ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-12-02
    Description: In healthy individuals, acute changes in cholesterol intake produce modest changes in plasma cholesterol levels. A striking exception occurs in sitosterolemia, an autosomal recessive disorder characterized by increased intestinal absorption and decreased biliary excretion of dietary sterols, hypercholesterolemia, and premature coronary atherosclerosis. We identified seven different mutations in two adjacent, oppositely oriented genes that encode new members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter family (six mutations in ABCG8 and one in ABCG5) in nine patients with sitosterolemia. The two genes are expressed at highest levels in liver and intestine and, in mice, cholesterol feeding up-regulates expressions of both genes. These data suggest that ABCG5 and ABCG8 normally cooperate to limit intestinal absorption and to promote biliary excretion of sterols, and that mutated forms of these transporters predispose to sterol accumulation and atherosclerosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berge, K E -- Tian, H -- Graf, G A -- Yu, L -- Grishin, N V -- Schultz, J -- Kwiterovich, P -- Shan, B -- Barnes, R -- Hobbs, H H -- HL07360/HL/NHLBI NIH HHS/ -- HL20948/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2000 Dec 1;290(5497):1771-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and McDermott Center for Human Growth and Development and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11099417" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/chemistry/*genetics/metabolism ; Amino Acid Sequence ; Animals ; Bile/metabolism ; Cholesterol/blood ; Cholesterol, Dietary/administration & dosage/*metabolism ; Chromosome Mapping ; Chromosomes, Human, Pair 2 ; Codon ; DNA-Binding Proteins ; Expressed Sequence Tags ; Gene Expression Regulation ; Humans ; *Intestinal Absorption ; Intestines/metabolism ; Lipid Metabolism, Inborn Errors/*genetics/metabolism ; Lipoproteins/chemistry/*genetics/metabolism ; Liver/metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Orphan Nuclear Receptors ; RNA, Messenger/genetics/metabolism ; Receptors, Cytoplasmic and Nuclear/metabolism ; Sitosterols/*blood/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-11-29
    Description: The Vibrio parahaemolyticus type III effector VopS is implicated in cell rounding and the collapse of the actin cytoskeleton by inhibiting Rho guanosine triphosphatases (GTPases). We found that VopS could act to covalently modify a conserved threonine residue on Rho, Rac, and Cdc42 with adenosine 5'-monophosphate (AMP). The resulting AMPylation prevented the interaction of Rho GTPases with downstream effectors, thereby inhibiting actin assembly in the infected cell. Eukaryotic proteins were also directly modified with AMP, potentially expanding the repertoire of posttranslational modifications for molecular signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarbrough, Melanie L -- Li, Yan -- Kinch, Lisa N -- Grishin, Nick V -- Ball, Haydn L -- Orth, Kim -- R01-AI056404/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jan 9;323(5911):269-72. doi: 10.1126/science.1166382. Epub 2008 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039103" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/chemistry/genetics/*metabolism ; Binding Sites ; Cell Shape ; HeLa Cells ; Humans ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Threonine/chemistry/metabolism ; Vibrio parahaemolyticus/*metabolism/pathogenicity ; cdc42 GTP-Binding Protein/antagonists & inhibitors/chemistry/*metabolism ; rac GTP-Binding Proteins/antagonists & inhibitors/chemistry/*metabolism ; rho GTP-Binding Proteins/antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-08-08
    Description: The catalytic engine of RNA interference (RNAi) is the RNA-induced silencing complex (RISC), wherein the endoribonuclease Argonaute and single-stranded small interfering RNA (siRNA) direct target mRNA cleavage. We reconstituted long double-stranded RNA- and duplex siRNA-initiated RISC activities with the use of recombinant Drosophila Dicer-2, R2D2, and Ago2 proteins. We used this core reconstitution system to purify an RNAi regulator that we term C3PO (component 3 promoter of RISC), a complex of Translin and Trax. C3PO is a Mg2+-dependent endoribonuclease that promotes RISC activation by removing siRNA passenger strand cleavage products. These studies establish an in vitro RNAi reconstitution system and identify C3PO as a key activator of the core RNAi machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855623/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2855623/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Ying -- Ye, Xuecheng -- Jiang, Feng -- Liang, Chunyang -- Chen, Dongmei -- Peng, Junmin -- Kinch, Lisa N -- Grishin, Nick V -- Liu, Qinghua -- AG025688/AG/NIA NIH HHS/ -- GM078163/GM/NIGMS NIH HHS/ -- GM084010/GM/NIGMS NIH HHS/ -- R01 GM078163/GM/NIGMS NIH HHS/ -- R01 GM078163-03/GM/NIGMS NIH HHS/ -- R01 GM084010/GM/NIGMS NIH HHS/ -- R01 GM084010-02/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):750-3. doi: 10.1126/science.1176325.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661431" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Carrier Proteins/chemistry/genetics/isolation & purification/*metabolism ; Catalytic Domain ; Drosophila Proteins/chemistry/genetics/isolation & purification/*metabolism ; Drosophila melanogaster/chemistry/enzymology/*genetics ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; RNA Helicases/genetics/metabolism ; *RNA Interference ; RNA, Double-Stranded/chemistry/metabolism ; RNA, Small Interfering/chemistry/metabolism ; RNA-Binding Proteins/genetics/metabolism ; RNA-Induced Silencing Complex/genetics/*metabolism ; Recombinant Proteins/metabolism ; Ribonuclease III/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-15
    Description: Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tagliabracci, Vincent S -- Engel, James L -- Wen, Jianzhong -- Wiley, Sandra E -- Worby, Carolyn A -- Kinch, Lisa N -- Xiao, Junyu -- Grishin, Nick V -- Dixon, Jack E -- DK018024-37/DK/NIDDK NIH HHS/ -- DK018849-36/DK/NIDDK NIH HHS/ -- GM094575/GM/NIGMS NIH HHS/ -- R01 DK018849/DK/NIDDK NIH HHS/ -- R37 DK018024/DK/NIDDK NIH HHS/ -- T32 CA009523/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1150-3. doi: 10.1126/science.1217817. Epub 2012 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582013" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Calcification, Physiologic ; Casein Kinase I ; Casein Kinases/metabolism ; Caseins/*metabolism ; Cattle ; Cell Line, Tumor ; Cleft Palate/genetics/metabolism ; Exophthalmos/genetics/metabolism ; Extracellular Matrix Proteins/chemistry/genetics/*metabolism/secretion ; Glycoproteins/metabolism ; Golgi Apparatus/*enzymology ; HEK293 Cells ; HeLa Cells ; Humans ; Microcephaly/genetics/metabolism ; Milk/enzymology ; Molecular Sequence Data ; Mutation ; Osteopontin ; Osteosclerosis/genetics/metabolism ; Phosphorylation ; Protein Sorting Signals ; Recombinant Fusion Proteins/chemistry/metabolism/secretion ; *Secretory Pathway ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-01
    Description: The lysosomal degradation pathway of autophagy has a crucial role in defence against infection, neurodegenerative disorders, cancer and ageing. Accordingly, agents that induce autophagy may have broad therapeutic applications. One approach to developing such agents is to exploit autophagy manipulation strategies used by microbial virulence factors. Here we show that a peptide, Tat-beclin 1-derived from a region of the autophagy protein, beclin 1, which binds human immunodeficiency virus (HIV)-1 Nef-is a potent inducer of autophagy, and interacts with a newly identified negative regulator of autophagy, GAPR-1 (also called GLIPR2). Tat-beclin 1 decreases the accumulation of polyglutamine expansion protein aggregates and the replication of several pathogens (including HIV-1) in vitro, and reduces mortality in mice infected with chikungunya or West Nile virus. Thus, through the characterization of a domain of beclin 1 that interacts with HIV-1 Nef, we have developed an autophagy-inducing peptide that has potential efficacy in the treatment of human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788641/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788641/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shoji-Kawata, Sanae -- Sumpter, Rhea -- Leveno, Matthew -- Campbell, Grant R -- Zou, Zhongju -- Kinch, Lisa -- Wilkins, Angela D -- Sun, Qihua -- Pallauf, Kathrin -- MacDuff, Donna -- Huerta, Carlos -- Virgin, Herbert W -- Helms, J Bernd -- Eerland, Ruud -- Tooze, Sharon A -- Xavier, Ramnik -- Lenschow, Deborah J -- Yamamoto, Ai -- King, David -- Lichtarge, Olivier -- Grishin, Nick V -- Spector, Stephen A -- Kaloyanova, Dora V -- Levine, Beth -- K08 AI099150/AI/NIAID NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 GM066099/GM/NIGMS NIH HHS/ -- R01 GM079656/GM/NIGMS NIH HHS/ -- R01 GM094575/GM/NIGMS NIH HHS/ -- R01 NS050199/NS/NINDS NIH HHS/ -- R01 NS077111/NS/NINDS NIH HHS/ -- R01 NS084912/NS/NINDS NIH HHS/ -- R0I DK083756/DK/NIDDK NIH HHS/ -- R0I DK086502/DK/NIDDK NIH HHS/ -- R0I GM066099/GM/NIGMS NIH HHS/ -- R0I GM079656/GM/NIGMS NIH HHS/ -- R0I NS063973/NS/NINDS NIH HHS/ -- R0I NS077874/NS/NINDS NIH HHS/ -- RC1 DK086502/DK/NIDDK NIH HHS/ -- T32 GM008297/GM/NIGMS NIH HHS/ -- U54 AI057156/AI/NIAID NIH HHS/ -- U54AI057156/AI/NIAID NIH HHS/ -- U54AI057160/AI/NIAID NIH HHS/ -- Cancer Research UK/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Feb 14;494(7436):201-6. doi: 10.1038/nature11866. Epub 2013 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23364696" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis Regulatory Proteins/*chemistry/metabolism/pharmacology/*therapeutic use ; Autophagy/*drug effects ; Cell Membrane Permeability ; Cells, Cultured ; Chikungunya virus/drug effects ; HIV-1/drug effects/metabolism/physiology ; HeLa Cells ; Humans ; Macrophages/cytology ; Membrane Proteins/*chemistry/metabolism/pharmacology/*therapeutic use ; Mice ; Molecular Sequence Data ; Peptide Fragments/*chemistry/metabolism/*pharmacology ; Recombinant Fusion Proteins/chemistry/metabolism/pharmacology ; Virus Replication/drug effects ; West Nile virus/drug effects ; nef Gene Products, Human Immunodeficiency Virus/metabolism ; tat Gene Products, Human Immunodeficiency Virus/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-09-19
    Description: Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5's differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salahudeen, Ameen A -- Thompson, Joel W -- Ruiz, Julio C -- Ma, He-Wen -- Kinch, Lisa N -- Li, Qiming -- Grishin, Nick V -- Bruick, Richard K -- C06 RR 15437-01/RR/NCRR NIH HHS/ -- CA115962/CA/NCI NIH HHS/ -- R01 CA115962/CA/NCI NIH HHS/ -- R01 CA115962-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Oct 30;326(5953):722-6. doi: 10.1126/science.1176326. Epub 2009 Sep 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19762597" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Cell Line ; F-Box Proteins/chemistry/*metabolism ; HeLa Cells ; Hemerythrin/*metabolism ; Homeostasis ; Humans ; Iron/*metabolism ; Iron Regulatory Protein 2/metabolism ; Oxygen/metabolism ; Protein Structure, Tertiary ; RNA, Small Interfering ; Recombinant Fusion Proteins/metabolism ; Ubiquitin-Protein Ligases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-05-05
    Description: ATP binding cassette (ABC) transporters play critical roles in maintaining sterol balance in higher eukaryotes. The ABCG5/ABCG8 heterodimer (G5G8) mediates excretion of neutral sterols in liver and intestines. Mutations disrupting G5G8 cause sitosterolaemia, a disorder characterized by sterol accumulation and premature atherosclerosis. Here we use crystallization in lipid bilayers to determine the X-ray structure of human G5G8 in a nucleotide-free state at 3.9 A resolution, generating the first atomic model of an ABC sterol transporter. The structure reveals a new transmembrane fold that is present in a large and functionally diverse superfamily of ABC transporters. The transmembrane domains are coupled to the nucleotide-binding sites by networks of interactions that differ between the active and inactive ATPases, reflecting the catalytic asymmetry of the transporter. The G5G8 structure provides a mechanistic framework for understanding sterol transport and the disruptive effects of mutations causing sitosterolaemia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jyh-Yeuan -- Kinch, Lisa N -- Borek, Dominika M -- Wang, Jin -- Wang, Junmei -- Urbatsch, Ina L -- Xie, Xiao-Song -- Grishin, Nikolai V -- Cohen, Jonathan C -- Otwinowski, Zbyszek -- Hobbs, Helen H -- Rosenbaum, Daniel M -- GM053163/GM/NIGMS NIH HHS/ -- GM094575/GM/NIGMS NIH HHS/ -- GM113050/GM/NIGMS NIH HHS/ -- GM117080/GM/NIGMS NIH HHS/ -- HL72304/HL/NHLBI NIH HHS/ -- P01-HL20948/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 May 4;533(7604):561-4. doi: 10.1038/nature17666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA. ; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Cecil &Ida Green Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27144356" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-09-27
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-01-29
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...