ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-04-22
    Description: Plants and animals activate defenses after perceiving pathogen-associated molecular patterns (PAMPs) such as bacterial flagellin. In Arabidopsis, perception of flagellin increases resistance to the bacterium Pseudomonas syringae, although the molecular mechanisms involved remain elusive. Here, we show that a flagellin-derived peptide induces a plant microRNA (miRNA) that negatively regulates messenger RNAs for the F-box auxin receptors TIR1, AFB2, and AFB3. Repression of auxin signaling restricts P. syringae growth, implicating auxin in disease susceptibility and miRNA-mediated suppression of auxin signaling in resistance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Lionel -- Dunoyer, Patrice -- Jay, Florence -- Arnold, Benedict -- Dharmasiri, Nihal -- Estelle, Mark -- Voinnet, Olivier -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2006 Apr 21;312(5772):436-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16627744" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/immunology/*metabolism/*microbiology ; Arabidopsis Proteins/genetics/metabolism ; Down-Regulation ; F-Box Proteins/genetics/metabolism ; Flagellin/metabolism ; Gene Expression Regulation, Plant ; Indoleacetic Acids/*metabolism ; MicroRNAs/*physiology ; Plant Diseases/microbiology ; Plants, Genetically Modified ; Pseudomonas syringae/growth & development/*pathogenicity ; RNA, Messenger/genetics/metabolism ; RNA, Plant/physiology ; Receptors, Cell Surface/genetics/metabolism ; Recombinant Fusion Proteins/metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; *Signal Transduction ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-16
    Description: Plants and animals sense pathogen-associated molecular patterns (PAMPs) and in turn differentially regulate a subset of microRNAs (miRNAs). However, the extent to which the miRNA pathway contributes to innate immunity remains unknown. Here, we show that miRNA-deficient mutants of Arabidopsis partly restore growth of a type III secretion-defective mutant of Pseudomonas syringae. These mutants also sustained growth of nonpathogenic Pseudomonas fluorescens and Escherichia coli strains, implicating miRNAs as key components of plant basal defense. Accordingly, we have identified P. syringae effectors that suppress transcriptional activation of some PAMP-responsive miRNAs or miRNA biogenesis, stability, or activity. These results provide evidence that, like viruses, bacteria have evolved to suppress RNA silencing to cause disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570098/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2570098/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Navarro, Lionel -- Jay, Florence -- Nomura, Kinya -- He, Sheng Yang -- Voinnet, Olivier -- 5R01AI060761/AI/NIAID NIH HHS/ -- R01 AI060761/AI/NIAID NIH HHS/ -- R01 AI060761-03/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):964-7. doi: 10.1126/science.1159505.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire des Plantes, CNRS UPR 2353-Universite Louis Pasteur, 12 Rue du General Zimmer, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18703740" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/immunology/*microbiology/virology ; Bacterial Proteins/*metabolism ; Escherichia coli/growth & development ; Immunity, Innate ; MicroRNAs/genetics/*metabolism ; Mutation ; Plant Diseases/immunology/*microbiology ; Plant Leaves/metabolism/microbiology ; Plants, Genetically Modified ; Potyvirus/physiology ; Pseudomonas fluorescens/growth & development ; Pseudomonas syringae/genetics/*growth & development/metabolism/pathogenicity ; RNA Interference ; RNA Stability ; RNA, Plant/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-30
    Description: Transient populations of cis- and trans-acting small RNAs have recently emerged as key regulators of extensive epigenetic changes taking place during periconception, which encompasses gametogenesis, fertilization, and early zygotic development. These small RNAs are not only important to maintain genome integrity in the gametes and zygote, but they also actively contribute to assessing the compatibility of parental genomes at fertilization and to promoting long-term memory of the zygotic epigenetic landscape by affecting chromatin. Striking parallels exist in the biogenesis and modus operandi of these molecules among diverse taxa, unraveling universal themes of small-RNA-mediated epigenetic reprogramming during sexual reproduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bourc'his, Deborah -- Voinnet, Olivier -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):617-22. doi: 10.1126/science.1194776.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, CNRS UMR 3215, INSERM U934, 75248 Paris cedex 05, France. Deborah.Bourchis@curie.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030645" target="_blank"〉PubMed〈/a〉
    Keywords: Angiosperms/genetics/metabolism/physiology ; Animals ; Ciliophora/genetics/metabolism/physiology ; *Epigenesis, Genetic ; *Fertilization ; *Gametogenesis ; Gametogenesis, Plant ; Hybridization, Genetic ; Mammals/genetics/metabolism/physiology ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/*genetics/metabolism ; Zygote/*growth & development/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-24
    Description: In the plant RNA interference (RNAi) pathway, 21-nucleotide duplexes of small interfering RNA (siRNA) are processed from longer double-stranded RNA precursors by the RNaseIII Dicer-like 4 (DCL4). Single-stranded siRNAs then guide Argonaute 1 (AGO1) to execute posttranscriptional silencing of complementary target RNAs. RNAi is not cell-autonomous in higher plants, but the nature of the mobile nucleic acid(s) signal remains unknown. Using cell-specific rescue of DCL4 function and cell-specific inhibition of RNAi movement, we genetically establish that exogenous and endogenous siRNAs, as opposed to their precursor molecules, act as mobile silencing signals between plant cells. We further demonstrate physical movement of mechanically delivered, labeled siRNA duplexes that functionally recapitulate transgenic RNAi spread. Cell-to-cell movement is unlikely to involve AGO1-bound siRNA single strands, but instead likely involves siRNA duplexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dunoyer, Patrice -- Schott, Gregory -- Himber, Christophe -- Meyer, Denise -- Takeda, Atsushi -- Carrington, James C -- Voinnet, Olivier -- AI43288/AI/NIAID NIH HHS/ -- R37 AI043288/AI/NIAID NIH HHS/ -- R37 AI043288-14/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2010 May 14;328(5980):912-6. doi: 10.1126/science.1185880. Epub 2010 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire des Plantes du CNRS, Universite de Strasbourg 12 rue du General Zimmer, 67084 Strasbourg cedex, France. patrice.dunoyer@ibmp-ulp.u-strasbg.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413458" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*cytology/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Argonaute Proteins ; DNA-Binding Proteins/genetics/metabolism ; Green Fluorescent Proteins/genetics ; Nuclear Proteins/genetics/metabolism ; Plant Leaves/cytology/genetics/metabolism ; Plants, Genetically Modified ; *RNA Interference ; RNA Precursors/metabolism ; RNA, Double-Stranded/genetics/metabolism ; RNA, Plant/genetics/*metabolism ; RNA, Small Interfering/genetics/*metabolism ; Ribonuclease III/genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-04-23
    Description: In eukaryotes, 21- to 24-nucleotide-long RNAs engage in sequence-specific interactions that inhibit gene expression by RNA silencing. This process has regulatory roles involving microRNAs and, in plants and insects, it also forms the basis of a defense mechanism directed by small interfering RNAs that derive from replicative or integrated viral genomes. We show that a cellular microRNA effectively restricts the accumulation of the retrovirus primate foamy virus type 1 (PFV-1) in human cells. PFV-1 also encodes a protein, Tas, that suppresses microRNA-directed functions in mammalian cells and displays cross-kingdom antisilencing activities. Therefore, through fortuitous recognition of foreign nucleic acids, cellular microRNAs have direct antiviral effects in addition to their regulatory functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lecellier, Charles-Henri -- Dunoyer, Patrice -- Arar, Khalil -- Lehmann-Che, Jacqueline -- Eyquem, Stephanie -- Himber, Christophe -- Saib, Ali -- Voinnet, Olivier -- New York, N.Y. -- Science. 2005 Apr 22;308(5721):557-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS Unite Propre de Recherche (UPR) 2357, Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France. charles.lecellier@infobiogen.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15845854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/*physiology ; Arabidopsis/genetics ; Cell Line ; Cricetinae ; DNA-Binding Proteins/genetics/metabolism ; Genes, Reporter ; Green Fluorescent Proteins/genetics ; HeLa Cells ; Humans ; MicroRNAs/*physiology ; Oligonucleotides, Antisense ; Plants, Genetically Modified ; Protein Biosynthesis ; *RNA Interference ; RNA, Viral ; Retroviridae Proteins/genetics/metabolism ; Spumavirus/*genetics/*physiology ; Trans-Activators/genetics/metabolism ; Transfection ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-06-03
    Description: The mechanisms underlying induction and suppression of RNA silencing in the ongoing plant-virus arms race are poorly understood. We show here that virus-derived small RNAs produced by Arabidopsis Dicer-like 4 (DCL4) program an effector complex conferring antiviral immunity. Inhibition of DCL4 by a viral-encoded suppressor revealed the subordinate antiviral activity of DCL2. Accordingly, inactivating both DCL2 and DCL4 was necessary and sufficient to restore systemic infection of a suppressor-deficient virus. The effects of DCL2 were overcome by increasing viral dosage in inoculated leaves, but this could not surmount additional, non-cell autonomous effects of DCL4 specifically preventing viral unloading from the vasculature. These findings define a molecular framework for studying antiviral silencing and defense in plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deleris, Angelique -- Gallego-Bartolome, Javier -- Bao, Jinsong -- Kasschau, Kristin D -- Carrington, James C -- Voinnet, Olivier -- AI43288/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):68-71. Epub 2006 Jun 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire des Plantes, CNRS Unite Propre de Recherche (UPR) 2357, 12, rue du General Zimmer, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16741077" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/enzymology/genetics/metabolism/*virology ; Arabidopsis Proteins/antagonists & inhibitors/genetics/*metabolism ; Carmovirus/physiology ; Cell Cycle Proteins/antagonists & inhibitors/genetics/*metabolism ; Green Fluorescent Proteins/metabolism ; Mutation ; Plant Diseases/virology ; Plant Leaves/virology ; Plant Viruses/*physiology ; Plants, Genetically Modified ; *RNA Interference ; RNA Viruses/physiology ; RNA, Double-Stranded/metabolism ; RNA, Small Interfering/*metabolism ; RNA, Viral/*metabolism ; RNA-Induced Silencing Complex/metabolism ; Recombinant Fusion Proteins/metabolism ; Ribonuclease III/antagonists & inhibitors/genetics/*metabolism ; Ribonucleases/antagonists & inhibitors/genetics/*metabolism ; Signal Transduction ; Viral Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-05-17
    Description: High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA-guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brodersen, Peter -- Sakvarelidze-Achard, Lali -- Bruun-Rasmussen, Marianne -- Dunoyer, Patrice -- Yamamoto, Yoshiharu Y -- Sieburth, Leslie -- Voinnet, Olivier -- New York, N.Y. -- Science. 2008 May 30;320(5880):1185-90. doi: 10.1126/science.1159151. Epub 2008 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Biologie Moleculaire des Plantes du CNRS, Unite Propre de Recherche 2357, 12 rue du General Zimmer, 67084 Strasbourg Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18483398" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/physiology ; Arabidopsis/genetics/physiology ; Arabidopsis Proteins/genetics/physiology ; Argonaute Proteins ; *Gene Expression Regulation, Plant ; Green Fluorescent Proteins/genetics ; MicroRNAs/*physiology ; Mutation ; Protein Biosynthesis ; RNA Caps ; *RNA Interference ; RNA, Plant/*physiology ; RNA, Small Interfering/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-01-31
    Description: DNA methylation is essential for silencing transposable elements and some genes in higher eukaryotes, which suggests that this modification must be tightly controlled. However, accidental changes in DNA methylation can be transmitted through mitosis (as in cancer) or meiosis, leading to epiallelic variation. We demonstrated the existence of an efficient mechanism that protects against transgenerational loss of DNA methylation in Arabidopsis. Remethylation is specific to the subset of heavily methylated repeats that are targeted by the RNA interference (RNAi) machinery. This process does not spread into flanking regions, is usually progressive over several generations, and faithfully restores wild-type methylation over target sequences in an RNAi-dependent manner. Our findings suggest an important role for RNAi in protecting genomes against long-term epigenetic defects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teixeira, Felipe Karam -- Heredia, Fabiana -- Sarazin, Alexis -- Roudier, Francois -- Boccara, Martine -- Ciaudo, Constance -- Cruaud, Corinne -- Poulain, Julie -- Berdasco, Maria -- Fraga, Mario F -- Voinnet, Olivier -- Wincker, Patrick -- Esteller, Manel -- Colot, Vincent -- New York, N.Y. -- Science. 2009 Mar 20;323(5921):1600-4. doi: 10.1126/science.1165313. Epub 2009 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite de Recherche en Genomique Vegetale, CNRS UMR 8114, Institut National de la Recherche Argonomique UMR 1165, Universite d'Evry Val d'Essonne, 91057 Evry Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19179494" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Crosses, Genetic ; *DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Genome, Plant ; Mutation ; *RNA Interference ; RNA Replicase/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Repetitive Sequences, Nucleic Acid ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-11-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...