ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-04-07
    Description: The formation of a metaphase spindle, a bipolar microtubule array with centrally aligned chromosomes, is a prerequisite for the faithful segregation of a cell's genetic material. Using a full-genome RNA interference screen of Drosophila S2 cells, we identified about 200 genes that contribute to spindle assembly, more than half of which were unexpected. The screen, in combination with a variety of secondary assays, led to new insights into how spindle microtubules are generated; how centrosomes are positioned; and how centrioles, centrosomes, and kinetochores are assembled.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837481/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837481/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goshima, Gohta -- Wollman, Roy -- Goodwin, Sarah S -- Zhang, Nan -- Scholey, Jonathan M -- Vale, Ronald D -- Stuurman, Nico -- R37 GM038499/GM/NIGMS NIH HHS/ -- R37 GM038499-21/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):417-21. Epub 2007 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412918" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Centrosome/metabolism/ultrastructure ; Chromosomes/physiology/ultrastructure ; Drosophila Proteins/*genetics/*physiology ; Drosophila melanogaster ; *Genes, Insect ; Image Processing, Computer-Assisted ; Kinetochores/metabolism ; Metaphase ; Microtubules/metabolism ; Mitosis ; Phenotype ; RNA Interference ; Spindle Apparatus/*genetics/*metabolism/ultrastructure ; Tubulin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-14
    Description: Among a number of innovative approaches that have modernized cell biology, modeling has a prominent yet unusual place. One popular view is that we progress linearly, from conceptual to ever more detailed models. We review recent discoveries of cell polarity mechanisms, in which modeling played an important role, to demonstrate that the experiment-theory feedback loop requires diverse models characterized by varying levels of biological detail and mathematical complexity. We argue that a quantitative model is a tool that has to fit an experimental study, and the model's value should be judged not by how complex and detailed it is, but by what could be learned from it.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mogilner, Alex -- Allard, Jun -- Wollman, Roy -- 2R01GM068952/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):175-9. doi: 10.1126/science.1216380.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA. mogilner@math.ucdavis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499937" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Cell Membrane/metabolism ; *Cell Polarity ; *Computer Simulation ; Feedback, Physiological ; *Models, Biological ; Saccharomyces cerevisiae/*cytology/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae/metabolism ; rab GTP-Binding Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wollman, Roy -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1326-7. doi: 10.1126/science.1252247.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Developmental Biology Section, Division of Biological Sciences, and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA, and San Diego Center for Systems Biology, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24653029" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Nucleus/*metabolism ; Cytoplasm/*metabolism ; Dictyostelium/*metabolism ; GATA Transcription Factors/*metabolism ; Protozoan Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-17
    Description: Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-kappaB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selimkhanov, Jangir -- Taylor, Brooks -- Yao, Jason -- Pilko, Anna -- Albeck, John -- Hoffmann, Alexander -- Tsimring, Lev -- Wollman, Roy -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50-GM085764/GM/NIGMS NIH HHS/ -- R01 GM089976/GM/NIGMS NIH HHS/ -- R01-GM071573/GM/NIGMS NIH HHS/ -- R01-GM089976/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA. rwollman@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504722" target="_blank"〉PubMed〈/a〉
    Keywords: *Calcium Signaling ; Cell Line ; Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; NF-kappa B/*metabolism ; *Signal Transduction ; Signal-To-Noise Ratio ; Single-Cell Analysis ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-11
    Print ISSN: 1465-7392
    Electronic ISSN: 1476-4679
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-07-01
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-05-01
    Print ISSN: 0960-9822
    Electronic ISSN: 1879-0445
    Topics: Biology
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...