ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-28
    Description: UHRF1 (Ubiquitin-like, with PHD and RING finger domains 1) plays an important role in DNA CpG methylation, heterochromatin function and gene expression. Overexpression of UHRF1 has been suggested to contribute to tumorigenesis. However, regulation of UHRF1 is largely unknown. Here we show that the deubiquitylase USP7 interacts with UHRF1. Using interaction-defective and catalytic mutants of USP7 for complementation experiments, we demonstrate that both physical interaction and catalytic activity of USP7 are necessary for UHRF1 ubiquitylation and stability regulation. Mass spectrometry analysis identified phosphorylation of serine (S) 652 within the USP7-interacting domain of UHRF1, which was further confirmed by a UHRF1 S652 phosphor (S652ph)-specific antibody. Importantly, the S652ph antibody identifies phosphorylated UHRF1 in mitotic cells and consistently S652 can be phosphorylated by the M phase-specific kinase CDK1-cyclin B in vitro. UHRF1 S652 phosphorylation significantly reduces UHRF1 interaction with USP7 in vitro and in vivo, which is correlated with a decreased UHRF1 stability in the M phase of the cell cycle. In contrast, UHRF1 carrying the S652A mutation, which renders UHRF1 resistant to phosphorylation at S652, is more stable. Importantly, cells carrying the S652A mutant grow more slowly suggesting that maintaining an appropriate level of UHRF1 is important for cell proliferation regulation. Taken together, our findings uncovered a cell cycle-specific signaling event that relieves UHRF1 from its interaction with USP7, thus exposing UHRF1 to proteasome-mediated degradation. These findings identify a molecular mechanism by which cellular UHRF1 level is regulated, which may impact cell proliferation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-14
    Description: Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-14
    Description: The genome-wide distribution patterns of the ‘6th base’ 5-hydroxymethylcytosine (5hmC) in many tissues and cells have recently been revealed by hydroxymethylated DNA immunoprecipitation (hMeDIP) followed by high throughput sequencing or tiling arrays. However, it has been challenging to directly compare different data sets and samples using data generated by this method. Here, we report a new comparative hMeDIP-seq method, which involves barcoding different input DNA samples at the start and then performing hMeDIP-seq for multiple samples in one hMeDIP reaction. This approach extends the barcode technology from simply multiplexing the DNA deep sequencing outcome and provides significant advantages for quantitative control of all experimental steps, from unbiased hMeDIP to deep sequencing data analysis. Using this improved method, we profiled and compared the DNA hydroxymethylomes of mouse ES cells (ESCs) and mouse ESC-derived neural progenitor cells (NPCs). We identified differentially hydroxymethylated regions (DHMRs) between ESCs and NPCs and uncovered an intricate relationship between the alteration of DNA hydroxymethylation and changes in gene expression during neural lineage commitment of ESCs. Presumably, the DHMRs between ESCs and NPCs uncovered by this approach may provide new insight into the function of 5hmC in gene regulation and neural differentiation. Thus, this newly developed comparative hMeDIP-seq method provides a cost-effective and user-friendly strategy for direct genome-wide comparison of DNA hydroxymethylation across multiple samples, lending significant biological, physiological and clinical implications.
    Keywords: Massively Parallel (Deep) Sequencing, Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-28
    Description: Brain and heart pathologies are caused by editing defects of transfer RNA (tRNA) synthetases, which preserve genetic code fidelity by removing incorrect amino acids misattached to tRNAs. To extend understanding of the broader impact of synthetase editing reactions on organismal homeostasis, and based on effects in bacteria ostensibly from small...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-21
    Description: Aims Clear-cutting is a common forest management practice, especially in subtropical China. However, the potential ecological consequences of clear-cutting remain unclear. In particular, the effect of clear-cutting on soil processes, such as the carbon cycle, has not been quantified in subtropical forests. Here, we investigated the response of soil respiration (Rs) to clear-cutting during a 12-month period in a subtropical forest in eastern China. Methods We randomly selected four clear-cut (CC) plots and four corresponding undisturbed forest (UF) plots. Measurements of Rs were made at monthly time points and were combined with continuous climatic measurements in both CC and UF. Daily Rs was estimated by interpolating data with an exponential model dependent on soil temperature. Daily Rs was cumulated to annual Rs estimates. Important Findings In the first year after clear-cutting, annual estimates of Rs in CC (508±23g C m –2 yr –1 ) showed no significant difference to UF plots (480±12g C m –2 yr –1 ). During the summer, soil temperatures were usually higher, whereas the soil volumetric water content was lower in CC than in UF plots. The long-term effects of clear-cutting on Rs are not significant, although there might be effects during the first several months after clear-cutting. Compared with previous work, this pattern was more pronounced in our subtropical forest than in the temperate and boreal forests that have been studied by others. With aboveground residuals off-site after clear-cutting, our results indicate that the stimulation of increasing root debris, as well as environmental changes, will not lead to a significant increase in Rs. In addition, long-term Rs will not show a significant decrease from the termination of root respiration, and this observation might be because of the influence of fast-growing vegetation after clear-cutting in situ .
    Print ISSN: 1752-993X
    Electronic ISSN: 1752-9921
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈p〉L-type amino acid transporter 1 (LAT1), which is encoded by 〈i〉solute carrier transporter 7a5〈/i〉 (〈i〉Slc7a5〈/i〉), plays a crucial role in amino acid sensing and signaling in specific cell types, contributing to the pathogenesis of cancer and neurological disorders. Amino acid substrates of LAT1 have a beneficial effect on bone health directly and indirectly, suggesting a potential role for LAT1 in bone homeostasis. Here, we identified LAT1 in osteoclasts as important for bone homeostasis. 〈i〉Slc7a5〈/i〉 expression was substantially reduced in osteoclasts in a mouse model of ovariectomy-induced osteoporosis. The osteoclast-specific deletion of 〈i〉Slc7a5〈/i〉 in mice led to osteoclast activation and bone loss in vivo, and 〈i〉Slc7a5〈/i〉 deficiency increased osteoclastogenesis in vitro. Loss of 〈i〉Slc7a5〈/i〉 impaired activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in osteoclasts, whereas genetic activation of mTORC1 corrected the enhanced osteoclastogenesis and bone loss in 〈i〉Slc7a5〈/i〉-deficient mice. Last, 〈i〉Slc7a5〈/i〉 deficiency increased the expression of nuclear factor of activated T cells, cytoplasmic 1 (〈i〉Nfatc1〈/i〉) and the nuclear accumulation of NFATc1, a master regulator of osteoclast function, possibly through the canonical nuclear factor B pathway and the Akt–glycogen synthase kinase 3β signaling axis, respectively. These findings suggest that the LAT1-mTORC1 axis plays a pivotal role in bone resorption and bone homeostasis by modulating NFATc1 in osteoclasts, thereby providing a molecular connection between amino acid intake and skeletal integrity.〈/p〉
    Print ISSN: 1945-0877
    Electronic ISSN: 1937-9145
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-11-11
    Description: Motivation: The boost of next-generation sequencing technologies provides us with an unprecedented opportunity for elucidating genetic mysteries, yet the short-read length hinders us from better assembling the genome from scratch. New protocols now exist that can generate overlapping pair-end reads. By joining the 3' ends of each read pair, one is able to construct longer reads for assembling. However, effectively joining two overlapped pair-end reads remains a challenging task. Result: In this article, we present an efficient tool called Connecting Overlapped Pair-End (COPE) reads, to connect overlapping pair-end reads using k -mer frequencies. We evaluated our tool on 30 x simulated pair-end reads from Arabidopsis thaliana with 1% base error. COPE connected over 99% of reads with 98.8% accuracy, which is, respectively, 10 and 2% higher than the recently published tool FLASH. When COPE is applied to real reads for genome assembly, the resulting contigs are found to have fewer errors and give a 14-fold improvement in the N50 measurement when compared with the contigs produced using unconnected reads. Availability and implementation: COPE is implemented in C++ and is freely available as open-source code at ftp://ftp.genomics.org.cn/pub/cope . Contact: twlam@cs.hku.hk or luoruibang@genomics.org.cn
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-02
    Description: PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-27
    Description: Author(s): Y. D. Fang, Y. Shi, Y. H. Zhang, B. S. Gao, S. C. Wang, X. H. Zhou, M. L. Liu, J. G. Wang, F. Ma, Y. X. Guo, X. G. Wu, C. Y. He, Y. Zheng, Z. M. Wang, S. C. Li, X. L. Yan, L. He, Z. G. Wang, F. Fang, and F. R. Xu Excited states in the stable nucleus 193 Ir have been investigated through an in-beam γ -ray spectroscopic technique following the 192 Os ( 7 Li , α 2 n ) reaction at a beam energy of 44 MeV. A level scheme built on the π h 11/2 isomer has been extended to high-spin states using eleven newly observed γ transiti... [Phys. Rev. C 83, 054323] Published Thu May 26, 2011
    Keywords: Nuclear Structure
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-09
    Description: Severe myoclonic epilepsy of infancy (SMEI, also known as Dravet syndrome) and genetic epilepsy with febrile seizures plus (mild febrile seizures) can both arise due to mutations of SCN1A , the gene encoding alpha 1 pore-forming subunit of the Nav1.1 voltage-gated sodium channel. Owing to the inaccessibility of patient brain neurons, the precise mechanism of mild febrile seizures and SMEI remains elusive, and there is no effective pharmacotherapy. Induced pluripotent stem cells (iPSCs) and induced neurons (iNs) have been successfully generated from patients and applied for modeling various neuronal diseases. In this study, we established iPSC lines from one SMEI patient and one mild febrile seizures patient, respectively. Functional glutamatergic neurons were subsequently differentiated from these iPSCs. Electrophysiological analysis of patient iPSC-derived glutamatergic neurons revealed a hyperexcitable state of enlarged and persistent sodium channel activation, more intensive evoked action potentials and typical epileptic spontaneous action potentials. In consistent with the severity of the symptoms, the hyperexcitability of the neurons derived from SMEI patient was more serious than that of mild febrile seizures patient. Furthermore, the hyperexcitability of the neurons can be alleviated by treatment with phenytoin, a conventional antiepileptic drug. In parallel, iNs were directly converted from patient fibroblasts which also showed a delayed inactivation of sodium channels. Our results demonstrate that both iPSC-derived neurons and iNs from mild febrile seizures and SMEI patients exhibited a hyperexcitable state. More importantly, patient iPSC-derived neurons can recapitulate the neuronal pathophysiology and respond to drug treatment, indicating that these neurons can be potentially used for screening appropriate drugs for personalized therapies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...