynes, Eric -- Vlahovicek, Kristian -- Stamatoyannopoulos, John A -- Sunyaev, Shamil R -- P01 HL053750/HL/NHLBI NIH HHS/ -- P01 HL53750/HL/NHLBI NIH HHS/ -- R01 MH101244/MH/NIMH NIH HHS/ -- U01 ES017156/ES/NIEHS NIH HHS/ -- U54 CA143874/CA/NCI NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):360-4. doi: 10.1038/nature14221.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Genetics, Department of Medicine, Brigham &Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; 1] The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia [2] Department of Informatics, University of Oslo, P.O. Box 1080, Blindern, NO-0316 Oslo, Norway. ; 1] Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA [2] Department of Medicine, Division of Oncology, University of Washington, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693567" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Chromatin/chemistry/*genetics/*metabolism ; DNA Replication Timing ; Epigenesis, Genetic/*genetics ; Epigenomics ; Genome, Human/genetics ; Humans ; Melanocytes/metabolism/pathology ; Melanoma/genetics/pathology ; Mutation/*genetics ; Neoplasms/*genetics/*pathology ; Organ Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...