ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-12-04
    Description: Enzymatic turnovers of single cholesterol oxidase molecules were observed in real time by monitoring the emission from the enzyme's fluorescent active site, flavin adenine dinucleotide (FAD). Statistical analyses of single-molecule trajectories revealed a significant and slow fluctuation in the rate of cholesterol oxidation by FAD. The static disorder and dynamic disorder of reaction rates, which are essentially indistinguishable in ensemble-averaged experiments, were determined separately by the real-time single-molecule approach. A molecular memory phenomenon, in which an enzymatic turnover was not independent of its previous turnovers because of a slow fluctuation of protein conformation, was evidenced by spontaneous spectral fluctuation of FAD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, H P -- Xun, L -- Xie, X S -- New York, N.Y. -- Science. 1998 Dec 4;282(5395):1877-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Northwest National Laboratory, William R. Wiley Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9836635" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Brevibacterium/enzymology ; Cholesterol/*metabolism ; Cholesterol Oxidase/*metabolism ; Flavin-Adenine Dinucleotide/*metabolism ; Kinetics ; Microscopy, Fluorescence ; Oxidation-Reduction ; Probability ; Spectrometry, Fluorescence ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-23
    Description: Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Min, Wei -- Lu, Sijia -- Chong, Shasha -- Roy, Rahul -- Holtom, Gary R -- Xie, X Sunney -- England -- Nature. 2009 Oct 22;461(7267):1105-9. doi: 10.1038/nature08438.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847261" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ear ; Escherichia coli/metabolism ; Fluorescence ; Gene Expression Profiling ; Genes, Reporter/genetics ; Hemoglobins/analysis ; Indigo Carmine ; Indoles/metabolism ; Lac Operon/genetics ; Lasers ; Mice ; Microscopy/*methods ; Molecular Imaging/*methods ; Photosensitizing Agents/analysis ; Sensitivity and Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-15
    Description: The combination of specific probes and advanced optical microscopy now allows quantitative probing of biochemical reactions in living cells. On selected systems, one can detect and track a particular protein with single-molecule sensitivity, nanometer spatial precision, and millisecond time resolution. Metabolites, usually difficult to detect, can be imaged and monitored in living cells with coherent anti-Stokes Raman scattering microscopy. Here, we describe the application of these techniques in studying gene expression, active transport, and lipid metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, X Sunney -- Yu, Ji -- Yang, Wei Yuan -- New York, N.Y. -- Science. 2006 Apr 14;312(5771):228-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. xie@chemistry.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16614211" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells/*metabolism ; Fatty Acids/metabolism ; *Gene Expression ; *Lipid Metabolism ; Luminescent Proteins/analysis/metabolism ; Molecular Motor Proteins/*metabolism ; *Molecular Probe Techniques ; Proteins/*metabolism ; Quantum Dots ; Spectrum Analysis, Raman
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-10-18
    Description: By monitoring fluorescently labeled lactose permease with single-molecule sensitivity, we investigated the molecular mechanism of how an Escherichia coli cell with the lac operon switches from one phenotype to another. At intermediate inducer concentrations, a population of genetically identical cells exhibits two phenotypes: induced cells with highly fluorescent membranes and uninduced cells with a small number of membrane-bound permeases. We found that this basal-level expression results from partial dissociation of the tetrameric lactose repressor from one of its operators on looped DNA. In contrast, infrequent events of complete dissociation of the repressor from DNA result in large bursts of permease expression that trigger induction of the lac operon. Hence, a stochastic single-molecule event determines a cell's phenotype.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819113/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819113/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Paul J -- Cai, Long -- Frieda, Kirsten -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- DP1 OD000277-03/OD/NIH HHS/ -- DP1 OD000277-04/OD/NIH HHS/ -- R01 EB010244/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2008 Oct 17;322(5900):442-6. doi: 10.1126/science.1161427.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18927393" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Escherichia coli/*genetics/metabolism ; Escherichia coli Proteins/*genetics/*metabolism ; Feedback, Physiological ; Gene Expression Regulation, Bacterial ; *Lac Operon ; Lac Repressors ; Lactose/*metabolism ; Microscopy, Fluorescence ; Models, Genetic ; Monosaccharide Transport Proteins/*genetics/*metabolism ; Operator Regions, Genetic ; Phenotype ; RNA, Messenger/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/*metabolism ; Stochastic Processes ; Symporters/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-12-20
    Description: Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576036/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freudiger, Christian W -- Min, Wei -- Saar, Brian G -- Lu, Sijia -- Holtom, Gary R -- He, Chengwei -- Tsai, Jason C -- Kang, Jing X -- Xie, X Sunney -- CA113605/CA/NCI NIH HHS/ -- DP1 OD000277/OD/NIH HHS/ -- DP1 OD000277-05/OD/NIH HHS/ -- R01 CA113605/CA/NCI NIH HHS/ -- R01 CA113605-01A2/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1857-61. doi: 10.1126/science.1165758.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor ; Corpus Callosum/chemistry/cytology ; Dimethyl Sulfoxide/administration & dosage/pharmacokinetics ; Eicosapentaenoic Acid/metabolism ; Epidermis/chemistry/metabolism/ultrastructure ; Humans ; Imaging, Three-Dimensional/*methods ; Lipids/*analysis ; Mice ; Microscopy/*methods ; Neurons/ultrastructure ; Sensitivity and Specificity ; Skin/chemistry/ultrastructure ; *Spectrum Analysis, Raman ; Tretinoin/administration & dosage/pharmacokinetics ; Vitamin A/analysis/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-31
    Description: Protein and messenger RNA (mRNA) copy numbers vary from cell to cell in isogenic bacterial populations. However, these molecules often exist in low copy numbers and are difficult to detect in single cells. We carried out quantitative system-wide analyses of protein and mRNA expression in individual cells with single-molecule sensitivity using a newly constructed yellow fluorescent protein fusion library for Escherichia coli. We found that almost all protein number distributions can be described by the gamma distribution with two fitting parameters which, at low expression levels, have clear physical interpretations as the transcription rate and protein burst size. At high expression levels, the distributions are dominated by extrinsic noise. We found that a single cell's protein and mRNA copy numbers for any given gene are uncorrelated.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922915/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922915/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taniguchi, Yuichi -- Choi, Paul J -- Li, Gene-Wei -- Chen, Huiyi -- Babu, Mohan -- Hearn, Jeremy -- Emili, Andrew -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- DP1 OD000277-03/OD/NIH HHS/ -- DP1 OD000277-04/OD/NIH HHS/ -- DP1 OD000277-05/OD/NIH HHS/ -- MOP-77639/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):533-8. doi: 10.1126/science.1188308.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671182" target="_blank"〉PubMed〈/a〉
    Keywords: Escherichia coli/chemistry/*genetics/metabolism ; Escherichia coli Proteins/*analysis/metabolism ; *Gene Expression ; *Gene Expression Profiling ; Gene Library ; In Situ Hybridization, Fluorescence ; Luminescent Proteins ; Microfluidic Analytical Techniques ; Microscopy, Fluorescence ; Protein Biosynthesis ; Proteome/*analysis ; RNA Stability ; RNA, Bacterial/analysis/genetics/metabolism ; RNA, Messenger/*analysis/genetics ; Saccharomyces cerevisiae/chemistry/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-12-04
    Description: Optical imaging in vivo with molecular specificity is important in biomedicine because of its high spatial resolution and sensitivity compared with magnetic resonance imaging. Stimulated Raman scattering (SRS) microscopy allows highly sensitive optical imaging based on vibrational spectroscopy without adding toxic or perturbative labels. However, SRS imaging in living animals and humans has not been feasible because light cannot be collected through thick tissues, and motion-blur arises from slow imaging based on backscattered light. In this work, we enable in vivo SRS imaging by substantially enhancing the collection of the backscattered signal and increasing the imaging speed by three orders of magnitude to video rate. This approach allows label-free in vivo imaging of water, lipid, and protein in skin and mapping of penetration pathways of topically applied drugs in mice and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462359/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462359/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saar, Brian G -- Freudiger, Christian W -- Reichman, Jay -- Stanley, C Michael -- Holtom, Gary R -- Xie, X Sunney -- 1R01EB010244-01/EB/NIBIB NIH HHS/ -- R01 EB010244/EB/NIBIB NIH HHS/ -- R01 EB010244-02/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1368-70. doi: 10.1126/science.1197236.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127249" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Cutaneous ; Animals ; Capillaries ; Dimethyl Sulfoxide/administration & dosage/pharmacokinetics ; Epidermis/chemistry/metabolism ; Erythrocytes/physiology ; Humans ; Imaging, Three-Dimensional ; Light ; Lipids ; Male ; Mice ; Mice, Nude ; Molecular Imaging/*methods ; Skin/blood supply/*chemistry/*metabolism ; Spectrum Analysis, Raman/*methods ; Time Factors ; Vitamin A/administration & dosage/pharmacokinetics ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-10
    Description: Bacterial chromosomes are confined in submicrometer-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the mechanisms of action remain elusive. In this work, we used super-resolution fluorescence microscopy, in combination with a chromosome-conformation capture assay, to study the distributions of major NAPs in live Escherichia coli cells. Four NAPs--HU, Fis, IHF, and StpA--were largely scattered throughout the nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome, driven by oligomerization of DNA-bound H-NS through interactions mediated by the amino-terminal domain of the protein. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Wenqin -- Li, Gene-Wei -- Chen, Chongyi -- Xie, X Sunney -- Zhuang, Xiaowei -- GM 096450/GM/NIGMS NIH HHS/ -- R01 GM096450/GM/NIGMS NIH HHS/ -- R01 GM096450-03/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 9;333(6048):1445-9. doi: 10.1126/science.1204697.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903814" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Division ; Chromosomes, Bacterial/*metabolism/*ultrastructure ; DNA, Bacterial/chemistry/*metabolism ; DNA-Binding Proteins/metabolism ; Escherichia coli K12/genetics/metabolism/*ultrastructure ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Factor For Inversion Stimulation Protein/metabolism ; Fimbriae Proteins/chemistry/genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Genetic Loci ; Genome, Bacterial ; Integration Host Factors/metabolism ; Molecular Chaperones/metabolism ; Nucleic Acid Conformation ; Operon ; Protein Multimerization ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-12-22
    Description: Meiotic recombination creates genetic diversity and ensures segregation of homologous chromosomes. Previous population analyses yielded results averaged among individuals and affected by evolutionary pressures. We sequenced 99 sperm from an Asian male by using the newly developed amplification method-multiple annealing and looping-based amplification cycles-to phase the personal genome and map recombination events at high resolution, which are nonuniformly distributed across the genome in the absence of selection pressure. The paucity of recombination near transcription start sites observed in individual sperm indicates that such a phenomenon is intrinsic to the molecular mechanism of meiosis. Interestingly, a decreased crossover frequency combined with an increase of autosomal aneuploidy is observable on a global per-sperm basis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3590491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Sijia -- Zong, Chenghang -- Fan, Wei -- Yang, Mingyu -- Li, Jinsen -- Chapman, Alec R -- Zhu, Ping -- Hu, Xuesong -- Xu, Liya -- Yan, Liying -- Bai, Fan -- Qiao, Jie -- Tang, Fuchou -- Li, Ruiqiang -- Xie, X Sunney -- HG005097-1/HG/NHGRI NIH HHS/ -- HG005613-01/HG/NHGRI NIH HHS/ -- R01 HG005097/HG/NHGRI NIH HHS/ -- RC2 HG005613/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1627-30. doi: 10.1126/science.1229112.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258895" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Chromosome Segregation ; Chromosomes, Human/genetics ; Crossing Over, Genetic ; *Genome, Human ; Haplotypes ; Heterozygote ; High-Throughput Nucleotide Sequencing ; Humans ; Male ; *Meiosis ; Middle Aged ; *Nucleic Acid Amplification Techniques ; *Recombination, Genetic ; Sequence Analysis, DNA/*methods ; Single-Cell Analysis ; Spermatozoa/*physiology ; Transcription Initiation Site
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...