ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-12-13
    Description: Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alper, Hal -- Moxley, Joel -- Nevoigt, Elke -- Fink, Gerald R -- Stephanopoulos, Gregory -- GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1565-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158319" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Cell Cycle Proteins/*genetics/metabolism ; Ethanol/*metabolism/pharmacology ; Fermentation ; Gene Expression Profiling ; Gene Expression Regulation, Fungal ; *Genetic Engineering ; Glucose/metabolism/pharmacology ; Mutagenesis ; Phenotype ; Saccharomyces cerevisiae/*genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/*genetics/metabolism ; TATA-Binding Protein Associated Factors/genetics/metabolism ; TATA-Box Binding Protein/*genetics/metabolism ; Transcription Factor TFIID/genetics/metabolism ; Transcription Factors/*genetics/metabolism ; *Transcription, Genetic ; Transformation, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-17
    Description: The RNA interference (RNAi) pathway is found in most eukaryotic lineages but curiously is absent in others, including that of Saccharomyces cerevisiae. We show that reconstituting RNAi in S. cerevisiae causes loss of a beneficial double-stranded RNA virus known as killer virus. Incompatibility between RNAi and killer viruses extends to other fungal species in that RNAi is absent in all species known to possess double-stranded RNA killer viruses, whereas killer viruses are absent in closely related species that retained RNAi. Thus, the advantage imparted by acquiring and retaining killer viruses explains the persistence of RNAi-deficient species during fungal evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790311/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790311/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM061835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- R37 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1592. doi: 10.1126/science.1209575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21921191" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Fungi/genetics/virology ; Genes, Fungal ; Phylogeny ; *RNA Interference ; RNA Viruses/*physiology ; Saccharomyces cerevisiae/*genetics/physiology/*virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-09
    Description: A Candida albicans gene (CPH1) was cloned that encodes a protein homologous to Saccharomyces cerevisiae Ste12p, a transcription factor that is the target of the pheromone response mitogen-activated protein kinase cascade. CPH1 complements both the mating defect of ste12 haploids and the filamentous growth defect of ste12/ste12 diploids. Candida albicans strains without a functional CPH1 gene (cph1/cph1) show suppressed hyphal formation on solid medium. However, cph1/cph1 strains can still form hyphae in liquid culture and in response to serum. Thus, filamentous growth may be activated in C. albicans by the same signaling kinase cascade that activates Ste12p in S. cerevisiae; however, alternative pathways may exist in C. albicans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, H -- Kohler, J -- Fink, G R -- GM402661/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1723-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992058" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Candida albicans/cytology/genetics/*growth & development ; Cloning, Molecular ; Culture Media ; Fungal Proteins/chemistry/*genetics/physiology ; *Genes, Fungal ; Genetic Complementation Test ; Molecular Sequence Data ; Mutation ; Saccharomyces cerevisiae/cytology/genetics/growth & development ; *Saccharomyces cerevisiae Proteins ; Transcription Factors/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-06-23
    Description: In plants, the growth regulator indole-3-acetic acid (IAA) is found both free and conjugated to a variety of amino acids, peptides, and carbohydrates. IAA conjugated to leucine has effects in Arabidopsis thaliana similar to those of free IAA. The ilr1 mutant is insensitive to exogenous IAA-Leu and was used to positionally clone the Arabidopsis ILR1 gene. ILR1 encodes a 48-kilodalton protein that cleaves IAA-amino acid conjugates in vitro and is homologous to bacterial amidohydrolase enzymes. DNA sequences similar to that of ILR1 are found in other plant species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bartel, B -- Fink, G R -- New York, N.Y. -- Science. 1995 Jun 23;268(5218):1745-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7792599" target="_blank"〉PubMed〈/a〉
    Keywords: Amidohydrolases/chemistry/*genetics/metabolism ; Amino Acid Sequence ; Amino Acids ; Arabidopsis/enzymology/*genetics ; *Arabidopsis Proteins ; Base Sequence ; Cloning, Molecular ; *Genes, Plant ; Hydrolysis ; Indoleacetic Acids/*metabolism/pharmacology ; Leucine/metabolism ; Molecular Sequence Data ; Mutation ; Plant Growth Regulators/*metabolism ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2001-02-07
    Description: Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Here we show that bakers' yeast Saccharomyces cerevisiae can initiate biofilm formation. When grown in low-glucose medium, the yeast cells adhered avidly to a number of plastic surfaces. On semi-solid (0.3% agar) medium they formed "mats": complex multicellular structures composed of yeast-form cells. Both attachment to plastic and mat formation require Flo11p, a member of a large family of fungal cell surface glycoproteins involved in adherence. The ability to study biofilm formation in a tractable genetic system may facilitate the identification of new targets for antifungal therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reynolds, T B -- Fink, G R -- 5 RO1 GM40266/GM/NIGMS NIH HHS/ -- GM20565/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Feb 2;291(5505):878-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11157168" target="_blank"〉PubMed〈/a〉
    Keywords: Agar ; Biofilms/*growth & development ; Cell Adhesion ; Culture Media ; Fungal Proteins/genetics/physiology ; Genes, Fungal ; Glucose ; Lipoproteins/physiology ; MAP Kinase Signaling System/genetics/physiology ; Membrane Glycoproteins ; Membrane Proteins/genetics/physiology ; *Nuclear Proteins ; Peptides/physiology ; Pheromones ; Plastics ; Ploidies ; Saccharomyces cerevisiae/genetics/growth & development/*physiology ; *Saccharomyces cerevisiae Proteins ; Trans-Activators/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-07-19
    Description: The principles underlying human hemispheric specialization are poorly understood. We used functional magnetic resonance imaging of letter and visuospatial decision tasks with identical word stimuli to address two unresolved problems. First, hemispheric specialization depended on the nature of the task rather than on the nature of the stimulus. Second, analysis of frontal candidate regions for cognitive control showed increased coupling between left anterior cingulate cortex (ACC) and left inferior frontal gyrus during letter decisions, whereas right ACC showed enhanced coupling with right parietal areas during visuospatial decisions. Cognitive control is thus localized in the same hemisphere as task execution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephan, Klaas E -- Marshall, John C -- Friston, Karl J -- Rowe, James B -- Ritzl, Afra -- Zilles, Karl -- Fink, Gereon R -- 077029/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2003 Jul 18;301(5631):384-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Medicine (IME), Research Centre Julich, 52425 Julich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12869765" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Brain/*physiology ; Brain Mapping ; *Cognition ; Functional Laterality ; Gyrus Cinguli/physiology ; Humans ; *Language ; Magnetic Resonance Imaging ; Male ; Parietal Lobe/physiology ; Prefrontal Cortex/physiology ; Space Perception ; Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-09-12
    Description: RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Weinberg, David E -- Xie, Kathleen T -- Mower, Jeffrey P -- Wolfe, Kenneth H -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):544-50. doi: 10.1126/science.1176945. Epub 2009 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745116" target="_blank"〉PubMed〈/a〉
    Keywords: Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Genes, Fungal ; Genetic Loci ; Mutation ; Open Reading Frames ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Ribonuclease III/genetics/metabolism ; Saccharomyces/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Saccharomycetales/*genetics/metabolism ; Sequence Analysis, RNA ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-09-18
    Description: The dimorphic switch from a single-cell budding yeast to a filamentous form enables Saccharomyces cerevisiae to forage for nutrients and the opportunistic pathogen Candida albicans to invade human tissues and evade the immune system. We constructed a genome-wide set of targeted deletion alleles and introduced them into a filamentous S. cerevisiae strain, Sigma1278b. We identified genes involved in morphologically distinct forms of filamentation: haploid invasive growth, biofilm formation, and diploid pseudohyphal growth. Unique genes appear to underlie each program, but we also found core genes with general roles in filamentous growth, including MFG1 (YDL233w), whose product binds two morphogenetic transcription factors, Flo8 and Mss11, and functions as a critical transcriptional regulator of filamentous growth in both S. cerevisiae and C. albicans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Owen -- Shapiro, Rebecca S -- Kurat, Christoph F -- Mayhew, David -- Baryshnikova, Anastasia -- Chin, Brian -- Lin, Zhen-Yuan -- Cox, Michael J -- Vizeacoumar, Frederick -- Cheung, Doris -- Bahr, Sondra -- Tsui, Kyle -- Tebbji, Faiza -- Sellam, Adnane -- Istel, Fabian -- Schwarzmuller, Tobias -- Reynolds, Todd B -- Kuchler, Karl -- Gifford, David K -- Whiteway, Malcolm -- Giaever, Guri -- Nislow, Corey -- Costanzo, Michael -- Gingras, Anne-Claude -- Mitra, Robi David -- Andrews, Brenda -- Fink, Gerald R -- Cowen, Leah E -- Boone, Charles -- 42516-4/Canadian Institutes of Health Research/Canada -- GM035010/GM/NIGMS NIH HHS/ -- GM40266/GM/NIGMS NIH HHS/ -- MOP-97939/Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1353-6. doi: 10.1126/science.1224339.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984072" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Biofilms/growth & development ; Candida albicans/cytology/*genetics/*growth & development ; DNA Mutational Analysis ; Gene Deletion ; *Gene Expression Regulation, Fungal ; Hyphae/genetics/growth & development ; Nuclear Proteins/genetics ; Saccharomyces cerevisiae/cytology/*genetics/*growth & development ; Saccharomyces cerevisiae Proteins/genetics ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-06-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink, Gerald R -- Leshner, Alan I -- Turekian, Vaughan C -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1065. doi: 10.1126/science.1256312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gerald R. Fink is president of AAAS and a professor at the Whitehead Institute of the Massachusetts Institute of Technology, Cambridge, MA. gfink@wi.mit.edu. ; Alan I. Leshner is chief executive officer of AAAS and executive publisher of Science. aleshner@aaas.org. ; Vaughan C. Turekian is chief international officer of AAAS and director of the AAAS Center for Science Diplomacy. vturekia@aaas.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904126" target="_blank"〉PubMed〈/a〉
    Keywords: Cuba ; *International Cooperation ; Science/*trends ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fink, G R -- New York, N.Y. -- Science. 1996 Mar 1;271(5253):1213.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638092" target="_blank"〉PubMed〈/a〉
    Keywords: *Administrative Personnel ; DNA, Recombinant ; Government Agencies/*organization & administration ; *Hepatitis B Vaccines ; Humans ; National Institutes of Health (U.S.) ; Research Support as Topic ; Saccharomyces cerevisiae/*genetics ; *Transformation, Genetic ; United States ; Vaccines, Synthetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...