ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-03-26
    Description: Metastasis causes most cancer deaths, yet this process remains one of the most enigmatic aspects of the disease. Building on new mechanistic insights emerging from recent research, we offer our perspective on the metastatic process and reflect on possible paths of future exploration. We suggest that metastasis can be portrayed as a two-phase process: The first phase involves the physical translocation of a cancer cell to a distant organ, whereas the second encompasses the ability of the cancer cell to develop into a metastatic lesion at that distant site. Although much remains to be learned about the second phase, we feel that an understanding of the first phase is now within sight, due in part to a better understanding of how cancer cell behavior can be modified by a cell-biological program called the epithelial-to-mesenchymal transition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaffer, Christine L -- Weinberg, Robert A -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1559-64. doi: 10.1126/science.1203543.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. chaffer@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436443" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Epithelial-Mesenchymal Transition ; Humans ; Neoplasm Invasiveness ; *Neoplasm Metastasis ; Neoplasms/*pathology/physiopathology ; Neoplastic Cells, Circulating ; Neoplastic Stem Cells/physiology ; Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-04
    Description: By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katajisto, Pekka -- Dohla, Julia -- Chaffer, Christine L -- Pentinmikko, Nalle -- Marjanovic, Nemanja -- Iqbal, Sharif -- Zoncu, Roberto -- Chen, Walter -- Weinberg, Robert A -- Sabatini, David M -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):340-3. doi: 10.1126/science.1260384. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu. ; Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Broad Institute, Cambridge, MA 02142, USA. The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging/genetics/*physiology ; Cell Division/genetics/*physiology ; Cell Line ; Humans ; Mitochondria/*physiology/ultrastructure ; Stem Cells/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-05-11
    Description: Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells. Moreover, oncogenic transformation enhances the spontaneous conversion, so that nonstem cancer cells give rise to cancer stem cell (CSC)-like cells in vitro and in vivo. We further show that the differentiation state of normal cells-of-origin is a strong determinant of posttransformation behavior. These findings demonstrate that normal and CSC-like cells can arise de novo from more differentiated cell types and that hierarchical models of mammary stem cell biology should encompass bidirectional interconversions between stem and nonstem compartments. The observed plasticity may allow derivation of patient-specific adult stem cells without genetic manipulation and holds important implications for therapeutic strategies to eradicate cancer.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...