ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-17
    Description: The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitari, Alberto C -- Leong, Kevin G -- Newton, Kim -- Yee, Cindy -- O'Rourke, Karen -- Liu, Jinfeng -- Phu, Lilian -- Vij, Rajesh -- Ferrando, Ronald -- Couto, Suzana S -- Mohan, Sankar -- Pandita, Ajay -- Hongo, Jo-Anne -- Arnott, David -- Wertz, Ingrid E -- Gao, Wei-Qiang -- French, Dorothy M -- Dixit, Vishva M -- England -- Nature. 2011 May 15;474(7351):403-6. doi: 10.1038/nature10005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21572435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Carrier Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; DNA-Binding Proteins/genetics/metabolism ; Humans ; Male ; Mice ; Nuclear Proteins/deficiency/*metabolism ; PTEN Phosphohydrolase/deficiency ; Prostatic Neoplasms/metabolism/pathology ; Protein Binding ; Proto-Oncogene Proteins c-ets/*metabolism ; Transcription Factors/genetics/metabolism ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-25
    Description: Colorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation. Notably, genes expressed in the stem-cell compartment of the intestine were among those most sensitive to anti-RSPO3 treatment. This observation, combined with functional assays, suggests that a stem-cell compartment drives PTPRK-RSPO3 colorectal tumour growth and indicates that the therapeutic targeting of stem-cell properties within tumours may be a clinically relevant approach for the treatment of colorectal tumours.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Storm, Elaine E -- Durinck, Steffen -- de Sousa e Melo, Felipe -- Tremayne, Jarrod -- Kljavin, Noelyn -- Tan, Christine -- Ye, Xiaofen -- Chiu, Cecilia -- Pham, Thinh -- Hongo, Jo-Anne -- Bainbridge, Travis -- Firestein, Ron -- Blackwood, Elizabeth -- Metcalfe, Ciara -- Stawiski, Eric W -- Yauch, Robert L -- Wu, Yan -- de Sauvage, Frederic J -- England -- Nature. 2016 Jan 7;529(7584):97-100. doi: 10.1038/nature16466. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700806" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology/therapeutic use ; Cell Differentiation/*drug effects ; Cell Division/drug effects ; Colorectal Neoplasms/*drug therapy/metabolism/*pathology ; Disease Progression ; Female ; Gene Expression Regulation/drug effects ; Humans ; Intestines/cytology/drug effects/metabolism/pathology ; Male ; Mice ; *Molecular Targeted Therapy ; Neoplastic Stem Cells/*drug effects/metabolism/*pathology ; Receptor-Like Protein Tyrosine Phosphatases, Class 2/*metabolism ; Stem Cells/cytology/metabolism ; Thrombospondins/antagonists & inhibitors/immunology/*metabolism ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-26
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...