ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-25
    Description: Crystal Growth & Design DOI: 10.1021/acs.cgd.5b01845
    Print ISSN: 1528-7483
    Electronic ISSN: 1528-7505
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-08
    Description: Ecosystem engineers, organisms that modify the physical environment, are generally thought to increase diversity by facilitating species that benefit from engineered habitats. Recent theoretical work, however, suggests that ecosystem engineering could initiate cascades of trophic interactions that shape community structure in unexpected ways, potentially having negative indirect effects on abundance and diversity in components of the community that do not directly interact with the habitat modifications. We tested the indirect effects of a gall-forming wasp on arthropod communities in surrounding unmodified foliage. We experimentally removed all senesced galls from entire trees during winter and sampled the arthropod community on foliage after budburst. Gall removal resulted in 59% greater herbivore density, 26% greater herbivore richness, and 27% greater arthropod density five weeks after budburst. Gall removal also reduced the differences in community composition among trees (i.e., reduced beta diversity), even when accounting for differences in richness. The community inside galls during winter and through the growing season was dominated by jumping spiders (Salticidae; 0.87 ± 0.12 spiders per gall). We suggest that senesced galls provided habitat for spiders, which suppressed herbivorous arthropods and increased beta diversity by facilitating assembly of unusual arthropod communities. Our results demonstrate that the effects of habitat modification by ecosystem engineers can extend beyond merely providing habitat for specialists; the effects can propagate far enough to influence the structure of communities that do not directly interact with habitat modifications.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: Abstract A growing number of studies have manipulated intraspecific plant diversity and found dramatic changes in the densities of associated insect herbivores and their predators. While these studies have been essential for quantifying the net ecological consequences of intraspecific plant diversity, they have been less effective at uncovering the ways in which plant diversity alters trophic interactions within arthropod communities. We manipulated intraspecific plant diversity and predation risk in the field in a factorial design to reveal how a mixture of plant genotypes changes the response of an herbivorous beetle (Leptinotarsa decemlineata) to a common stink bug predator (Podisus maculiventris). We repeated the manipulations twice across the ontogeny of the beetle to examine how the effects of diversity on the predator–prey interaction differ between larval and adult stages. We found that intraspecific plant diversity, mixtures of susceptible and resistant varieties of potato (Solanum tuberosum), reduced larval survival by 20% and adult oviposition by 34%, which surprisingly put survival and oviposition lower in the mixed‐genotype plots than in the resistant monocultures. Moreover, we found that predation risk reduced larval survival 25% and 11% in resistant and susceptible monocultures, respectively, but had no effect in the mixture. This result indicated that our genotypic mixing treatment interacted nonadditively with predation risk such that plant diversity altered the predator–prey interaction by changing the responses of the beetles to their stink bug predators. In addition, even though predation risk reduced larval survival, it increased adult overwintering survival by 9%, independently of plant treatment, suggesting that these interactions change through ontogeny. A key implication of our study is that plant diversity influences arthropod communities not only by changing resource quality, as past studies have suggested, but also by changing interactions between species within the arthropod community.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-10
    Description: Plants respond to volatile cues emitted by damaged neighbors to increase their defenses against herbivores. We examined whether plants communicated more effectively with local neighbors than distant neighbors in a reciprocal experiment at two sites. Three branches on focal plants were incubated with air from: 1) a control, 2) an experimentally clipped ‘foreign’ plant from 230 km away, or 3) an experimentally clipped ‘local’ plant from the same population as the focal plant. Branches incubated with air from the controls experienced 50 - 80% more leaf damage than those receiving air from experimentally clipped plants. Of more interest, branches receiving volatiles from experimentally clipped ‘local’ plants received 50 – 65% of the leaf damage as those receiving volatiles from experimentally clipped ‘foreign’ plants. Sabinyl compounds and related terpinenes were found to differ consistently for plants from southern and northern sites. These results indicate that cues vary geographically in their effectiveness and suggest that sagebrush responds more strongly to local than foreign dialects. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-05-06
    Description: Ecology, Ahead of Print. A growing body of evidence indicates that plants can influence the survival and reproduction of the insect herbivores they host via both herbivore density-dependent and density-independent processes. A remaining challenge is identifying how density-dependent and density-independent processes in herbivores contribute to the distribution of herbivores in natural populations. I tested which herbivore recruitment parameters-the intrinsic rate of increase, carrying capacity, or shape of density-dependence-contributed to variance in the distribution of a gall-making fly among individuals of its host plant by experimentally manipulating herbivore density on plants in the field. I used model selection to determine the relationships between herbivore demographic parameters and the natural, pre-experimental pattern of herbivore abundances. The naturally occurring pattern of herbivore abundances before the experiment covaried positively with the herbivore carrying capacity, a parameter inversely related to the strength of density-dependence, but not with the shape of density-dependence or the intrinsic reproductive rate. This means that plants with high natural herbivore abundances had lower herbivore density-dependence but not higher rates of herbivore reproduction at low abundances. More generally, these results suggest that density-dependence mediated through the host plant was responsible for the significant spatial variance in abundance of this herbivore among host plants. This also means that the processes influencing the spatial variance in the abundance of this herbivore occur at high but not at low herbivore density. This suggests that when measuring parameters of herbivore preference for or performance on plants with different genotypes or phenotypes, ecologists should use a range of herbivore densities to ensure they capture density-dependent processes. Density-dependent recruitment at the scale of host plants could be a widespread determinant of abundance patterns for the many insect herbivores that have high heterogeneity in abundances among host plants and low variance in that pattern through time.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-30
    Description: Ecology, Volume 0, Issue 0, Ahead of Print. A growing body of evidence indicates that plants can influence the survival and reproduction of the insect herbivores they host via both herbivore density-dependent and density-independent processes. A remaining challenge is identifying how density-dependent and density-independent processes in herbivores contribute to the distribution of herbivores in natural populations. I tested which herbivore recruitment parameters-the intrinsic rate of increase, carrying capacity, or shape of density-dependence-contributed to variance in the distribution of a gall-making fly among individuals of its host plant by experimentally manipulating herbivore density on plants in the field. I used model selection to determine the relationships between herbivore demographic parameters and the natural, pre-experimental pattern of herbivore abundances. The naturally occurring pattern of herbivore abundances before the experiment covaried positively with the herbivore carrying capacity, a parameter inversely related to the strength of density-dependence, but not with the shape of density-dependence or the intrinsic reproductive rate. This means that plants with high natural herbivore abundances had lower herbivore density-dependence but not higher rates of herbivore reproduction at low abundances. More generally, these results suggest that density-dependence mediated through the host plant was responsible for the significant spatial variance in abundance of this herbivore among host plants. This also means that the processes influencing the spatial variance in the abundance of this herbivore occur at high but not at low herbivore density. This suggests that when measuring parameters of herbivore preference for or performance on plants with different genotypes or phenotypes, ecologists should use a range of herbivore densities to ensure they capture density-dependent processes. Density-dependent recruitment at the scale of host plants could be a widespread determinant of abundance patterns for the many insect herbivores that have high heterogeneity in abundances among host plants and low variance in that pattern through time.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-09
    Description: The incorporation of In on the non-polar, piezoelectric-free (001) facet of cubic ( c -) GaN epitaxially grown over a Si(001) substrate by metal-organic vapor phase epitaxy is reported. Relying on a hexagonal ( h -) to c -phase transformation during epitaxy on an 800 nm-wide, Si(111)-faceted v-groove patterned into the substrate, the GaN epilayer at cross sectional view retains a triangular c -phase inside a chevron-shaped h -phase that results in a top surface bounded by a (001) facet parallel to Si(001) at the center and ( 1 1 ¯ 01 ) facets at both edges. A stack of five, ∼3 nm-thick, In x Ga 1−x N/GaN quantum wells (QWs) was deposited on the double-phased top surface. The c -phase region up to the QWs keeps extremely small misfit (∼0.002) to the fully relaxed h -GaN underneath it and is in tensile stress implying undefected by the h-c phase interface. The In incorporation on a strained non-polar (001) of c -GaN is comparable with that on totally relaxed semi-polar ( 1 1 ¯ 01 ) of h -GaN without noticeable adatom migration across the phase boundary, and sufficient to provide the room-temperature green emission at 496 nm from the c -In x Ga 1−x N/GaN QWs on Si(001) in photoluminescence.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-05
    Description: The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ranade, Sanjeev S -- Woo, Seung-Hyun -- Dubin, Adrienne E -- Moshourab, Rabih A -- Wetzel, Christiane -- Petrus, Matt -- Mathur, Jayanti -- Begay, Valerie -- Coste, Bertrand -- Mainquist, James -- Wilson, A J -- Francisco, Allain G -- Reddy, Kritika -- Qiu, Zhaozhu -- Wood, John N -- Lewin, Gary R -- Patapoutian, Ardem -- 101054/Wellcome Trust/United Kingdom -- R01 DE022358/DE/NIDCR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 4;516(7529):121-5. doi: 10.1038/nature13980.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA. ; 1] Department of Neuroscience, Max-Delbruck Center for Molecular Medicine, Robert-Rossle Strasse 10, D-13092 Berlin, Germany [2] Klinik fur Anasthesiologie mit Schwerpunkt Operative Intensivmedizin, Campus Charite Mitte and Virchow-Klinikum Charite, Universitatsmedizin Berlin, Augustburgerplatz 1, 13353 Berlin, Germany. ; Department of Neuroscience, Max-Delbruck Center for Molecular Medicine, Robert-Rossle Strasse 10, D-13092 Berlin, Germany. ; Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA. ; Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25471886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ion Channels/genetics/*metabolism ; Mechanoreceptors/metabolism ; Mechanotransduction, Cellular/genetics/*physiology ; Merkel Cells/physiology ; Mice ; Mice, Knockout ; Sensory Receptor Cells/physiology ; Skin/*innervation ; Touch/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-28
    Description: Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delatte, Benjamin -- Wang, Fei -- Ngoc, Long Vo -- Collignon, Evelyne -- Bonvin, Elise -- Deplus, Rachel -- Calonne, Emilie -- Hassabi, Bouchra -- Putmans, Pascale -- Awe, Stephan -- Wetzel, Collin -- Kreher, Judith -- Soin, Romuald -- Creppe, Catherine -- Limbach, Patrick A -- Gueydan, Cyril -- Kruys, Veronique -- Brehm, Alexander -- Minakhina, Svetlana -- Defrance, Matthieu -- Steward, Ruth -- Fuks, Francois -- R01 GM089992/GM/NIGMS NIH HHS/ -- T32 CA117846/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):282-5. doi: 10.1126/science.aac5253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. ; Laboratory of Molecular Biology of the Gene, Faculty of Sciences, Universite Libre de Bruxelles, Gosselies, Belgium. ; Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Marburg, Germany. ; Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ffuks@ulb.ac.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*abnormalities/metabolism ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; Dioxygenases/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/metabolism ; Methylation ; RNA, Messenger/genetics/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-11-17
    Description: Variability in plant nutrients reduces insect herbivore performance Nature 539, 7629 (2016). doi:10.1038/nature20140 Authors: William C. Wetzel, Heather M. Kharouba, Moria Robinson, Marcel Holyoak & Richard Karban The performance and population dynamics of insect herbivores depend on the nutritive and defensive traits of their host plants. The literature on plant–herbivore interactions focuses on plant trait mean values, but recent studies showing the importance of plant genetic diversity for herbivores suggest that plant trait variance may be equally important. The consequences of plant trait variance for herbivore performance, however, have been largely overlooked. Here we report an extensive assessment of the effects of within-population plant trait variance on herbivore performance using 457 performance datasets from 53 species of insect herbivores. We show that variance in plant nutritive traits substantially reduces mean herbivore performance via non-linear averaging of performance relationships that were overwhelmingly concave down. By contrast, relationships between herbivore performance and plant defence levels were typically linear, with variance in plant defence not affecting herbivore performance via non-linear averaging. Our results demonstrate that plants contribute to the suppression of herbivore populations through variable nutrient levels, not just by having low average quality as is typically thought. We propose that this phenomenon could play a key role in the suppression of herbivore populations in natural systems, and that increased nutrient heterogeneity within agricultural crops could contribute to the sustainable control of insect pests in agroecosystems.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...