ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-03-23
    Description: Developmental signals such as Wnts are often presented to cells in an oriented manner. To examine the consequences of local Wnt signaling, we immobilized Wnt proteins on beads and introduced them to embryonic stem cells in culture. At the single-cell level, the Wnt-bead induced asymmetric distribution of Wnt-beta-catenin signaling components, oriented the plane of mitotic division, and directed asymmetric inheritance of centrosomes. Before cytokinesis was completed, the Wnt-proximal daughter cell expressed high levels of nuclear beta-catenin and pluripotency genes, whereas the distal daughter cell acquired hallmarks of differentiation. We suggest that a spatially restricted Wnt signal induces an oriented cell division that generates distinct cell fates at predictable positions relative to the Wnt source.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966430/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966430/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Habib, Shukry J -- Chen, Bi-Chang -- Tsai, Feng-Chiao -- Anastassiadis, Konstantinos -- Meyer, Tobias -- Betzig, Eric -- Nusse, Roel -- 102513/Wellcome Trust/United Kingdom -- GM063702/GM/NIGMS NIH HHS/ -- NS069375/NS/NINDS NIH HHS/ -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM063702/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1445-8. doi: 10.1126/science.1231077.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 265 Campus Drive, Stanford, CA 94305, USA. shabib@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520113" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Asymmetric Cell Division ; *Cell Differentiation ; Cells, Cultured ; Centrosome/physiology ; Cytokinesis ; Embryonic Stem Cells/*cytology/*metabolism ; Gene Expression ; Homeodomain Proteins/genetics/metabolism ; Mice ; Mitosis ; Octamer Transcription Factor-3/genetics/metabolism ; Pluripotent Stem Cells/physiology ; Recombinant Proteins/metabolism ; Single-Cell Analysis ; Transcription Factors/genetics/metabolism ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wnt3A Protein/*metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-25
    Description: Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336192/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336192/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Bi-Chang -- Legant, Wesley R -- Wang, Kai -- Shao, Lin -- Milkie, Daniel E -- Davidson, Michael W -- Janetopoulos, Chris -- Wu, Xufeng S -- Hammer, John A 3rd -- Liu, Zhe -- English, Brian P -- Mimori-Kiyosue, Yuko -- Romero, Daniel P -- Ritter, Alex T -- Lippincott-Schwartz, Jennifer -- Fritz-Laylin, Lillian -- Mullins, R Dyche -- Mitchell, Diana M -- Bembenek, Joshua N -- Reymann, Anne-Cecile -- Bohme, Ralph -- Grill, Stephan W -- Wang, Jennifer T -- Seydoux, Geraldine -- Tulu, U Serdar -- Kiehart, Daniel P -- Betzig, Eric -- GM33830/GM/NIGMS NIH HHS/ -- R01 GM033830/GM/NIGMS NIH HHS/ -- R01GM080370/GM/NIGMS NIH HHS/ -- R01HD37047/HD/NICHD NIH HHS/ -- RM01-GM61010/GM/NIGMS NIH HHS/ -- T32 GM007445/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 24;346(6208):1257998. doi: 10.1126/science.1257998. Epub 2014 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Coleman Technologies, Incorporated, Newtown Square, PA 19073, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104, USA. ; Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Optical Image Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan. ; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA. ; Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge CB2 0XY, England, UK. ; Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA. ; Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany. Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany. ; Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA. ; Department of Biology, Duke University, Durham, NC 27708, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology ; Cell Communication ; Drosophila melanogaster/*embryology ; Embryo, Nonmammalian/*ultrastructure ; Embryonic Stem Cells/ultrastructure ; Imaging, Three-Dimensional/*methods ; Mice ; Microscopy/*methods ; Molecular Imaging/*methods ; Spheroids, Cellular/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-01
    Description: Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and alpha-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Dong -- Shao, Lin -- Chen, Bi-Chang -- Zhang, Xi -- Zhang, Mingshu -- Moses, Brian -- Milkie, Daniel E -- Beach, Jordan R -- Hammer, John A 3rd -- Pasham, Mithun -- Kirchhausen, Tomas -- Baird, Michelle A -- Davidson, Michael W -- Xu, Pingyong -- Betzig, Eric -- GM-075252/GM/NIGMS NIH HHS/ -- R01 GM075252/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):aab3500. doi: 10.1126/science.aab3500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315442" target="_blank"〉PubMed〈/a〉
    Keywords: Actinin/analysis ; Actins/analysis ; Animals ; Cell Line ; Clathrin/analysis ; Clathrin-Coated Vesicles/chemistry/ultrastructure ; Coated Pits, Cell-Membrane/chemistry/ultrastructure ; Cytoskeleton/chemistry/metabolism/*ultrastructure ; *Endocytosis ; Endosomes/chemistry/ultrastructure ; Golgi Apparatus/ultrastructure ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional/instrumentation/*methods ; Microscopy, Fluorescence/instrumentation/*methods ; Mitochondria/chemistry/ultrastructure ; Organelles/chemistry/metabolism/*ultrastructure ; rab5 GTP-Binding Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Bioconjugate chemistry 5 (1994), S. 445-453 
    ISSN: 1520-4812
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Tetrahedron 47 (1991), S. 173-182 
    ISSN: 0040-4020
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0040-4039
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0040-4020
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Tetrahedron Letters 31 (1990), S. 6823-6826 
    ISSN: 0040-4039
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1423-0127
    Keywords: Cyclooxygenase ; Interleukin-6 ; Macrophage ; Nitric oxide ; Prostaglandin E2 ; Pyrimidinoceptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Our previous study has demonstrated the potentiation by uridine triphosphate (UTP) of nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-stimulated murine J774 macrophages. In this study, we found that the amount of interleukin-6 (IL-6) release in response to LPS stimulation was greatly enhanced in the presence of UTP. This enhancement exhibited concentration dependence and occurred after 8 h of treatment with LPS. RT-PCR analysis indicated that the steady-state level of IL-6 mRNA induced by LPS was apparently increased upon co-addition of UTP. The potentiation by UTP was inhibited by the treatment with U73122 (a phosphatidylinositol-phospholipase C inhibitor), BAPTA/AM (an intracellular Ca2+ chelator), KN-93 (a selective inhibitor of calmodulin-dependent protein kinase) or PDTC (a nuclear factor κB inhibitor). To understand the cross-regulation among NO, PGE2 and IL-6, all of which are dramatically induced after LPS stimulation, the effects of L-NAME (a nitric oxide synthase inhibitor), indomethacin (a cyclooxygenase inhibitor), NS-398 (a cycloxygenase-2 inhibitor) and IL-6 antibody were tested. The results revealed the positive regulation between PGE2 and IL-6 synthesis because NS-398 and indomethacin inhibited LPS plus UTP-induced IL-6 release, and IL-6 antibody attenuated LPS plus UTP-induced PGE2 release. Taken together these results reinforce the role of UTP as a regulatory element in inflamed sites by demonstrating the capacity of this nucleotide to potentiate LPS-induced release of inflammatory mediators.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 14 (1995), S. 1468-1470 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...