ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Debris‐flow fans form by shifts of the active channel, termed avulsions. Field and experimental evidence suggest that debris‐flow avulsions may be induced by depositional lobes that locally plug a channel or superelevation of the channel bed above the surrounding fan surface, by analogy to fluvial fans. To understand debris‐flow avulsion processes, we differentiate between these controls by quantifying the spatial distribution of debris‐flow lobe and channel dimensions, along with channel‐bed superelevation, on nine debris‐flow fans in Saline Valley, California, USA. Channel beds are generally superelevated by 2–5 channel depths above the fan surface, and locally by more than 7 channel depths, thereby substantially exceeding superelevation on fluvial fans. Depositional‐lobe thickness and channel depth decrease with distance from the fan apex, although both are highly variable across the fans. Median channel depths roughly correspond to the 50th–75th percentiles of lobe thicknesses, while minimum channel depths roughly correspond to the 10th–25th percentiles. In contrast, the thicknesses of lobes that have triggered avulsions roughly equal local channel depths and are on average twice as thick as the local median lobe thickness. The spatial correspondence between avulsion locations and thick lobe deposits, and the lack of correlation with channel‐bed superelevation, leads us to infer that avulsions on these fans are mostly caused by thick lobes forming channel plugs. Although results may vary with climatic and tectonic setting, our findings indicate that avulsion hazard assessment on populated fans should include mapping and monitoring of channel depths relative to typical deposit thicknesses on a given fan.
    Print ISSN: 2169-9003
    Electronic ISSN: 2169-9011
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-12-03
    Description: Eighteen codons in the HA1 domain of the hemagglutinin genes of human influenza A subtype H3 appear to be under positive selection to change the amino acid they encode. Retrospective tests show that viral lineages undergoing the greatest number of mutations in the positively selected codons were the progenitors of future H3 lineages in 9 of 11 recent influenza seasons. Codons under positive selection were associated with antibody combining site A or B or the sialic acid receptor binding site. However, not all codons in these sites had predictive value. Monitoring new H3 isolates for additional changes in positively selected codons might help identify the most fit extant viral strains that arise during antigenic drift.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bush, R M -- Bender, C A -- Subbarao, K -- Cox, N J -- Fitch, W M -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1921-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. rmbush@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583948" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; *Antigenic Variation ; Binding Sites ; Codon ; Epitopes ; *Evolution, Molecular ; Forecasting ; Genes, Viral ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/*genetics/immunology ; Humans ; Influenza A virus/*genetics/immunology ; Influenza, Human/*virology ; Mutation ; *Phylogeny ; Probability ; Protein Structure, Tertiary ; Receptors, Cell Surface/metabolism ; Retrospective Studies ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Layne, S P -- Beugelsdijk, T J -- Patel, C K -- Taubenberger, J K -- Cox, N J -- Gust, I D -- Hay, A J -- Tashiro, M -- Lavanchy, D -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1729.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546841" target="_blank"〉PubMed〈/a〉
    Keywords: Environmental Monitoring/economics/methods ; Epidemiological Monitoring ; Humans ; Influenza, Human/diagnosis/economics/*epidemiology ; *International Cooperation ; Internet ; Population Surveillance/*methods ; Time Factors ; World Health Organization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-10-09
    Description: Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, 'missing' heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manolio, Teri A -- Collins, Francis S -- Cox, Nancy J -- Goldstein, David B -- Hindorff, Lucia A -- Hunter, David J -- McCarthy, Mark I -- Ramos, Erin M -- Cardon, Lon R -- Chakravarti, Aravinda -- Cho, Judy H -- Guttmacher, Alan E -- Kong, Augustine -- Kruglyak, Leonid -- Mardis, Elaine -- Rotimi, Charles N -- Slatkin, Montgomery -- Valle, David -- Whittemore, Alice S -- Boehnke, Michael -- Clark, Andrew G -- Eichler, Evan E -- Gibson, Greg -- Haines, Jonathan L -- Mackay, Trudy F C -- McCarroll, Steven A -- Visscher, Peter M -- P50 GM065509/GM/NIGMS NIH HHS/ -- P50 GM065509-080006/GM/NIGMS NIH HHS/ -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 HL072904/HL/NHLBI NIH HHS/ -- R01 HL072904-07/HL/NHLBI NIH HHS/ -- R01 MH084695/MH/NIMH NIH HHS/ -- U01 HL084706/HL/NHLBI NIH HHS/ -- UL1 RR024992/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Oct 8;461(7265):747-53. doi: 10.1038/nature08494.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Human Genome Research Institute, Building 31, Room 4B09, 31 Center Drive, MSC 2152, Bethesda, Maryland 20892-2152, USA. manoliot@mail.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19812666" target="_blank"〉PubMed〈/a〉
    Keywords: Genetic Diseases, Inborn/*genetics ; Genetic Predisposition to Disease/*genetics ; Genetics, Medical/*methods/trends ; Genome-Wide Association Study/methods/trends ; Humans ; Inheritance Patterns/genetics ; Pedigree
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-04-19
    Description: Antigenic and genetic analysis of the hemagglutinin of approximately 13,000 human influenza A (H3N2) viruses from six continents during 2002-2007 revealed that there was continuous circulation in east and Southeast Asia (E-SE Asia) via a region-wide network of temporally overlapping epidemics and that epidemics in the temperate regions were seeded from this network each year. Seed strains generally first reached Oceania, North America, and Europe, and later South America. This evidence suggests that once A (H3N2) viruses leave E-SE Asia, they are unlikely to contribute to long-term viral evolution. If the trends observed during this period are an accurate representation of overall patterns of spread, then the antigenic characteristics of A (H3N2) viruses outside E-SE Asia may be forecast each year based on surveillance within E-SE Asia, with consequent improvements to vaccine strain selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, Colin A -- Jones, Terry C -- Barr, Ian G -- Cox, Nancy J -- Garten, Rebecca J -- Gregory, Vicky -- Gust, Ian D -- Hampson, Alan W -- Hay, Alan J -- Hurt, Aeron C -- de Jong, Jan C -- Kelso, Anne -- Klimov, Alexander I -- Kageyama, Tsutomu -- Komadina, Naomi -- Lapedes, Alan S -- Lin, Yi P -- Mosterin, Ana -- Obuchi, Masatsugu -- Odagiri, Takato -- Osterhaus, Albert D M E -- Rimmelzwaan, Guus F -- Shaw, Michael W -- Skepner, Eugene -- Stohr, Klaus -- Tashiro, Masato -- Fouchier, Ron A M -- Smith, Derek J -- DP1-OD000490-01/OD/NIH HHS/ -- MC_U117512723/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Apr 18;320(5874):340-6. doi: 10.1126/science.1154137.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Cambridge, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18420927" target="_blank"〉PubMed〈/a〉
    Keywords: Antigenic Variation ; Asia/epidemiology ; Asia, Southeastern/epidemiology ; *Disease Outbreaks ; Europe/epidemiology ; Evolution, Molecular ; Forecasting ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/*immunology ; Humans ; *Influenza A Virus, H3N2 Subtype/classification/genetics/immunology/isolation & ; purification ; Influenza Vaccines ; Influenza, Human/*epidemiology/virology ; North America/epidemiology ; Oceania ; Phylogeny ; Population Surveillance ; Seasons ; South America/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-25
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838856/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838856/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fouchier, Ron A M -- Garcia-Sastre, Adolfo -- Kawaoka, Yoshihiro -- Barclay, Wendy S -- Bouvier, Nicole M -- Brown, Ian H -- Capua, Ilaria -- Chen, Hualan -- Compans, Richard W -- Couch, Robert B -- Cox, Nancy J -- Doherty, Peter C -- Donis, Ruben O -- Feldmann, Heinz -- Guan, Yi -- Katz, Jacqueline M -- Kiselev, Oleg I -- Klenk, H D -- Kobinger, Gary -- Liu, Jinhua -- Liu, Xiufan -- Lowen, Anice -- Mettenleiter, Thomas C -- Osterhaus, Albert D M E -- Palese, Peter -- Peiris, J S Malik -- Perez, Daniel R -- Richt, Jurgen A -- Schultz-Cherry, Stacey -- Steel, John -- Subbarao, Kanta -- Swayne, David E -- Takimoto, Toru -- Tashiro, Masato -- Taubenberger, Jeffery K -- Thomas, Paul G -- Tripp, Ralph A -- Tumpey, Terrence M -- Webby, Richard J -- Webster, Robert G -- ZIA AI001088-01/Intramural NIH HHS/ -- ZIA AI001088-02/Intramural NIH HHS/ -- ZIA AI001088-03/Intramural NIH HHS/ -- ZIA AI001088-04/Intramural NIH HHS/ -- ZIA AI001088-05/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):520-1. doi: 10.1126/science.1235140. Epub 2013 Jan 23.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23345603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomedical Research/*trends ; Birds ; Humans ; *Influenza A Virus, H5N1 Subtype ; Influenza in Birds/*transmission/*virology ; Influenza, Human/*transmission/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-10-08
    Description: The pandemic influenza virus of 1918-1919 killed an estimated 20 to 50 million people worldwide. With the recent availability of the complete 1918 influenza virus coding sequence, we used reverse genetics to generate an influenza virus bearing all eight gene segments of the pandemic virus to study the properties associated with its extraordinary virulence. In stark contrast to contemporary human influenza H1N1 viruses, the 1918 pandemic virus had the ability to replicate in the absence of trypsin, caused death in mice and embryonated chicken eggs, and displayed a high-growth phenotype in human bronchial epithelial cells. Moreover, the coordinated expression of the 1918 virus genes most certainly confers the unique high-virulence phenotype observed with this pandemic virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tumpey, Terrence M -- Basler, Christopher F -- Aguilar, Patricia V -- Zeng, Hui -- Solorzano, Alicia -- Swayne, David E -- Cox, Nancy J -- Katz, Jacqueline M -- Taubenberger, Jeffery K -- Palese, Peter -- Garcia-Sastre, Adolfo -- P01 AI058113-01/AI/NIAID NIH HHS/ -- U19 AI62623/AI/NIAID NIH HHS/ -- U54 AI57158/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Oct 7;310(5745):77-80.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Branch, Mailstop G-16, Division of Viral and Rickettsial Diseases (DVRD), National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, NE, Atlanta, GA 30333, USA. tft9@cdc.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16210530" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bronchi/virology ; Cell Line ; Chick Embryo/virology ; Female ; *Genes, Viral ; Genetic Techniques ; Hemagglutinin Glycoproteins, Influenza Virus/genetics/metabolism ; History, 20th Century ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/*pathogenicity/physiology ; Influenza, Human/epidemiology/history/*virology ; Lung/pathology/virology ; Mice ; Mice, Inbred BALB C ; Neuraminidase/genetics/metabolism ; Orthomyxoviridae Infections/pathology/*virology ; RNA, Viral/genetics ; Recombination, Genetic ; Respiratory Mucosa/virology ; Trypsin/metabolism ; Viral Plaque Assay ; Virulence/genetics ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-09-28
    Description: Molecular and antigenic analyses of three influenza viruses isolated from outbreaks of severe respiratory disease in racing greyhounds revealed that they are closely related to H3N8 equine influenza virus. Phylogenetic analysis indicated that the canine influenza virus genomes form a monophyletic group, consistent with a single interspecies virus transfer. Molecular changes in the hemagglutinin suggested adaptive evolution in the new host. The etiologic role of this virus in respiratory disease was supported by the temporal association of rising antibody titers with disease and by experimental inoculation studies. The geographic expansion of the infection and its persistence for several years indicate efficient transmission of canine influenza virus among greyhounds. Evidence of infection in pet dogs suggests that this infection may also become enzootic in this population.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crawford, P C -- Dubovi, Edward J -- Castleman, William L -- Stephenson, Iain -- Gibbs, E P J -- Chen, Limei -- Smith, Catherine -- Hill, Richard C -- Ferro, Pamela -- Pompey, Justine -- Bright, Rick A -- Medina, Marie-Jo -- Johnson, Calvin M -- Olsen, Christopher W -- Cox, Nancy J -- Klimov, Alexander I -- Katz, Jacqueline M -- Donis, Ruben O -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):482-5. Epub 2005 Sep 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16186182" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Viral/blood ; Cell Line ; Cytopathogenic Effect, Viral ; Disease Outbreaks/*veterinary ; Dog Diseases/epidemiology/pathology/*transmission/*virology ; Dogs ; Florida/epidemiology ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Horse Diseases/transmission/*virology ; Horses ; *Influenza A Virus, H3N8 Subtype/classification/immunology/isolation & ; purification/pathogenicity ; Molecular Sequence Data ; Orthomyxoviridae Infections/epidemiology/transmission/*veterinary/virology ; Phylogeny ; Respiratory System/pathology ; Sequence Analysis, RNA ; Species Specificity ; United States/epidemiology ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-25
    Description: The discovery of rare genetic variants is accelerating, and clear guidelines for distinguishing disease-causing sequence variants from the many potentially functional variants present in any human genome are urgently needed. Without rigorous standards we risk an acceleration of false-positive reports of causality, which would impede the translation of genomic research findings into the clinical diagnostic setting and hinder biological understanding of disease. Here we discuss the key challenges of assessing sequence variants in human disease, integrating both gene-level and variant-level support for causality. We propose guidelines for summarizing confidence in variant pathogenicity and highlight several areas that require further resource development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180223/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180223/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉MacArthur, D G -- Manolio, T A -- Dimmock, D P -- Rehm, H L -- Shendure, J -- Abecasis, G R -- Adams, D R -- Altman, R B -- Antonarakis, S E -- Ashley, E A -- Barrett, J C -- Biesecker, L G -- Conrad, D F -- Cooper, G M -- Cox, N J -- Daly, M J -- Gerstein, M B -- Goldstein, D B -- Hirschhorn, J N -- Leal, S M -- Pennacchio, L A -- Stamatoyannopoulos, J A -- Sunyaev, S R -- Valle, D -- Voight, B F -- Winckler, W -- Gunter, C -- P30 DK020595/DK/NIDDK NIH HHS/ -- P30 DK042086/DK/NIDDK NIH HHS/ -- R01 HG007022/HG/NHGRI NIH HHS/ -- R01 HL117626/HL/NHLBI NIH HHS/ -- R01 MH101810/MH/NIMH NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 24;508(7497):469-76. doi: 10.1038/nature13127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; 1] Laboratory for Molecular Medicine, Partners Healthcare Center for Personalized Genetic Medicine, Cambridge, Massachusetts 02139, USA [2] Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98115, USA. ; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA. ; 1] NIH Undiagnosed Diseases Program, National Institutes of Health Office of Rare Diseases Research and National Human Genome Research Institute, Bethesda, Maryland 20892, USA [2] Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Departments of Bioengineering & Genetics, Stanford University, Stanford, California 94305, USA. ; 1] Department of Genetic Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland [2] iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland. ; Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Stanford, California 94305, USA. ; Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK. ; Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892, USA. ; Departments of Genetics, Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35806, USA. ; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA. ; 1] Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA [2] Departments of Computer Science, Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA. ; Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina 27708, USA. ; 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [2] Divisions of Genetics and Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA. ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Genomics Division, MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. ; Department of Genome Sciences, University of Washington, 1705 Northeast Pacific Street, Seattle, Washington 98195, USA. ; 1] Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [2] Harvard Medical School, Boston, Massachusetts 02115, USA. ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA. ; Department of Pharmacology and Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA. ; 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA [2] Next Generation Diagnostics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA (W.W.); Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30329, USA (C.G.). ; 1] HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, Alabama 35806, USA [2] Next Generation Diagnostics, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA (W.W.); Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30329, USA (C.G.).〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759409" target="_blank"〉PubMed〈/a〉
    Keywords: *Disease ; False Positive Reactions ; Genes/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; *Guidelines as Topic ; Humans ; Information Dissemination ; Publishing ; Reproducibility of Results ; Research Design ; Translational Medical Research/standards
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-09
    Description: Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499780/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499780/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bedford, Trevor -- Riley, Steven -- Barr, Ian G -- Broor, Shobha -- Chadha, Mandeep -- Cox, Nancy J -- Daniels, Rodney S -- Gunasekaran, C Palani -- Hurt, Aeron C -- Kelso, Anne -- Klimov, Alexander -- Lewis, Nicola S -- Li, Xiyan -- McCauley, John W -- Odagiri, Takato -- Potdar, Varsha -- Rambaut, Andrew -- Shu, Yuelong -- Skepner, Eugene -- Smith, Derek J -- Suchard, Marc A -- Tashiro, Masato -- Wang, Dayan -- Xu, Xiyan -- Lemey, Philippe -- Russell, Colin A -- 093488/Wellcome Trust/United Kingdom -- 093488/Z/10/Z/Wellcome Trust/United Kingdom -- 095831/Wellcome Trust/United Kingdom -- 260864/European Research Council/International -- MR/J008761/1/Medical Research Council/United Kingdom -- R01 AI 107034/AI/NIAID NIH HHS/ -- R01 AI107034/AI/NIAID NIH HHS/ -- R01 TW008246/TW/FIC NIH HHS/ -- R01 TW008246-01/TW/FIC NIH HHS/ -- U01 GM110721/GM/NIGMS NIH HHS/ -- U01 GM110721-01/GM/NIGMS NIH HHS/ -- U117512723/Medical Research Council/United Kingdom -- U54 GM111274/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):217-20. doi: 10.1038/nature14460. Epub 2015 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London SW7 2AZ, UK [2] Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA. ; World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia. ; SGT Medical College, Hospital and Research Institute, Village Budhera, District Gurgaon, Haryana 122505, India. ; National Institute of Virology, Pune 411001, India. ; WHO Collaborating Center for Reference and Research on Influenza, Centers for Disease Control and Prevention, Atlanta, Georgia 30329, USA. ; WHO Collaborating Center for Reference and Research on Influenza, Medical Research Council National Institute for Medical Research (NIMR), London NW7 1AA, UK. ; King Institute of Preventive Medicine and Research, Guindy, Chennai 600032, India. ; 1] World Health Organization (WHO) Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria 3000, Australia [2] Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria 3010, Australia. ; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK. ; WHO Collaborating Center for Reference and Research on Influenza, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China. ; WHO Collaborating Center for Reference and Research on Influenza, National Institute of Infectious Diseases, Tokyo 208-0011, Japan. ; 1] Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK [3] Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK. ; 1] Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK [2] Department of Viroscience, Erasmus Medical Center, 3015 Rotterdam, The Netherlands. ; 1] Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, California 90095, USA [2] Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA [3] Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095, USA. ; Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of Leuven, 3000 Leuven, Belgium. ; Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26053121" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; *Antigenic Variation ; Global Health ; Humans ; Influenza A virus/classification/*genetics ; Influenza B virus/classification/*genetics ; Influenza, Human/*epidemiology/*virology ; Phylogeny ; Phylogeography ; Seasons
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...