ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (575)
  • Rats  (566)
  • Cell & Developmental Biology
  • Fisheries
  • American Association for the Advancement of Science (AAAS)  (1,153)
  • 2010-2014  (363)
  • 2005-2009  (566)
  • 1975-1979  (224)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-31
    Description: Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an "average" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilhelm, Benjamin G -- Mandad, Sunit -- Truckenbrodt, Sven -- Krohnert, Katharina -- Schafer, Christina -- Rammner, Burkhard -- Koo, Seong Joo -- Classen, Gala A -- Krauss, Michael -- Haucke, Volker -- Urlaub, Henning -- Rizzoli, Silvio O -- New York, N.Y. -- Science. 2014 May 30;344(6187):1023-8. doi: 10.1126/science.1252884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Neurosciences, 37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Molecular Biology, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. ; Leibniz Institut fur Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. Bioanalytics, Department of Clinical Chemistry, University Medical Center Gottingen, 37075 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. srizzol@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism/ultrastructure ; Exocytosis ; Imaging, Three-Dimensional ; Immunoblotting/methods ; Mass Spectrometry/methods ; Microscopy, Electron/methods ; Models, Neurological ; Presynaptic Terminals/chemistry/*metabolism/ultrastructure ; Protein Transport ; Rats ; Rats, Wistar ; Synaptic Vesicles/chemistry/*metabolism ; Synaptosomes/chemistry/*metabolism/ultrastructure ; Vesicular Transport Proteins/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-02-08
    Description: Neuronal intracellular chloride concentration [Cl(-)](i) is an important determinant of gamma-aminobutyric acid type A (GABA(A)) receptor (GABA(A)R)-mediated inhibition and cytoplasmic volume regulation. Equilibrative cation-chloride cotransporters (CCCs) move Cl(-) across the membrane, but accumulating evidence suggests factors other than the bulk concentrations of transported ions determine [Cl(-)](i). Measurement of [Cl(-)](i) in murine brain slice preparations expressing the transgenic fluorophore Clomeleon demonstrated that cytoplasmic impermeant anions ([A](i)) and polyanionic extracellular matrix glycoproteins ([A](o)) constrain the local [Cl(-)]. CCC inhibition had modest effects on [Cl(-)](i) and neuronal volume, but substantial changes were produced by alterations of the balance between [A](i) and [A](o). Therefore, CCCs are important elements of Cl(-) homeostasis, but local impermeant anions determine the homeostatic set point for [Cl(-)], and hence, neuronal volume and the polarity of local GABA(A)R signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220679/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glykys, J -- Dzhala, V -- Egawa, K -- Balena, T -- Saponjian, Y -- Kuchibhotla, K V -- Bacskai, B J -- Kahle, K T -- Zeuthen, T -- Staley, K J -- NS 40109-06/NS/NINDS NIH HHS/ -- R01 EB000768/EB/NIBIB NIH HHS/ -- R01 NS040109/NS/NINDS NIH HHS/ -- R01 NS074772/NS/NINDS NIH HHS/ -- R25 NS065743/NS/NINDS NIH HHS/ -- S10 RR025645/RR/NCRR NIH HHS/ -- U41 RR019703/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):670-5. doi: 10.1126/science.1245423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism ; Cell Membrane Permeability ; Cell Polarity ; Chloride Channels/*metabolism ; Chlorides/*metabolism ; Cytoplasm/metabolism ; Extracellular Matrix Proteins/metabolism ; Glycoproteins/metabolism ; Mice ; Mice, Transgenic ; Neurons/*metabolism ; Receptors, GABA-A/*metabolism ; Recombinant Fusion Proteins/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-26
    Description: Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berndt, Andre -- Lee, Soo Yeun -- Ramakrishnan, Charu -- Deisseroth, Karl -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH075957/MH/NIMH NIH HHS/ -- R01 MH086373/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763591" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CA1 Region, Hippocampal/cytology ; CA3 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons/*physiology ; Optogenetics ; Patch-Clamp Techniques ; Protein Engineering ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):239. doi: 10.1126/science.343.6168.239.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436399" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*microbiology/physiology ; Brain/metabolism/microbiology ; Fat Body/virology ; Female ; Gryllidae/physiology/*virology ; Guanidines/analysis/metabolism ; *Host-Pathogen Interactions ; Hypocreales/*physiology ; Insect Viruses/*physiology ; Lizards/virology ; Male ; Rats ; Sexual Behavior, Animal/*physiology ; Sphingosine/analysis/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-05
    Description: Development of vertebrate embryos involves tightly regulated molecular and cellular processes that progressively instruct proliferating embryonic cells about their identity and behavior. Whereas numerous gene activities have been found to be essential during early embryogenesis, little is known about the minimal conditions and factors that would be sufficient to instruct pluripotent cells to organize the embryo. Here, we show that opposing gradients of bone morphogenetic protein (BMP) and Nodal, two transforming growth factor family members that act as morphogens, are sufficient to induce molecular and cellular mechanisms required to organize, in vivo or in vitro, uncommitted cells of the zebrafish blastula animal pole into a well-developed embryo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Peng-Fei -- Houssin, Nathalie -- Ferri-Lagneau, Karine F -- Thisse, Bernard -- Thisse, Christine -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):87-9. doi: 10.1126/science.1248252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700857" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastula/*physiology ; Body Patterning ; Bone Morphogenetic Proteins/genetics/*physiology ; Embryo, Nonmammalian/*physiology ; *Embryonic Development ; Gastrula/physiology ; Gastrulation ; Gene Expression Regulation, Developmental ; Morphogenesis ; Nodal Protein/genetics/*physiology ; RNA, Messenger/genetics ; Signal Transduction ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-06
    Description: Immune and inflammatory responses require leukocytes to migrate within and through the vasculature, a process that is facilitated by their capacity to switch to a polarized morphology with an asymmetric distribution of receptors. We report that neutrophil polarization within activated venules served to organize a protruding domain that engaged activated platelets present in the bloodstream. The selectin ligand PSGL-1 transduced signals emanating from these interactions, resulting in the redistribution of receptors that drive neutrophil migration. Consequently, neutrophils unable to polarize or to transduce signals through PSGL-1 displayed aberrant crawling, and blockade of this domain protected mice against thromboinflammatory injury. These results reveal that recruited neutrophils scan for activated platelets, and they suggest that the neutrophils' bipolarity allows the integration of signals present at both the endothelium and the circulation before inflammation proceeds.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4280847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreeramkumar, Vinatha -- Adrover, Jose M -- Ballesteros, Ivan -- Cuartero, Maria Isabel -- Rossaint, Jan -- Bilbao, Izaskun -- Nacher, Maria -- Pitaval, Christophe -- Radovanovic, Irena -- Fukui, Yoshinori -- McEver, Rodger P -- Filippi, Marie-Dominique -- Lizasoain, Ignacio -- Ruiz-Cabello, Jesus -- Zarbock, Alexander -- Moro, Maria A -- Hidalgo, Andres -- HL03463/HL/NHLBI NIH HHS/ -- HL085607/HL/NHLBI NIH HHS/ -- HL090676/HL/NHLBI NIH HHS/ -- P01 HL085607/HL/NHLBI NIH HHS/ -- R01 HL034363/HL/NHLBI NIH HHS/ -- R01 HL090676/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1234-8. doi: 10.1126/science.1256478. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. ; Unidad de Investigacion Neurovascular, Department of Pharmacology, Faculty of Medicine, Universidad Complutense and Instituto de Investigacion Hospital 12 de Octubre (i+12), Madrid, Spain. ; Department of Anesthesiology and Critical Care Medicine, University of Munster and Max Planck Institute Munster, Munster, Germany. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia. ; Division of Immunogenetics, Department of Immunobiology and Neuroscience, Kyushu University, Japan. ; Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, USA. ; Department of Atherothrombosis, Imaging and Epidemiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany. ahidalgo@cnic.es.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477463" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Circulation ; Blood Platelets/*immunology ; Cell Movement ; Cell Polarity ; Endothelium, Vascular/immunology ; Inflammation/blood/*immunology ; Male ; Membrane Glycoproteins ; Mice ; Mice, Inbred C57BL ; Neutrophils/*immunology ; *Platelet Activation ; Signal Transduction ; Thrombosis/*immunology ; Venules/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-10-18
    Description: Nitrogen (N) is a critical nutrient for plants but is often distributed unevenly in the soil. Plants therefore have evolved a systemic mechanism by which N starvation on one side of the root system leads to a compensatory and increased nitrate uptake on the other side. Here, we study the molecular systems that support perception of N and the long-distance signaling needed to alter root development. Rootlets starved of N secrete small peptides that are translocated to the shoot and received by two leucine-rich repeat receptor kinases (LRR-RKs). Arabidopsis plants deficient in this pathway show growth retardation accompanied with N-deficiency symptoms. Thus, signaling from the root to the shoot helps the plant adapt to fluctuations in local N availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tabata, Ryo -- Sumida, Kumiko -- Yoshii, Tomoaki -- Ohyama, Kentaro -- Shinohara, Hidefumi -- Matsubayashi, Yoshikatsu -- New York, N.Y. -- Science. 2014 Oct 17;346(6207):343-6. doi: 10.1126/science.1257800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ; Department of Applied Molecular Biosciences, Graduate School of Bio-Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan. ; Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. matsu@bio.nagoya-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25324386" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/*growth & development/metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Molecular Sequence Data ; Nitrogen/*metabolism ; Peptides/*metabolism ; Plant Roots/genetics/*growth & development/metabolism ; Plant Shoots/genetics/*growth & development/metabolism ; Receptors, Peptide/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-06
    Description: Pathogens traverse multiple barriers during infection, including cell membranes. We found that during this transition, pathogens carried covalently attached complement C3 into the cell, triggering immediate signaling and effector responses. Sensing of C3 in the cytosol activated mitochondrial antiviral signaling (MAVS)-dependent signaling cascades and induced proinflammatory cytokine secretion. C3 also flagged viruses for rapid proteasomal degradation, preventing their replication. This system could detect both viral and bacterial pathogens but was antagonized by enteroviruses, such as rhinovirus and poliovirus, which cleave C3 using their 3C protease. The antiviral rupintrivir inhibited 3C protease and prevented C3 cleavage, rendering enteroviruses susceptible to intracellular complement sensing. Thus, complement C3 allows cells to detect and disable pathogens that have invaded the cytosol.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tam, Jerry C H -- Bidgood, Susanna R -- McEwan, William A -- James, Leo C -- 281627/European Research Council/International -- MC_U105181010/Medical Research Council/United Kingdom -- U105181010/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1256070. doi: 10.1126/science.1256070. Epub 2014 Sep 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. lcj@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25190799" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/*immunology ; Adenovirus Infections, Human/*immunology ; Animals ; Antibodies, Viral/immunology ; Complement C3/*immunology ; Cytokines/biosynthesis/genetics ; Dogs ; HEK293 Cells ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factors/metabolism ; NF-kappa B/metabolism ; Proteasome Endopeptidase Complex/metabolism ; Ribonucleoproteins/genetics/metabolism ; Signal Transduction ; Transcription Factor AP-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bar-Peled, Liron -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1191-2. doi: 10.1126/science.aaa1808.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, La Jolla, CA 92122, USA. lironbp@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477447" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; *Body Size ; *Cell Enlargement ; *Cell Proliferation ; GTP-Binding Protein Regulators/*metabolism ; Lysosomes/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/metabolism ; Protein Transport ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-05-24
    Description: Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing's syndrome, providing insights into the diagnosis and therapeutics of this syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yusuke -- Maekawa, Shigekatsu -- Ishii, Ryohei -- Sanada, Masashi -- Morikawa, Teppei -- Shiraishi, Yuichi -- Yoshida, Kenichi -- Nagata, Yasunobu -- Sato-Otsubo, Aiko -- Yoshizato, Tetsuichi -- Suzuki, Hiromichi -- Shiozawa, Yusuke -- Kataoka, Keisuke -- Kon, Ayana -- Aoki, Kosuke -- Chiba, Kenichi -- Tanaka, Hiroko -- Kume, Haruki -- Miyano, Satoru -- Fukayama, Masashi -- Nureki, Osamu -- Homma, Yukio -- Ogawa, Seishi -- New York, N.Y. -- Science. 2014 May 23;344(6186):917-20. doi: 10.1126/science.1252328.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855271" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics ; Adrenocortical Adenoma/*genetics ; Adrenocorticotropic Hormone/metabolism ; Animals ; Catalytic Domain/genetics ; Cushing Syndrome/*genetics/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*genetics/metabolism ; DNA Mutational Analysis ; GTP-Binding Protein alpha Subunits/genetics ; HEK293 Cells ; Humans ; Mice ; Mutation ; NIH 3T3 Cells ; PC12 Cells ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2014-08-30
    Description: Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4508193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herz, Hans-Martin -- Morgan, Marc -- Gao, Xin -- Jackson, Jessica -- Rickels, Ryan -- Swanson, Selene K -- Florens, Laurence -- Washburn, Michael P -- Eissenberg, Joel C -- Shilatifard, Ali -- CA R01CA089455/CA/NCI NIH HHS/ -- R01 CA089455/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1065-70. doi: 10.1126/science.1255104.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ; Saint Louis University School of Medicine, Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis, MO, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA. ; Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA. ash@northwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170156" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Chromatin/*metabolism ; Disease Models, Animal ; Drosophila Proteins/genetics ; Drosophila melanogaster ; Gene Silencing ; Glioma/genetics/metabolism ; Heterochromatin/metabolism ; Histone-Lysine N-Methyltransferase/genetics ; Histones/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Lysine/*genetics ; Methionine/*genetics ; Methylation ; Mutation ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-02-08
    Description: We report that the oxytocin-mediated neuroprotective gamma-aminobutyric acid (GABA) excitatory-inhibitory shift during delivery is abolished in the valproate and fragile X rodent models of autism. During delivery and subsequently, hippocampal neurons in these models have elevated intracellular chloride levels, increased excitatory GABA, enhanced glutamatergic activity, and elevated gamma oscillations. Maternal pretreatment with bumetanide restored in offspring control electrophysiological and behavioral phenotypes. Conversely, blocking oxytocin signaling in naive mothers produced offspring having electrophysiological and behavioral autistic-like features. Our results suggest a chronic deficient chloride regulation in these rodent models of autism and stress the importance of oxytocin-mediated GABAergic inhibition during the delivery process. Our data validate the amelioration observed with bumetanide and oxytocin and point to common pathways in a drug-induced and a genetic rodent model of autism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tyzio, Roman -- Nardou, Romain -- Ferrari, Diana C -- Tsintsadze, Timur -- Shahrokhi, Amene -- Eftekhari, Sanaz -- Khalilov, Ilgam -- Tsintsadze, Vera -- Brouchoud, Corinne -- Chazal, Genevieve -- Lemonnier, Eric -- Lozovaya, Natalia -- Burnashev, Nail -- Ben-Ari, Yehezkel -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):675-9. doi: 10.1126/science.1247190.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mediterranean Institute of Neurobiology (INMED), U901, INSERM, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503856" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*chemically induced/*genetics/metabolism ; Behavior, Animal ; Bumetanide/administration & dosage ; Chlorides/metabolism ; *Cytoprotection ; Disease Models, Animal ; Female ; Fragile X Mental Retardation Protein/genetics ; Maternal-Fetal Exchange ; Mice ; Oxytocin/*metabolism ; Parturition ; Pregnancy ; Rats ; Valproic Acid/pharmacology ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-05-03
    Description: We demonstrate a technique for mapping brain activity that combines molecular specificity and spatial coverage using a neurotransmitter sensor detectable by magnetic resonance imaging (MRI). This molecular functional MRI (fMRI) method yielded time-resolved volumetric measurements of dopamine release evoked by reward-related lateral hypothalamic brain stimulation of rats injected with the neurotransmitter sensor. Peak dopamine concentrations and release rates were observed in the anterior nucleus accumbens core. Substantial dopamine transients were also present in more caudal areas. Dopamine-release amplitudes correlated with the rostrocaudal stimulation coordinate, suggesting participation of hypothalamic circuitry in modulating dopamine responses. This work provides a foundation for development and application of quantitative molecular fMRI techniques targeted toward numerous components of neural physiology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Taekwan -- Cai, Lili X -- Lelyveld, Victor S -- Hai, Aviad -- Jasanoff, Alan -- DP2-OD002114/OD/NIH HHS/ -- R01-DA02899/DA/NIDA NIH HHS/ -- R01-NS076462/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 2;344(6183):533-5. doi: 10.1126/science.1249380.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786083" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/*chemistry/genetics ; Brain Mapping/*methods ; Contrast Media/*chemistry ; Cytochrome P-450 Enzyme System/*chemistry/genetics ; Dopamine/*metabolism ; Dopaminergic Neurons ; Magnetic Resonance Imaging/*methods ; Male ; Molecular Imaging/*methods ; NADPH-Ferrihemoprotein Reductase/*chemistry/genetics ; Nucleus Accumbens/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-05-17
    Description: Neural circuits are shaped by elimination of early-formed redundant synapses during postnatal development. Retrograde signaling from postsynaptic cells regulates synapse elimination. In this work, we identified semaphorins, a family of versatile cell recognition molecules, as retrograde signals for elimination of redundant climbing fiber to Purkinje cell synapses in developing mouse cerebellum. Knockdown of Sema3A, a secreted semaphorin, in Purkinje cells or its receptor in climbing fibers accelerated synapse elimination during postnatal day 8 (P8) to P18. Conversely, knockdown of Sema7A, a membrane-anchored semaphorin, in Purkinje cells or either of its two receptors in climbing fibers impaired synapse elimination after P15. The effect of Sema7A involves signaling by metabotropic glutamate receptor 1, a canonical pathway for climbing fiber synapse elimination. These findings define how semaphorins retrogradely regulate multiple processes of synapse elimination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uesaka, Naofumi -- Uchigashima, Motokazu -- Mikuni, Takayasu -- Nakazawa, Takanobu -- Nakao, Harumi -- Hirai, Hirokazu -- Aiba, Atsu -- Watanabe, Masahiko -- Kano, Masanobu -- New York, N.Y. -- Science. 2014 May 30;344(6187):1020-3. doi: 10.1126/science.1252514. Epub 2014 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Laboratory of Animal Resources, Center for Disease Biology and Integrated Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. ; Department of Neurophysiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan. ; Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. mkano-tky@m.u-tokyo.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24831527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/genetics/*metabolism ; Brain/*growth & development/metabolism ; Gene Knockdown Techniques ; Mice ; Mice, Inbred C57BL ; Purkinje Cells/metabolism/*physiology ; RNA Interference ; Rats ; Rats, Sprague-Dawley ; Receptors, Metabotropic Glutamate/genetics/metabolism ; Semaphorin-3A/genetics/*metabolism ; Semaphorins/genetics/*metabolism ; Signal Transduction ; Synapses/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Underwood, Emily -- New York, N.Y. -- Science. 2014 Oct 10;346(6206):149. doi: 10.1126/science.346.6206.149-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25301593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Geographic Information Systems ; Hippocampus/*cytology ; Humans ; Neurons/*physiology ; *Neurosciences ; *Nobel Prize ; Rats ; Spatial Behavior/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-01-05
    Description: Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roy, Sougata -- Huang, Hai -- Liu, Songmei -- Kornberg, Thomas B -- GM030637/GM/NIGMS NIH HHS/ -- K99HL114867/HL/NHLBI NIH HHS/ -- R01 GM030637/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):1244624. doi: 10.1126/science.1244624. Epub 2014 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385607" target="_blank"〉PubMed〈/a〉
    Keywords: Air Sacs/cytology/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules, Neuronal/genetics/metabolism ; *Cell Communication ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/*cytology/*metabolism ; Dynamins/genetics/metabolism ; Membrane Proteins/genetics/metabolism ; Protein Transport ; Pseudopodia/*metabolism ; Signal Transduction ; Trachea/cytology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-01-05
    Description: Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Delta(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057431/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vallee, Monique -- Vitiello, Sergio -- Bellocchio, Luigi -- Hebert-Chatelain, Etienne -- Monlezun, Stephanie -- Martin-Garcia, Elena -- Kasanetz, Fernando -- Baillie, Gemma L -- Panin, Francesca -- Cathala, Adeline -- Roullot-Lacarriere, Valerie -- Fabre, Sandy -- Hurst, Dow P -- Lynch, Diane L -- Shore, Derek M -- Deroche-Gamonet, Veronique -- Spampinato, Umberto -- Revest, Jean-Michel -- Maldonado, Rafael -- Reggio, Patricia H -- Ross, Ruth A -- Marsicano, Giovanni -- Piazza, Pier Vincenzo -- 260515/European Research Council/International -- DA-003934/DA/NIDA NIH HHS/ -- DA-03672/DA/NIDA NIH HHS/ -- DA-09789/DA/NIDA NIH HHS/ -- K05 DA021358/DA/NIDA NIH HHS/ -- R01 DA003934/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):94-8. doi: 10.1126/science.1243985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, Neurocentre Magendie, Physiopathologie de la Plasticite Neuronale, U862, F-33000 Bordeaux, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*drug effects/metabolism ; Cannabinoid Receptor Antagonists/administration & dosage ; Cannabis/*toxicity ; Dronabinol/*toxicity ; Male ; Marijuana Abuse/drug therapy ; Mice ; Mice, Inbred C57BL ; Pregnenolone/*administration & dosage/*metabolism ; Rats ; Rats, Sprague-Dawley ; Rats, Wistar ; Receptor, Cannabinoid, CB1/*agonists/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-03-15
    Description: Motor neurons, which relay neural commands to drive skeletal muscle movements, encompass types ranging from "slow" to "fast," whose biophysical properties govern the timing, gradation, and amplitude of muscle force. Here we identify the noncanonical Notch ligand Delta-like homolog 1 (Dlk1) as a determinant of motor neuron functional diversification. Dlk1, expressed by ~30% of motor neurons, is necessary and sufficient to promote a fast biophysical signature in the mouse and chick. Dlk1 suppresses Notch signaling and activates expression of the K(+) channel subunit Kcng4 to modulate delayed-rectifier currents. Dlk1 inactivation comprehensively shifts motor neurons toward slow biophysical and transcriptome signatures, while abolishing peak force outputs. Our findings provide insights into the development of motor neuron functional diversity and its contribution to the execution of movements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muller, Daniel -- Cherukuri, Pitchaiah -- Henningfeld, Kristine -- Poh, Chor Hoon -- Wittler, Lars -- Grote, Phillip -- Schluter, Oliver -- Schmidt, Jennifer -- Laborda, Jorge -- Bauer, Steven R -- Brownstone, Robert M -- Marquardt, Till -- R01 HD042013/HD/NICHD NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1264-6. doi: 10.1126/science.1246448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Grisebachstrasse 5, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Regulation ; Intercellular Signaling Peptides and Proteins/genetics/*physiology ; Mice ; Mice, Knockout ; Motor Neurons/*metabolism ; Movement ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/innervation/*physiology ; Potassium Channels, Voltage-Gated/genetics ; Receptors, Notch/*physiology ; Signal Transduction ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-01-11
    Description: It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107353/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pauli, Andrea -- Norris, Megan L -- Valen, Eivind -- Chew, Guo-Liang -- Gagnon, James A -- Zimmerman, Steven -- Mitchell, Andrew -- Ma, Jiao -- Dubrulle, Julien -- Reyon, Deepak -- Tsai, Shengdar Q -- Joung, J Keith -- Saghatelian, Alan -- Schier, Alexander F -- K99 HD076935/HD/NICHD NIH HHS/ -- R01 GM056211/GM/NIGMS NIH HHS/ -- R01 GM102491/GM/NIGMS NIH HHS/ -- R01 HG005111/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):1248636. doi: 10.1126/science.1248636. Epub 2014 Jan 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24407481" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Cell Movement ; Chemokine CXCL12/metabolism ; Frameshift Mutation ; Gastrulation/genetics/*physiology ; Molecular Sequence Data ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Signal Transduction ; Zebrafish/*embryology/genetics/metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grimm, David -- New York, N.Y. -- Science. 2014 May 2;344(6183):461. doi: 10.1126/science.344.6183.461.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24786056" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesia ; Animals ; Anti-Inflammatory Agents/administration & dosage ; Biomedical Research/*standards ; Female ; Humans ; Male ; Mice ; *Odors ; Pain/*physiopathology/prevention & control ; Pain Measurement ; Pain Threshold ; Rats ; Sex Factors ; *Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):361-3. doi: 10.1126/science.343.6169.361.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458620" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemically-Induced Disorders/*genetics ; DNA Methylation/drug effects ; *Epigenesis, Genetic ; Epigenomics/economics/trends ; Evolution, Molecular ; Female ; Humans ; Male ; Rats ; Reproduction/drug effects/genetics ; Sexual Behavior, Animal/drug effects ; Spermatozoa/*abnormalities/*drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-11-29
    Description: T cell responses are initiated by antigen and promoted by a range of costimulatory signals. Understanding how T cells integrate alternative signal combinations and make decisions affecting immune response strength or tolerance poses a considerable theoretical challenge. Here, we report that T cell receptor (TCR) and costimulatory signals imprint an early, cell-intrinsic, division fate, whereby cells effectively count through generations before returning automatically to a quiescent state. This autonomous program can be extended by cytokines. Signals from the TCR, costimulatory receptors, and cytokines add together using a linear division calculus, allowing the strength of a T cell response to be predicted from the sum of the underlying signal components. These data resolve a long-standing costimulation paradox and provide a quantitative paradigm for therapeutically manipulating immune response strength.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchingo, Julia M -- Kan, Andrey -- Sutherland, Robyn M -- Duffy, Ken R -- Wellard, Cameron J -- Belz, Gabrielle T -- Lew, Andrew M -- Dowling, Mark R -- Heinzel, Susanne -- Hodgkin, Philip D -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1123-7. doi: 10.1126/science.1260044.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. ; Hamilton Institute, National University of Ireland, Maynooth, Ireland. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. The Royal Melbourne Hospital, Parkville, VIC, Australia. ; Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia. hodgkin@wehi.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430770" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Cell Division ; Cell Proliferation ; Cytokines/*immunology ; *Immune Tolerance ; Lymphocyte Activation ; Mice ; Receptors, Antigen, T-Cell/*immunology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-04-20
    Description: Cytoplasmic plant immune receptors recognize specific pathogen effector proteins and initiate effector-triggered immunity. In Arabidopsis, the immune receptors RPS4 and RRS1 are both required to activate defense to three different pathogens. We show that RPS4 and RRS1 physically associate. Crystal structures of the N-terminal Toll-interleukin-1 receptor/resistance (TIR) domains of RPS4 and RRS1, individually and as a heterodimeric complex (respectively at 2.05, 1.75, and 2.65 angstrom resolution), reveal a conserved TIR/TIR interaction interface. We show that TIR domain heterodimerization is required to form a functional RRS1/RPS4 effector recognition complex. The RPS4 TIR domain activates effector-independent defense, which is inhibited by the RRS1 TIR domain through the heterodimerization interface. Thus, RPS4 and RRS1 function as a receptor complex in which the two components play distinct roles in recognition and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Simon J -- Sohn, Kee Hoon -- Wan, Li -- Bernoux, Maud -- Sarris, Panagiotis F -- Segonzac, Cecile -- Ve, Thomas -- Ma, Yan -- Saucet, Simon B -- Ericsson, Daniel J -- Casey, Lachlan W -- Lonhienne, Thierry -- Winzor, Donald J -- Zhang, Xiaoxiao -- Coerdt, Anne -- Parker, Jane E -- Dodds, Peter N -- Kobe, Bostjan -- Jones, Jonathan D G -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):299-303. doi: 10.1126/science.1247357.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744375" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium/physiology ; Amino Acid Motifs ; Arabidopsis/chemistry/*immunology/microbiology ; Arabidopsis Proteins/*chemistry/genetics/metabolism ; Bacterial Proteins/immunology/metabolism ; Cell Death ; Crystallography, X-Ray ; Immunity, Innate ; Models, Molecular ; Mutation ; Plant Diseases/immunology/microbiology ; Plant Leaves/microbiology ; Plant Proteins/*chemistry/genetics/metabolism ; Plants, Genetically Modified ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Immunologic/*chemistry/genetics/metabolism ; Signal Transduction ; Tobacco/genetics/immunology/metabolism/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-05-31
    Description: N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113085/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karakas, Erkan -- Furukawa, Hiro -- MH085926/MH/NIMH NIH HHS/ -- R01 GM105730/GM/NIGMS NIH HHS/ -- R01 MH085926/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. ; Cold Spring Harbor Laboratory, W. M. Keck Structural Biology Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA. furukawa@cshl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876489" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calcium/chemistry/metabolism ; Crystallography, X-Ray ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, N-Methyl-D-Aspartate/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-10-04
    Description: Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clevers, Hans -- Loh, Kyle M -- Nusse, Roel -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):1248012. doi: 10.1126/science.1248012. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Centre Utrecht and CancerGenomics.nl, 3584CT Utrecht, Netherlands. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. ; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA. rnusse@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/physiology ; Cell Division ; Hair Follicle/physiology ; Humans ; Intestines/physiology ; Mammary Glands, Human/physiology ; Regeneration/genetics/*physiology ; Signal Transduction ; Stem Cell Niche/physiology ; Stem Cells/cytology/metabolism/*physiology ; Transcription, Genetic ; Wnt Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2014-04-20
    Description: Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayser, Matthew S -- Yue, Zhifeng -- Sehgal, Amita -- R25MH060490/MH/NIMH NIH HHS/ -- T32 HL007713/HL/NHLBI NIH HHS/ -- T32HL07713/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):269-74. doi: 10.1126/science.1250553.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744368" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arousal ; Brain/growth & development/physiology ; Courtship ; Dopamine/metabolism ; Dopaminergic Neurons/*physiology ; Drosophila/genetics/growth & development/*physiology ; Female ; Male ; Models, Animal ; Neural Pathways/physiology ; Olfactory Bulb/growth & development/physiology ; Sexual Behavior, Animal ; Signal Transduction ; *Sleep ; Sleep Deprivation ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-03-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1194-7. doi: 10.1126/science.343.6176.1194.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626911" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria ; Beetles ; Cough/microbiology ; Humans ; Plant Leaves ; Rats ; Skin ; Sneezing ; Surface Tension ; Viruses ; Water/*chemistry ; *Wettability
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-07-19
    Description: Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Munoz, Elena -- Arboleda-Estudillo, Yohanna -- Otu, Hasan H -- Cibelli, Jose B -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):822-5. doi: 10.1126/science.1254745. Epub 2014 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. ; Department of Genetics and Bioengineering, Istanbul Bilgi University 34060, Istanbul, Turkey. Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. ; LARCEL, Laboratorio Andaluz de Reprogramacion Celular, BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Andalucia, 29590, Spain. Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA. Department of Physiology, Michigan State University, East Lansing, MI 48824, USA. cibelli@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035411" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/*metabolism ; Cell Dedifferentiation ; Cell Differentiation ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology/physiology ; Fibroblasts/cytology/physiology ; Growth Differentiation Factor 9/metabolism ; Histone Chaperones/genetics/*metabolism ; Histones/metabolism ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Metaphase ; Octamer Transcription Factor-3/metabolism ; Oocytes/cytology/physiology ; Signal Transduction ; Transcriptional Activation ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-10-25
    Description: Cellular circuits sense the environment, process signals, and compute decisions using networks of interacting proteins. To model such a system, the abundance of each activated protein species can be described as a stochastic function of the abundance of other proteins. High-dimensional single-cell technologies, such as mass cytometry, offer an opportunity to characterize signaling circuit-wide. However, the challenge of developing and applying computational approaches to interpret such complex data remains. Here, we developed computational methods, based on established statistical concepts, to characterize signaling network relationships by quantifying the strengths of network edges and deriving signaling response functions. In comparing signaling between naive and antigen-exposed CD4(+) T lymphocytes, we find that although these two cell subtypes had similarly wired networks, naive cells transmitted more information along a key signaling cascade than did antigen-exposed cells. We validated our characterization on mice lacking the extracellular-regulated mitogen-activated protein kinase (MAPK) ERK2, which showed stronger influence of pERK on pS6 (phosphorylated-ribosomal protein S6), in naive cells as compared with antigen-exposed cells, as predicted. We demonstrate that by using cell-to-cell variation inherent in single-cell data, we can derive response functions underlying molecular circuits and drive the understanding of how cells process signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4334155/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krishnaswamy, Smita -- Spitzer, Matthew H -- Mingueneau, Michael -- Bendall, Sean C -- Litvin, Oren -- Stone, Erica -- Pe'er, Dana -- Nolan, Garry P -- 1K01DK095008/DK/NIDDK NIH HHS/ -- 1R01CA130826/CA/NCI NIH HHS/ -- 1U54CA121852-01A1/CA/NCI NIH HHS/ -- CA 09-011/CA/NCI NIH HHS/ -- HHSN268201000034C/HV/NHLBI NIH HHS/ -- HHSN272200700038C/PHS HHS/ -- HV-10-05/HV/NHLBI NIH HHS/ -- K01 DK095008/DK/NIDDK NIH HHS/ -- P01 CA034233/CA/NCI NIH HHS/ -- R00 GM104148/GM/NIGMS NIH HHS/ -- R01 CA130826/CA/NCI NIH HHS/ -- S10RR027582-01/RR/NCRR NIH HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U19 AI100627/AI/NIAID NIH HHS/ -- U54 CA149145/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1250689. doi: 10.1126/science.1250689. Epub 2014 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. ; Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA. ; Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. ; Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA. ; Department of Biological Sciences, Department of Systems Biology, Columbia University, New York, NY, USA. dpeer@biology.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25342659" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology ; Computer Simulation ; Image Cytometry ; Male ; Mice ; Mice, Mutant Strains ; Mitogen-Activated Protein Kinase 1/genetics ; Receptors, Antigen, T-Cell/*metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction ; Single-Cell Analysis/*methods ; Systems Biology/*methods ; eIF-2 Kinase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-03-01
    Description: Auxin-binding protein 1 (ABP1) was discovered nearly 40 years ago and was shown to be essential for plant development and morphogenesis, but its mode of action remains unclear. Here, we report that the plasma membrane-localized transmembrane kinase (TMK) receptor-like kinases interact with ABP1 and transduce auxin signal to activate plasma membrane-associated ROPs [Rho-like guanosine triphosphatases (GTPase) from plants], leading to changes in the cytoskeleton and the shape of leaf pavement cells in Arabidopsis. The interaction between ABP1 and TMK at the cell surface is induced by auxin and requires ABP1 sensing of auxin. These findings show that TMK proteins and ABP1 form a cell surface auxin perception complex that activates ROP signaling pathways, regulating nontranscriptional cytoplasmic responses and associated fundamental processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4166562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Tongda -- Dai, Ning -- Chen, Jisheng -- Nagawa, Shingo -- Cao, Min -- Li, Hongjiang -- Zhou, Zimin -- Chen, Xu -- De Rycke, Riet -- Rakusova, Hana -- Wang, Wuyi -- Jones, Alan M -- Friml, Jiri -- Patterson, Sara E -- Bleecker, Anthony B -- Yang, Zhenbiao -- GM065989/GM/NIGMS NIH HHS/ -- GM081451/GM/NIGMS NIH HHS/ -- R01 GM081451/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1025-8. doi: 10.1126/science.1245125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578577" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*enzymology/genetics ; Cell Membrane/*enzymology ; Indoleacetic Acids/*metabolism ; Plant Leaves/enzymology/genetics ; Plant Proteins/*metabolism ; Protein Kinases/genetics/*metabolism ; Receptors, Cell Surface/*metabolism ; Signal Transduction ; rho GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-01-18
    Description: Btk29A is the Drosophila ortholog of the mammalian Bruton's tyrosine kinase (Btk), mutations of which in humans cause a heritable immunodeficiency disease. Btk29A mutations stabilized the proliferating cystoblast fate, leading to an ovarian tumor. This phenotype was rescued by overexpression of wild-type Btk29A and phenocopied by the interference of Wnt4-beta-catenin signaling or its putative downstream nuclear protein Piwi in somatic escort cells. Btk29A and mammalian Btk directly phosphorylated tyrosine residues of beta-catenin, leading to the up-regulation of its transcriptional activity. Thus, we identify a transcriptional switch involving the kinase Btk29A/Btk and its phosphorylation target, beta-catenin, which functions downstream of Wnt4 in escort cells to terminate Drosophila germ cell proliferation through up-regulation of piwi expression. This signaling mechanism likely represents a versatile developmental switch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada-Kawaguchi, Noriko -- Nore, Beston F -- Kuwada, Yusuke -- Smith, C I Edvard -- Yamamoto, Daisuke -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):294-7. doi: 10.1126/science.1244512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Neurosciences, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436419" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/*biosynthesis ; *Cell Proliferation ; DNA Breaks, Double-Stranded ; Drosophila Proteins/*biosynthesis/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; Genomic Instability ; Germ Cells/cytology/metabolism/*physiology ; Glycoproteins/genetics/*metabolism ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Signal Transduction ; Transcription, Genetic ; Tyrosine/genetics/metabolism ; Up-Regulation ; Wnt Proteins/genetics/*metabolism ; beta Catenin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-07-19
    Description: Cytoplasmic dynein is a molecular motor that transports a large variety of cargoes (e.g., organelles, messenger RNAs, and viruses) along microtubules over long intracellular distances. The dynactin protein complex is important for dynein activity in vivo, but its precise role has been unclear. Here, we found that purified mammalian dynein did not move processively on microtubules in vitro. However, when dynein formed a complex with dynactin and one of four different cargo-specific adapter proteins, the motor became ultraprocessive, moving for distances similar to those of native cargoes in living cells. Thus, we propose that dynein is largely inactive in the cytoplasm and that a variety of adapter proteins activate processive motility by linking dynactin to dynein only when the motor is bound to its proper cargo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKenney, Richard J -- Huynh, Walter -- Tanenbaum, Marvin E -- Bhabha, Gira -- Vale, Ronald D -- F32GM096484/GM/NIGMS NIH HHS/ -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01GM097312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):337-41. doi: 10.1126/science.1254198. Epub 2014 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. vale@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cytoplasmic Dyneins/chemistry/*metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/*metabolism ; Microtubules/chemistry/*metabolism ; Motion ; Protein Transport ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-04-26
    Description: Light is a source of energy and also a regulator of plant physiological adaptations. We show here that light/dark conditions affect alternative splicing of a subset of Arabidopsis genes preferentially encoding proteins involved in RNA processing. The effect requires functional chloroplasts and is also observed in roots when the communication with the photosynthetic tissues is not interrupted, suggesting that a signaling molecule travels through the plant. Using photosynthetic electron transfer inhibitors with different mechanisms of action, we deduce that the reduced pool of plastoquinones initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing and is necessary for proper plant responses to varying light conditions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4382720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrillo, Ezequiel -- Godoy Herz, Micaela A -- Fuchs, Armin -- Reifer, Dominik -- Fuller, John -- Yanovsky, Marcelo J -- Simpson, Craig -- Brown, John W S -- Barta, Andrea -- Kalyna, Maria -- Kornblihtt, Alberto R -- BB/G024979/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- P 26333/Austrian Science Fund FWF/Austria -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):427-30. doi: 10.1126/science.1250322. Epub 2014 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio de Fisiologia y Biologia Molecular, Departamento de Fisiologia, Biologia Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 2, C1428EHA Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763593" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Cell Nucleus/genetics ; Chloroplasts/*metabolism ; Circadian Clocks ; Dibromothymoquinone/pharmacology ; Diuron/pharmacology ; Electron Transport/drug effects ; *Gene Expression Regulation, Plant ; Light ; Models, Biological ; Oxidation-Reduction ; Photosynthesis/drug effects ; Plant Leaves/metabolism ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plastoquinone/*metabolism ; RNA Stability ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Seedlings/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-08-12
    Description: Ionotropic glutamate receptors (iGluRs) mediate most excitatory neurotransmission in the central nervous system and function by opening their ion channel in response to binding of agonist glutamate. Here, we report a structure of a homotetrameric rat GluA2 receptor in complex with partial agonist (S)-5-nitrowillardiine. Comparison of this structure with the closed-state structure in complex with competitive antagonist ZK 200775 suggests conformational changes that occur during iGluR gating. Guided by the structures, we engineered disulfide cross-links to probe domain interactions that are important for iGluR gating events. The combination of structural information, kinetic modeling, and biochemical and electrophysiological experiments provides insight into the mechanism of iGluR gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yelshanskaya, Maria V -- Li, Minfen -- Sobolevsky, Alexander I -- NS083660/NS/NINDS NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R01 NS083660/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1070-4. doi: 10.1126/science.1256508. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA. as4005@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103407" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cross-Linking Reagents/chemistry ; Crystallography, X-Ray ; Cysteine/chemistry ; Glutamic Acid/pharmacology ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Chemical ; Organophosphonates/chemistry/pharmacology ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pyrimidinones/*pharmacology ; Quinoxalines/chemistry/pharmacology ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-01-25
    Description: Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ray, Saikat -- Naumann, Robert -- Burgalossi, Andrea -- Tang, Qiusong -- Schmidt, Helene -- Brecht, Michael -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):891-6. doi: 10.1126/science.1243028. Epub 2014 Jan 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Philippstrasse 13 Haus 6, 10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24457213" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Calbindins/analysis/metabolism ; Dendrites/physiology ; Dentate Gyrus/physiology ; Entorhinal Cortex/*cytology/metabolism/physiology ; Female ; Male ; *Nerve Net ; Pyramidal Cells/metabolism/*physiology/*ultrastructure ; Rats ; Rats, Wistar ; Staining and Labeling ; *Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-08-16
    Description: The rules governing the formation of spatial maps in the hippocampus have not been determined. We investigated the large-scale structure of place field activity by recording hippocampal neurons in rats exploring a previously unencountered 48-meter-long track. Single-cell and population activities were well described by a two-parameter stochastic model. Individual neurons had their own characteristic propensity for forming fields randomly along the track, with some cells expressing many fields and many exhibiting few or none. Because of the particular distribution of propensities across cells, the number of neurons with fields scaled logarithmically with track length over a wide, ethological range. These features constrain hippocampal memory mechanisms, may allow efficient encoding of environments and experiences of vastly different extents and durations, and could reflect general principles of population coding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rich, P Dylan -- Liaw, Hua-Peng -- Lee, Albert K -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 15;345(6198):814-7. doi: 10.1126/science.1255635. Epub 2014 Aug 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK. richp@janelia.hhmi.org leea@janelia.hhmi.org. ; Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. ; Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. richp@janelia.hhmi.org leea@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25124440" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; CA1 Region, Hippocampal/cytology/*physiology ; Electrodes, Implanted ; Exploratory Behavior ; Male ; Maze Learning ; Memory/physiology ; Orientation ; Poisson Distribution ; Pyramidal Cells/*physiology ; Rats ; Rats, Long-Evans ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-05-09
    Description: Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being rediscovered as regulators of several diseases, including cancer. Here we show that in mice, mammary tumor growth induces the accumulation of tumor-associated macrophages (TAMs) that are phenotypically and functionally distinct from mammary tissue macrophages (MTMs). TAMs express the adhesion molecule Vcam1 and proliferate upon their differentiation from inflammatory monocytes, but do not exhibit an "alternatively activated" phenotype. TAM terminal differentiation depends on the transcriptional regulator of Notch signaling, RBPJ; and TAM, but not MTM, depletion restores tumor-infiltrating cytotoxic T cell responses and suppresses tumor growth. These findings reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franklin, Ruth A -- Liao, Will -- Sarkar, Abira -- Kim, Myoungjoo V -- Bivona, Michael R -- Liu, Kang -- Pamer, Eric G -- Li, Ming O -- AI101251/AI/NIAID NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI101251/AI/NIAID NIH HHS/ -- R37 AI039031/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 May 23;344(6186):921-5. doi: 10.1126/science.1252510. Epub 2014 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA. ; New York Genome Center, New York, NY 10022, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. ; Department of Microbiology and Immunology, Columbia University, New York, NY 10032, USA. ; Immunology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. lim@mskcc.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812208" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line, Tumor ; Cell Proliferation ; Female ; Inflammation/immunology/pathology ; Macrophages/*immunology ; Mammary Neoplasms, Animal/*immunology/*pathology ; Mice ; Mice, Inbred C57BL ; Monocyte-Macrophage Precursor Cells/immunology ; Receptors, Notch/metabolism ; Signal Transduction ; Vascular Cell Adhesion Molecule-1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-02-08
    Description: The distance between Ca(2+) channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca(2+) chelator BAPTA [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca(2+) channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca(2+) buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vyleta, Nicholas P -- Jonas, Peter -- New York, N.Y. -- Science. 2014 Feb 7;343(6171):665-70. doi: 10.1126/science.1244811.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24503854" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA3 Region, Hippocampal/metabolism/physiology ; Calcium Channels/*metabolism ; Chelating Agents/pharmacology ; Egtazic Acid/analogs & derivatives/pharmacology ; Hippocampus/drug effects/metabolism/*physiology ; Mossy Fibers, Hippocampal/drug effects/metabolism/physiology ; Neuronal Plasticity/drug effects/*physiology ; Rats ; Synapses/drug effects/metabolism/*physiology ; Synaptic Transmission/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-06-14
    Description: The brain exhibits limited capacity for spontaneous restoration of lost motor functions after stroke. Rehabilitation is the prevailing clinical approach to augment functional recovery, but the scientific basis is poorly understood. Here, we show nearly full recovery of skilled forelimb functions in rats with large strokes when a growth-promoting immunotherapy against a neurite growth-inhibitory protein was applied to boost the sprouting of new fibers, before stabilizing the newly formed circuits by intensive training. In contrast, early high-intensity training during the growth phase destroyed the effect and led to aberrant fiber patterns. Pharmacogenetic experiments identified a subset of corticospinal fibers originating in the intact half of the forebrain, side-switching in the spinal cord to newly innervate the impaired limb and restore skilled motor function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wahl, A S -- Omlor, W -- Rubio, J C -- Chen, J L -- Zheng, H -- Schroter, A -- Gullo, M -- Weinmann, O -- Kobayashi, K -- Helmchen, F -- Ommer, B -- Schwab, M E -- New York, N.Y. -- Science. 2014 Jun 13;344(6189):1250-5. doi: 10.1126/science.1253050.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. Brain Research Institute, University of Zurich, Zurich, Switzerland. schwab@hifo.uzh.ch wahl@hifo.uzh.ch. ; Brain Research Institute, University of Zurich, Zurich, Switzerland. ; Computer Vision Group, Heidelberg Collaboratory for Image Processing and Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany. ; Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland. ; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. Brain Research Institute, University of Zurich, Zurich, Switzerland. ; National Institute for Physiological Sciences, National Institute of Natural Sciences Myodaiji, Okazaki, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24926013" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Immunotherapy/methods ; Motor Cortex/*physiopathology ; Myelin Proteins/*antagonists & inhibitors ; Physical Conditioning, Animal ; Prosencephalon/physiopathology ; Pyramidal Tracts/*injuries/*physiology ; Rats ; Rats, Long-Evans ; *Recovery of Function ; Stroke/*rehabilitation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-08-12
    Description: AMPA-sensitive glutamate receptors are crucial to the structural and dynamic properties of the brain, to the development and function of the central nervous system, and to the treatment of neurological conditions from depression to cognitive impairment. However, the molecular principles underlying AMPA receptor activation have remained elusive. We determined multiple x-ray crystal structures of the GluA2 AMPA receptor in complex with a Conus striatus cone snail toxin, a positive allosteric modulator, and orthosteric agonists, at 3.8 to 4.1 angstrom resolution. We show how the toxin acts like a straightjacket on the ligand-binding domain (LBD) "gating ring," restraining the domains via both intra- and interdimer cross-links such that agonist-induced closure of the LBD "clamshells" is transduced into an irislike expansion of the gating ring. By structural analysis of activation-enhancing mutants, we show how the expansion of the LBD gating ring results in pulling forces on the M3 helices that, in turn, are coupled to ion channel gating.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263349/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Lei -- Durr, Katharina L -- Gouaux, Eric -- F32 MH100331/MH/NIMH NIH HHS/ -- F32MH100331/MH/NIMH NIH HHS/ -- R01 NS038631/NS/NINDS NIH HHS/ -- R37 NS038631/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1021-6. doi: 10.1126/science.1258409. Epub 2014 Aug 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. ; Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. gouauxe@ohsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25103405" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Conotoxins/*chemistry ; Conus Snail ; Crystallography, X-Ray ; *Ion Channel Gating ; Ligands ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/*agonists/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-05-09
    Description: Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Agarwal, Gautam -- Stevenson, Ian H -- Berenyi, Antal -- Mizuseki, Kenji -- Buzsaki, Gyorgy -- Sommer, Friedrich T -- 1F32MH093048/MH/NIMH NIH HHS/ -- 337075/European Research Council/International -- MH-54671/MH/NIMH NIH HHS/ -- NS-034994/NS/NINDS NIH HHS/ -- NS074015/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2014 May 9;344(6184):626-30. doi: 10.1126/science.1250444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Redwood Center for Theoretical Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24812401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hippocampus/cytology/*physiology ; Maze Learning ; Neurons/physiology ; Periodicity ; Rats ; Running ; Spatio-Temporal Analysis ; Synaptic Potentials/*physiology ; Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-12-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Servick, Kelly -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1161-2. doi: 10.1126/science.346.6214.1161.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477435" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Non-Narcotic/adverse effects ; Anesthesia/*adverse effects ; Anesthetics, Dissociative/adverse effects ; Animals ; Apoptosis/drug effects ; Brain/*drug effects/*growth & development ; Caenorhabditis elegans ; Child ; Child, Preschool ; Dexmedetomidine/adverse effects ; Humans ; Infant ; Ketamine/adverse effects ; Models, Animal ; Neurons/*drug effects ; Rats ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors ; United States ; United States Food and Drug Administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-05-17
    Description: Cellular membranes act as signaling platforms and control solute transport. Membrane receptors, transporters, and enzymes communicate with intracellular processes through protein-protein interactions. Using a split-ubiquitin yeast two-hybrid screen that covers a test-space of 6.4 x 10(6) pairs, we identified 12,102 membrane/signaling protein interactions from Arabidopsis. Besides confirmation of expected interactions such as heterotrimeric G protein subunit interactions and aquaporin oligomerization, 〉99% of the interactions were previously unknown. Interactions were confirmed at a rate of 32% in orthogonal in planta split-green flourescent protein interaction assays, which was statistically indistinguishable from the confirmation rate for known interactions collected from literature (38%). Regulatory associations in membrane protein trafficking, turnover, and phosphorylation include regulation of potassium channel activity through abscisic acid signaling, transporter activity by a WNK kinase, and a brassinolide receptor kinase by trafficking-related proteins. These examples underscore the utility of the membrane/signaling protein interaction network for gene discovery and hypothesis generation in plants and other organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Alexander M -- Xuan, Yuanhu -- Xu, Meng -- Wang, Rui-Sheng -- Ho, Cheng-Hsun -- Lalonde, Sylvie -- You, Chang Hun -- Sardi, Maria I -- Parsa, Saman A -- Smith-Valle, Erika -- Su, Tianying -- Frazer, Keith A -- Pilot, Guillaume -- Pratelli, Rejane -- Grossmann, Guido -- Acharya, Biswa R -- Hu, Heng-Cheng -- Engineer, Cawas -- Villiers, Florent -- Ju, Chuanli -- Takeda, Kouji -- Su, Zhao -- Dong, Qunfeng -- Assmann, Sarah M -- Chen, Jin -- Kwak, June M -- Schroeder, Julian I -- Albert, Reka -- Rhee, Seung Y -- Frommer, Wolf B -- New York, N.Y. -- Science. 2014 May 16;344(6185):711-6. doi: 10.1126/science.1251358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. ; Department of Physics, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic University and State University, Blacksburg, VA 24061, USA. ; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Cell and Developmental Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. Center for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea. ; Department of Plant Biology, Carnegie Institution for Science, CA 94305, USA. wfrommer@stanford.edu srhee@carnegiescience.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833385" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Membrane/*metabolism ; Membrane Proteins/genetics/*metabolism ; *Protein Interaction Maps ; Signal Transduction ; Two-Hybrid System Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-11-02
    Description: Neurotrophins regulate diverse aspects of neuronal development and plasticity, but their precise in vivo functions during neural circuit assembly in the central brain remain unclear. We show that the neurotrophin receptor tropomyosin-related kinase C (TrkC) is required for dendritic growth and branching of mouse cerebellar Purkinje cells. Sparse TrkC knockout reduced dendrite complexity, but global Purkinje cell knockout had no effect. Removal of the TrkC ligand neurotrophin-3 (NT-3) from cerebellar granule cells, which provide major afferent input to developing Purkinje cell dendrites, rescued the dendrite defects caused by sparse TrkC disruption in Purkinje cells. Our data demonstrate that NT-3 from presynaptic neurons (granule cells) is required for TrkC-dependent competitive dendrite morphogenesis in postsynaptic neurons (Purkinje cells)--a previously unknown mechanism of neural circuit development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, William -- Hippenmeyer, Simon -- Luo, Liqun -- 5 F31 NS071697/NS/NINDS NIH HHS/ -- F31 NS071697/NS/NINDS NIH HHS/ -- R01 NS050835/NS/NINDS NIH HHS/ -- R01-NS050835/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):626-9. doi: 10.1126/science.1258996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA. Neurosciences Program, Stanford University, Stanford, CA 94305, USA. lluo@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359972" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nerve Net/cytology/*growth & development ; *Neurogenesis ; Neurotrophin 3/*metabolism ; Purkinje Cells/*cytology/metabolism ; Receptor, trkC/genetics/*metabolism ; Signal Transduction ; Synapses/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-09-23
    Description: The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively valenced events. Its hyperactivity is associated with depression. Although enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that gamma-aminobutyric acid (GABA) is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted toward reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this form of transmission may be important for determining the effect of negative life events on mood and behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shabel, Steven J -- Proulx, Christophe D -- Piriz, Joaquin -- Malinow, Roberto -- NS047101/NS/NINDS NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 19;345(6203):1494-8. doi: 10.1126/science.1250469. Epub 2014 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA. sshabel@gmail.com. ; Center for Neural Circuits and Behavior, Department of Neuroscience and Section of Neurobiology, Division of Biology, University of California at San Diego, San Diego, CA, USA. ; Grupo de Neurociencia de Sistemas, Instituto de Fisiologia y Biofisica Houssay (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25237099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/*pharmacology ; Depression/*metabolism ; Entopeduncular Nucleus/drug effects/metabolism ; Glutamate Decarboxylase/metabolism ; Glutamic Acid/*metabolism ; Habenula/*drug effects/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/metabolism ; Rats ; Rats, Sprague-Dawley ; Rhodopsin/genetics ; Synaptic Transmission/drug effects/*physiology ; Vesicular Glutamate Transport Protein 2/metabolism ; gamma-Aminobutyric Acid/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-11-29
    Description: The capacity of human norovirus (NoV), which causes 〉90% of global epidemic nonbacterial gastroenteritis, to infect a subset of people persistently may contribute to its spread. How such enteric viruses establish persistent infections is not well understood. We found that antibiotics prevented persistent murine norovirus (MNoV) infection, an effect that was reversed by replenishment of the bacterial microbiota. Antibiotics did not prevent tissue infection or affect systemic viral replication but acted specifically in the intestine. The receptor for the antiviral cytokine interferon-lambda, Ifnlr1, as well as the transcription factors Stat1 and Irf3, were required for antibiotics to prevent viral persistence. Thus, the bacterial microbiome fosters enteric viral persistence in a manner counteracted by specific components of the innate immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4409937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldridge, Megan T -- Nice, Timothy J -- McCune, Broc T -- Yokoyama, Christine C -- Kambal, Amal -- Wheadon, Michael -- Diamond, Michael S -- Ivanova, Yulia -- Artyomov, Maxim -- Virgin, Herbert W -- 1F31CA177194/CA/NCI NIH HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):266-9. doi: 10.1126/science.1258025. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431490" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; Caliciviridae Infections/drug therapy/immunology/microbiology/*virology ; Cytokines/*physiology ; Female ; Gastroenteritis/drug therapy/immunology/microbiology/*virology ; Intestines/*microbiology/virology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; *Microbiota/drug effects ; Norovirus/immunology/*physiology ; Receptors, Cytokine/genetics/metabolism ; Signal Transduction ; *Symbiosis ; Viral Load ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-31
    Description: Invasion of microbial DNA into the cytoplasm of animal cells triggers a cascade of host immune reactions that help clear the infection; however, self DNA in the cytoplasm can cause autoimmune diseases. Biochemical approaches led to the identification of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) as a cytosolic DNA sensor that triggers innate immune responses. Here, we show that cells from cGAS-deficient (cGas(-/-)) mice, including fibroblasts, macrophages, and dendritic cells, failed to produce type I interferons and other cytokines in response to DNA transfection or DNA virus infection. cGas(-/-) mice were more susceptible to lethal infection with herpes simplex virus 1 (HSV1) than wild-type mice. We also show that cGAMP is an adjuvant that boosts antigen-specific T cell activation and antibody production in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Xiao-Dong -- Wu, Jiaxi -- Gao, Daxing -- Wang, Hua -- Sun, Lijun -- Chen, Zhijian J -- 5T32AI070116/AI/NIAID NIH HHS/ -- AI-093967/AI/NIAID NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Sep 20;341(6152):1390-4. doi: 10.1126/science.1244040. Epub 2013 Aug 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23989956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/biosynthesis ; DNA, Viral/genetics/immunology ; Dendritic Cells/immunology ; Fibroblasts/immunology ; Herpes Simplex/*immunology ; *Herpesvirus 1, Human ; Interferon Regulatory Factor-3/genetics ; Interferon-beta/*biosynthesis/genetics ; Lymphocyte Activation ; Macrophages/immunology ; Mice ; Mice, Knockout ; Nucleotidyltransferases/genetics/*immunology ; Signal Transduction ; T-Lymphocytes/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1440-1. doi: 10.1126/science.342.6165.1440-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/administration & dosage ; Fusobacterium/physiology ; Gastrointestinal Tract/*microbiology ; *Health ; Humans ; Infant ; Infant Formula/chemistry ; Kidney/metabolism ; Kidney Calculi/chemically induced/etiology ; Klebsiella/drug effects/metabolism ; Malnutrition/microbiology ; Neoplasms/microbiology ; Rats ; Triazines/metabolism/toxicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1434-5. doi: 10.1126/science.342.6165.1434-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357285" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/genetics/metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/genetics ; Genetic Diseases, Inborn/*surgery ; Genetic Therapy/*methods ; Humans ; Mice ; Microsurgery/*methods ; *RNA Editing ; RNA, Guide/genetics/metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-11-10
    Description: Environmental and hormonal signals cause reorganization of microtubule arrays in higher plants, but the mechanisms driving these transitions have remained elusive. The organization of these arrays is required to direct morphogenesis. We discovered that microtubule severing by the protein katanin plays a crucial and unexpected role in the reorientation of cortical arrays, as triggered by blue light. Imaging and genetic experiments revealed that phototropin photoreceptors stimulate katanin-mediated severing specifically at microtubule intersections, leading to the generation of new microtubules at these locations. We show how this activity serves as the basis for a mechanism that amplifies microtubules orthogonal to the initial array, thereby driving array reorientation. Our observations show how severing is used constructively to build a new microtubule array.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindeboom, Jelmer J -- Nakamura, Masayoshi -- Hibbel, Anneke -- Shundyak, Kostya -- Gutierrez, Ryan -- Ketelaar, Tijs -- Emons, Anne Mie C -- Mulder, Bela M -- Kirik, Viktor -- Ehrhardt, David W -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1245533. doi: 10.1126/science.1245533. Epub 2013 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24200811" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; Arabidopsis/genetics/growth & development/*metabolism/*ultrastructure ; Arabidopsis Proteins/genetics/*metabolism ; Hypocotyl/metabolism/ultrastructure ; Light ; Microtubules/*metabolism/ultrastructure ; Phosphoproteins/metabolism ; *Phototropism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-23
    Description: In many mammalian tissues, mature differentiated cells are replaced by self-renewing stem cells, either continuously during homeostasis or in response to challenge and injury. For example, hematopoietic stem cells generate all mature blood cells, including monocytes, which have long been thought to be the major source of tissue macrophages. Recently, however, major macrophage populations were found to be derived from embryonic progenitors and to renew independently of hematopoietic stem cells. This process may not require progenitors, as mature macrophages can proliferate in response to specific stimuli indefinitely and without transformation or loss of functional differentiation. These findings suggest that macrophages are mature differentiated cells that may have a self-renewal potential similar to that of stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sieweke, Michael H -- Allen, Judith E -- MR/J001929/1/Medical Research Council/United Kingdom -- MR/K01207X1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):1242974. doi: 10.1126/science.1242974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Universite, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24264994" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Proliferation ; Cytokines/metabolism ; Embryonic Stem Cells/cytology ; Humans ; Macrophages/*cytology ; Mice ; Monocytes/cytology ; Rats ; Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-10-05
    Description: Mitochondrial morphology is crucial for tissue homeostasis, but its role in cell differentiation is unclear. We found that mitochondrial fusion was required for proper cardiomyocyte development. Ablation of mitochondrial fusion proteins Mitofusin 1 and 2 in the embryonic mouse heart, or gene-trapping of Mitofusin 2 or Optic atrophy 1 in mouse embryonic stem cells (ESCs), arrested mouse heart development and impaired differentiation of ESCs into cardiomyocytes. Gene expression profiling revealed decreased levels of transcription factors transforming growth factor-beta/bone morphogenetic protein, serum response factor, GATA4, and myocyte enhancer factor 2, linked to increased Ca(2+)-dependent calcineurin activity and Notch1 signaling that impaired ESC differentiation. Orchestration of cardiomyocyte differentiation by mitochondrial morphology reveals how mitochondria, Ca(2+), and calcineurin interact to regulate Notch1 signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kasahara, Atsuko -- Cipolat, Sara -- Chen, Yun -- Dorn, Gerald W 2nd -- Scorrano, Luca -- GPP10005/Telethon/Italy -- R01 HL059888/HL/NHLBI NIH HHS/ -- R01 HL59888/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 8;342(6159):734-7. doi: 10.1126/science.1241359. Epub 2013 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24091702" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcineurin/*metabolism ; Calcineurin Inhibitors ; Cell Differentiation/genetics/*physiology ; GTP Phosphohydrolases/genetics/metabolism ; Gene Expression Profiling ; Heart/embryology ; Mice ; Mice, Knockout ; Mitochondrial Dynamics/genetics/*physiology ; Myocytes, Cardiac/*cytology/ultrastructure ; Receptor, Notch1/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-06-08
    Description: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Christian H -- Healey, Eleanor -- van Erp, Susan -- Bishop, Benjamin -- Tang, Chenxiang -- Gilbert, Robert J C -- Aricescu, A Radu -- Pasterkamp, R Jeroen -- Siebold, Christian -- 082301/Wellcome Trust/United Kingdom -- 083111/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 097301/Wellcome Trust/United Kingdom -- A14414/Cancer Research UK/United Kingdom -- G0700232/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):77-80. doi: 10.1126/science.1232322. Epub 2013 Jun 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. christian@strubi.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23744777" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biophysical Phenomena ; Cell Adhesion Molecules, Neuronal/*chemistry/genetics ; Conserved Sequence ; Crystallography, X-Ray ; Humans ; Membrane Proteins/*chemistry ; Mutation ; Oligopeptides/chemistry ; Protein Structure, Tertiary ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-11-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bendor, Daniel -- 1-K99-DC012321-01/DC/NIDCD NIH HHS/ -- 5R01MH061976/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):574. doi: 10.1126/science.1245966.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University College London, 26 Bedford Way, London WC1H 0AP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179215" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Hippocampus/*physiology ; Humans ; Memory/*physiology/*radiation effects ; Microelectrodes ; Rats ; Sleep Stages/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-06-01
    Description: Successive contrast effects, in which behavior is dependent on whether conditions are currently better or worse than they were before, are a striking illustration of the fact that animals evaluate the world in relative terms. Existing explanations for these effects are based on descriptive models of psychological and physiological processes, but little attention has been paid to the factors promoting their evolution. Using a simple and general optimality model, we show that contrast effects can result from an adaptive response to uncertainty in a changing, unpredictable world. A wide range of patterns of environmental change will select for sensitivity to past conditions, generating positive and negative contrast effects. Our analysis reveals the importance of incorporating uncertainty and environmental stochasticity into models of adaptive behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McNamara, John M -- Fawcett, Tim W -- Houston, Alasdair I -- New York, N.Y. -- Science. 2013 May 31;340(6136):1084-6. doi: 10.1126/science.1230599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Mathematics, University of Bristol, University Walk, Bristol, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723234" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; *Adaptation, Psychological ; Animals ; Cognition ; *Models, Psychological ; Rats ; *Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-05-04
    Description: The hippocampal cognitive map is thought to be driven by distal visual cues and self-motion cues. However, other sensory cues also influence place cells. Hence, we measured rat hippocampal activity in virtual reality (VR), where only distal visual and nonvestibular self-motion cues provided spatial information, and in the real world (RW). In VR, place cells showed robust spatial selectivity; however, only 20% were track active, compared with 45% in the RW. This indicates that distal visual and nonvestibular self-motion cues are sufficient to provide selectivity, but vestibular and other sensory cues present in RW are necessary to fully activate the place-cell population. In addition, bidirectional cells preferentially encoded distance along the track in VR, while encoding absolute position in RW. Taken together, these results suggest the differential contributions of these sensory cues in shaping the hippocampal population code. Theta frequency was reduced, and its speed dependence was abolished in VR, but phase precession was unaffected, constraining mechanisms governing both hippocampal theta oscillations and temporal coding. These results reveal cooperative and competitive interactions between sensory cues for control over hippocampal spatiotemporal selectivity and theta rhythm.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravassard, Pascal -- Kees, Ashley -- Willers, Bernard -- Ho, David -- Aharoni, Daniel -- Cushman, Jesse -- Aghajan, Zahra M -- Mehta, Mayank R -- 5R01MH092925-02/MH/NIMH NIH HHS/ -- R01 MH092925/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 14;340(6138):1342-6. doi: 10.1126/science.1232655. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Center for Neurophysics, Integrative Center for Learning and Memory, and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Mapping ; Cues ; Hippocampus/*physiology ; Male ; Rats ; Rats, Inbred LEC ; *Space Perception ; *Spatial Behavior ; Theta Rhythm ; *Time Perception ; User-Computer Interface
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-02-23
    Description: Cellular growth signals stimulate anabolic processes. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase that senses growth signals to regulate anabolic growth and proliferation. Activation of mTORC1 led to the acute stimulation of metabolic flux through the de novo pyrimidine synthesis pathway. mTORC1 signaling posttranslationally regulated this metabolic pathway via its downstream target ribosomal protein S6 kinase 1 (S6K1), which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase), the enzyme that catalyzes the first three steps of de novo pyrimidine synthesis. Growth signaling through mTORC1 thus stimulates the production of new nucleotides to accommodate an increase in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753690/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ben-Sahra, Issam -- Howell, Jessica J -- Asara, John M -- Manning, Brendan D -- F32 DK095508/DK/NIDDK NIH HHS/ -- F32-DK095508/DK/NIDDK NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01-CA120964/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30-CA006516/CA/NCI NIH HHS/ -- R01 CA122617/CA/NCI NIH HHS/ -- R01-CA122617/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 15;339(6125):1323-8. doi: 10.1126/science.1228792. Epub 2013 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23429703" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Animals ; Aspartate Carbamoyltransferase/*metabolism ; Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/*metabolism ; Dihydroorotase/*metabolism ; HeLa Cells ; Humans ; Mice ; Multiprotein Complexes/*metabolism ; Pyrimidines/*biosynthesis ; Ribosomal Protein S6 Kinases/*metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Tumor Suppressor Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-03-23
    Description: Toll-like receptor 7 (TLR7) and TLR8 recognize single-stranded RNA and initiate innate immune responses. Several synthetic agonists of TLR7-TLR8 display novel therapeutic potential; however, the molecular basis for ligand recognition and activation of signaling by TLR7 or TLR8 is largely unknown. In this study, the crystal structures of unliganded and ligand-induced activated human TLR8 dimers were elucidated. Ligand recognition was mediated by a dimerization interface formed by two protomers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C termini were brought into proximity. The loop between leucine-rich repeat 14 (LRR14) and LRR15 was cleaved; however, the N- and C-terminal halves remained associated and contributed to ligand recognition and dimerization. Thus, ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tanji, Hiromi -- Ohto, Umeharu -- Shibata, Takuma -- Miyake, Kensuke -- Shimizu, Toshiyuki -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1426-9. doi: 10.1126/science.1229159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23520111" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Imidazoles/chemistry/*metabolism ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Quinolines/chemistry/*metabolism ; Signal Transduction ; Thiazoles/chemistry/*metabolism ; Toll-Like Receptor 8/*agonists/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-10-26
    Description: The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Despite being surrounded by highly mitotic active cells, QC cells self-renew at a low proliferation rate. Here, we identified the ERF115 transcription factor as a rate-limiting factor of QC cell division, acting as a transcriptional activator of the phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/C(CCS52A2) ubiquitin ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Together, these two antagonistic mechanisms delimit ERF115 activity, which is called upon when surrounding stem cells are damaged, revealing a cell cycle regulatory mechanism accounting for stem cell niche longevity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heyman, Jefri -- Cools, Toon -- Vandenbussche, Filip -- Heyndrickx, Ken S -- Van Leene, Jelle -- Vercauteren, Ilse -- Vanderauwera, Sandy -- Vandepoele, Klaas -- De Jaeger, Geert -- Van Der Straeten, Dominique -- De Veylder, Lieven -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):860-3. doi: 10.1126/science.1240667. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158907" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome/metabolism ; Arabidopsis/*cytology/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Cell Cycle/genetics/physiology ; Cell Cycle Proteins/metabolism ; Cell Division/genetics/*physiology ; Mitosis/genetics/physiology ; Peptide Hormones/genetics/metabolism ; Plant Roots/*cytology/*growth & development ; Proteolysis ; Signal Transduction ; Stem Cell Niche ; Stem Cells/*physiology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-04-20
    Description: Both bats and rats exhibit grid cells in medial entorhinal cortex that fire as they visit a regular array of spatial locations. In rats, grid-cell firing field properties correlate with theta-frequency rhythmicity of spiking and membrane-potential resonance; however, bat grid cells do not exhibit theta rhythmic spiking, generating controversy over the role of theta rhythm. To test whether this discrepancy reflects differences in rhythmicity at a cellular level, we performed whole-cell patch recordings from entorhinal neurons in both species to record theta-frequency resonance. Bat neurons showed no theta-frequency resonance, suggesting grid-cell coding via different mechanisms in bats and rats or lack of theta rhythmic contributions to grid-cell firing in either species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heys, James G -- MacLeod, Katrina M -- Moss, Cynthia F -- Hasselmo, Michael E -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):363-7. doi: 10.1126/science.1233831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program for Neuroscience, Center for Memory and Brain, Boston University, 2 Cummington Street, Boston, MA 02215, USA. jimheys@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chiroptera ; Entorhinal Cortex/cytology/*physiology ; Female ; Male ; Membrane Potentials ; Models, Neurological ; Neurons/cytology/*physiology ; Patch-Clamp Techniques ; Rats ; Rats, Long-Evans ; *Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-04-06
    Description: We used a combined optogenetic-electrophysiological strategy to determine the functional identity of entorhinal cells with output to the place-cell population in the hippocampus. Channelrhodopsin-2 (ChR2) was expressed selectively in the hippocampus-targeting subset of entorhinal projection neurons by infusing retrogradely transportable ChR2-coding recombinant adeno-associated virus in the hippocampus. Virally transduced ChR2-expressing cells were identified in medial entorhinal cortex as cells that fired at fixed minimal latencies in response to local flashes of light. A large number of responsive cells were grid cells, but short-latency firing was also induced in border cells and head-direction cells, as well as cells with irregular or nonspatial firing correlates, which suggests that place fields may be generated by convergence of signals from a broad spectrum of entorhinal functional cell types.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Sheng-Jia -- Ye, Jing -- Miao, Chenglin -- Tsao, Albert -- Cerniauskas, Ignas -- Ledergerber, Debora -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):1232627. doi: 10.1126/science.1232627.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway. sheng-jia.zhang@ntnu.no〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; CA1 Region, Hippocampal/cytology/physiology ; *Cell Communication ; Dependovirus ; Entorhinal Cortex/cytology/*physiology ; Gene Targeting ; Hippocampus/cytology/*physiology ; Neurons/*physiology ; Photic Stimulation ; Rats ; Rhodopsin/biosynthesis/genetics ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-03
    Description: Robust transmission of information despite the presence of variation is a fundamental problem in cellular functions. However, the capability and characteristics of information transmission in signaling pathways remain poorly understood. We describe robustness and compensation of information transmission of signaling pathways at the cell population level. We calculated the mutual information transmitted through signaling pathways for the growth factor-mediated gene expression. Growth factors appeared to carry only information sufficient for a binary decision. Information transmission was generally more robust than average signal intensity despite pharmacological perturbations, and compensation of information transmission occurred. Information transmission to the biological output of neurite extension appeared robust. Cells may use information entropy as information so that messages can be robustly transmitted despite variation in molecular activities among individual cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uda, Shinsuke -- Saito, Takeshi H -- Kudo, Takamasa -- Kokaji, Toshiya -- Tsuchiya, Takaho -- Kubota, Hiroyuki -- Komori, Yasunori -- Ozaki, Yu-ichi -- Kuroda, Shinya -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):558-61. doi: 10.1126/science.1234511.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Early Growth Response Protein 1/metabolism ; Gene Expression/drug effects ; *Information Theory ; Intercellular Signaling Peptides and Proteins/pharmacology ; PC12 Cells ; Proto-Oncogene Proteins c-fos/metabolism ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-04-13
    Description: Scaffold-assisted signaling cascades guide cellular decision-making. In budding yeast, one such signal transduction pathway called the mitotic exit network (MEN) governs the transition from mitosis to the G1 phase of the cell cycle. The MEN is conserved and in metazoans is known as the Hippo tumor-suppressor pathway. We found that signaling through the MEN kinase cascade was mediated by an unusual two-step process. The MEN kinase Cdc15 first phosphorylated the scaffold Nud1. This created a phospho-docking site on Nud1, to which the effector kinase complex Dbf2-Mob1 bound through a phosphoserine-threonine binding domain, in order to be activated by Cdc15. This mechanism of pathway activation has implications for signal transmission through other kinase cascades and might represent a general principle in scaffold-assisted signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3884217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, Jeremy M -- Lim, Daniel -- Stach, Lasse -- Ogrodowicz, Roksana W -- Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Yates, John R 3rd -- Winey, Mark -- Smerdon, Stephen J -- Yaffe, Michael B -- Amon, Angelika -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM056800/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MC_U117584228/Medical Research Council/United Kingdom -- P30 CA014051/CA/NCI NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 ES015339/ES/NIEHS NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM056800/GM/NIGMS NIH HHS/ -- R29 GM056800/GM/NIGMS NIH HHS/ -- U117584228/Medical Research Council/United Kingdom -- U54 CA112967/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):871-5. doi: 10.1126/science.1235822. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579499" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Cell Cycle Proteins/chemistry/*metabolism ; Deoxyribonucleases/chemistry/*metabolism ; Enzyme Activation ; GTP-Binding Proteins/*metabolism ; *Mitosis ; Phosphoproteins/chemistry/*metabolism ; Phosphorylation ; Protein Conformation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/cytology/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Signal Transduction ; tRNA Methyltransferases/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-02-23
    Description: Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3966479/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodriguez, Pia L -- Harada, Takamasa -- Christian, David A -- Pantano, Diego A -- Tsai, Richard K -- Discher, Dennis E -- 8UL1TR000003/TR/NCATS NIH HHS/ -- P01-DK032094/DK/NIDDK NIH HHS/ -- P30-DK090969/DK/NIDDK NIH HHS/ -- R01 EB007049/EB/NIBIB NIH HHS/ -- R01 HL062352/HL/NHLBI NIH HHS/ -- R01-EB007049/EB/NIBIB NIH HHS/ -- R01-HL062352/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):971-5. doi: 10.1126/science.1229568.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biophysics and NanoBioPolymers Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigens, CD47/chemistry/immunology/metabolism ; Antigens, Differentiation/*metabolism ; Antineoplastic Agents/administration & dosage ; Autoantigens ; Blood Circulation ; Diagnostic Imaging/methods ; Drug Delivery Systems/*methods ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; *Nanoparticles/administration & dosage/analysis ; Neoplasms/chemistry/diagnosis/drug therapy ; Paclitaxel/administration & dosage ; Particle Size ; Peptide Fragments/chemical synthesis/chemistry/immunology/*metabolism ; Phagocytes/immunology/metabolism ; *Phagocytosis ; Receptors, Immunologic/immunology/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the beta form of calcium/calmodulin-dependent protein kinase type II (betaCaMKappaIotaIota) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing beta-, but not alpha-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of betaCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify betaCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Kun -- Zhou, Tao -- Liao, Lujian -- Yang, Zhongfei -- Wong, Catherine -- Henn, Fritz -- Malinow, Roberto -- Yates, John R 3rd -- Hu, Hailan -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1016-20. doi: 10.1126/science.1240729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P R China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/*biosynthesis/genetics ; Depressive Disorder, Major/*enzymology/genetics/psychology ; Disease Models, Animal ; Gene Knockdown Techniques ; Habenula/drug effects/*enzymology ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/enzymology ; Promoter Regions, Genetic ; Proteomics ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nedergaard, Maiken -- R01 MH099578/MH/NIMH NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1529-30. doi: 10.1126/science.1240514.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA. nedergaard@urmc.rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaporin 4/*metabolism ; Brain/*physiopathology ; Cerebrospinal Fluid/metabolism ; Extracellular Fluid/metabolism ; Humans ; Lymphatic Vessels/*metabolism ; Mice ; Neurodegenerative Diseases/cerebrospinal fluid/*physiopathology/*therapy ; Neuroglia/*metabolism ; Neurons/metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-02-02
    Description: Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751578/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751578/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neuert, Gregor -- Munsky, Brian -- Tan, Rui Zhen -- Teytelman, Leonid -- Khammash, Mustafa -- van Oudenaarden, Alexander -- 1DP1OD003936/OD/NIH HHS/ -- DP1 CA174420/CA/NCI NIH HHS/ -- U54 CA143874/CA/NCI NIH HHS/ -- U54CA143874/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 1;339(6119):584-7. doi: 10.1126/science.1231456.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Physics and Biology and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23372015" target="_blank"〉PubMed〈/a〉
    Keywords: *Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Heat-Shock Proteins/metabolism ; Membrane Transport Proteins/metabolism ; *Models, Genetic ; *Models, Statistical ; Osmosis ; Osmotic Pressure ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Signal Transduction ; Single-Cell Analysis/*methods ; Stochastic Processes ; *Transcription, Genetic ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-07-28
    Description: The resolution of type 2 diabetes after Roux-en-Y gastric bypass (RYGB) attests to the important role of the gastrointestinal tract in glucose homeostasis. Previous studies in RYGB-treated rats have shown that the Roux limb displays hyperplasia and hypertrophy. Here, we report that the Roux limb of RYGB-treated rats exhibits reprogramming of intestinal glucose metabolism to meet its increased bioenergetic demands; glucose transporter-1 is up-regulated, basolateral glucose uptake is enhanced, aerobic glycolysis is augmented, and glucose is directed toward metabolic pathways that support tissue growth. We show that reprogramming of intestinal glucose metabolism is triggered by the exposure of the Roux limb to undigested nutrients. We demonstrate by positron emission tomography-computed tomography scanning and biodistribution analysis using 2-deoxy-2-[18F]fluoro-D-glucose that reprogramming of intestinal glucose metabolism renders the intestine a major tissue for glucose disposal, contributing to the improvement in glycemic control after RYGB.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeidi, Nima -- Meoli, Luca -- Nestoridi, Eirini -- Gupta, Nitin K -- Kvas, Stephanie -- Kucharczyk, John -- Bonab, Ali A -- Fischman, Alan J -- Yarmush, Martin L -- Stylopoulos, Nicholas -- DK089503/DK/NIDDK NIH HHS/ -- F32 DK095558/DK/NIDDK NIH HHS/ -- F32DK095558/DK/NIDDK NIH HHS/ -- P50 GM021700/GM/NIGMS NIH HHS/ -- T32DK007191/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):406-10. doi: 10.1126/science.1235103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888041" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Blood Glucose/*metabolism ; Cholesterol/biosynthesis ; Diabetes Mellitus, Experimental/metabolism/surgery ; Digestion ; Energy Metabolism ; Fluorodeoxyglucose F18/metabolism ; *Gastric Bypass ; Gene Expression Regulation ; Glucose/*metabolism ; Glucose Transporter Type 1/metabolism ; Glycolysis ; Jejunum/*metabolism ; Male ; Metabolic Networks and Pathways ; Metabolomics ; Multimodal Imaging ; Pentose Phosphate Pathway ; Positron-Emission Tomography ; Rats ; Rats, Long-Evans ; Signal Transduction ; Tissue Distribution ; Tomography, X-Ray Computed ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-03-23
    Description: Drugs active at G protein-coupled receptors (GPCRs) can differentially modulate either canonical or noncanonical signaling pathways via a phenomenon known as functional selectivity or biased signaling. We report biochemical studies showing that the hallucinogen lysergic acid diethylamide, its precursor ergotamine (ERG), and related ergolines display strong functional selectivity for beta-arrestin signaling at the 5-HT2B 5-hydroxytryptamine (5-HT) receptor, whereas they are relatively unbiased at the 5-HT1B receptor. To investigate the structural basis for biased signaling, we determined the crystal structure of the human 5-HT2B receptor bound to ERG and compared it with the 5-HT1B/ERG structure. Given the relatively poor understanding of GPCR structure and function to date, insight into different GPCR signaling pathways is important to better understand both adverse and favorable therapeutic activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644390/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wacker, Daniel -- Wang, Chong -- Katritch, Vsevolod -- Han, Gye Won -- Huang, Xi-Ping -- Vardy, Eyal -- McCorvy, John D -- Jiang, Yi -- Chu, Meihua -- Siu, Fai Yiu -- Liu, Wei -- Xu, H Eric -- Cherezov, Vadim -- Roth, Bryan L -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK071662/DK/NIDDK NIH HHS/ -- R01 MH061887/MH/NIMH NIH HHS/ -- R01 MH61887/MH/NIMH NIH HHS/ -- U19 MH082441/MH/NIMH NIH HHS/ -- U19 MH82441/MH/NIMH NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 3;340(6132):615-9. doi: 10.1126/science.1232808. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519215" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arrestin/metabolism ; Arrestins/metabolism ; Binding Sites ; Crystallography, X-Ray ; Ergolines/chemistry/metabolism ; Ergotamine/chemistry/*metabolism ; HEK293 Cells ; Humans ; Ligands ; Lysergic Acid Diethylamide/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Receptor, Serotonin, 5-HT1B/chemistry/*metabolism ; Receptor, Serotonin, 5-HT2B/*chemistry/*metabolism ; Receptors, Serotonin/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-05-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2013 May 3;340(6132):546-7. doi: 10.1126/science.340.6132.546.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641089" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Aquaculture ; *Aquatic Organisms ; *Bays ; *Earthquakes ; *Ecosystem ; Fisheries ; Geologic Sediments ; Japan ; Pacific Ocean ; *Tsunamis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):833-6. doi: 10.1126/science.341.6148.833.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 9/genetics/*metabolism ; DNA, Bacterial/*genetics ; Disease Models, Animal ; Food Microbiology ; Gene Knockout Techniques/methods ; Gene Targeting/*methods ; Genome/genetics ; Humans ; Mice ; Rats ; *Streptococcus Phages ; Streptococcus thermophilus/*genetics/*immunology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2013 May 24;340(6135):909. doi: 10.1126/science.340.6135.909.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; *Cognition ; *Forecasting ; Hippocampus/physiology ; Neurons/physiology ; Neuropsychological Tests ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-03-02
    Description: The initial phase in the development of a migraine is still poorly understood. Here, we describe a previously unknown signaling pathway between stressed neurons and trigeminal afferents during cortical spreading depression (CSD), the putative cause of migraine aura and headache. CSD caused neuronal Pannexin1 (Panx1) megachannel opening and caspase-1 activation followed by high-mobility group box 1 (HMGB1) release from neurons and nuclear factor kappaB activation in astrocytes. Suppression of this cascade abolished CSD-induced trigeminovascular activation, dural mast cell degranulation, and headache. CSD-induced neuronal megachannel opening may promote sustained activation of trigeminal afferents via parenchymal inflammatory cascades reaching glia limitans. This pathway may function to alarm an organism with headache when neurons are stressed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karatas, Hulya -- Erdener, Sefik Evren -- Gursoy-Ozdemir, Yasemin -- Lule, Sevda -- Eren-Kocak, Emine -- Sen, Zumrut Duygu -- Dalkara, Turgay -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1092-5. doi: 10.1126/science.1231897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449592" target="_blank"〉PubMed〈/a〉
    Keywords: Afferent Pathways ; Animals ; Astrocytes/metabolism/physiology ; Caspase 1/metabolism ; Connexins/antagonists & inhibitors/*biosynthesis ; *Cortical Spreading Depression ; HMGB1 Protein/metabolism ; Mice ; Mice, Inbred C57BL ; Migraine Disorders/metabolism/*physiopathology ; NF-kappa B/metabolism ; Nerve Fibers/physiology ; Nerve Tissue Proteins/antagonists & inhibitors/*biosynthesis ; Neurons/metabolism/*physiology ; Protein Transport ; Signal Transduction ; Trigeminal Nerve/metabolism/*physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: The thalamocortical (TC) projection to layer 4 (L4) is thought to be the main route by which sensory organs communicate with cortex. Sensory information is believed to then propagate through the cortical column along the L4--〉L2/3--〉L5/6 pathway. Here, we show that sensory-evoked responses of L5/6 neurons in rats derive instead from direct TC synapses. Many L5/6 neurons exhibited sensory-evoked postsynaptic potentials with the same latencies as L4. Paired in vivo recordings from L5/6 neurons and thalamic neurons revealed substantial convergence of direct TC synapses onto diverse types of infragranular neurons, particularly in L5B. Pharmacological inactivation of L4 had no effect on sensory-evoked synaptic input to L5/6 neurons. L4 is thus not an obligatory distribution hub for cortical activity, and thalamus activates two separate, independent "strata" of cortex in parallel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203320/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203320/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Constantinople, Christine M -- Bruno, Randy M -- NS069679/NS/NINDS NIH HHS/ -- R01 NS069679/NS/NINDS NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1591-4. doi: 10.1126/science.1236425.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812718" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evoked Potentials, Somatosensory ; Neocortex/cytology/drug effects/*physiology ; Neurons/drug effects/physiology ; Rats ; Rats, Wistar ; Synapses/drug effects/physiology ; Thalamus/cytology/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-04-13
    Description: Wnt signaling stabilizes beta-catenin through the LRP6 receptor signaling complex, which antagonizes the beta-catenin destruction complex. The Axin scaffold and associated glycogen synthase kinase-3 (GSK3) have central roles in both assemblies, but the transduction mechanism from the receptor to the destruction complex is contentious. We report that Wnt signaling is governed by phosphorylation regulation of the Axin scaffolding function. Phosphorylation by GSK3 kept Axin activated ("open") for beta-catenin interaction and poised for engagement of LRP6. Formation of the Wnt-induced LRP6-Axin signaling complex promoted Axin dephosphorylation by protein phosphatase-1 and inactivated ("closed") Axin through an intramolecular interaction. Inactivation of Axin diminished its association with beta-catenin and LRP6, thereby inhibiting beta-catenin phosphorylation and enabling activated LRP6 to selectively recruit active Axin for inactivation reiteratively. Our findings reveal mechanisms for scaffold regulation and morphogen signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3788643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sung-Eun -- Huang, He -- Zhao, Ming -- Zhang, Xinjun -- Zhang, Aili -- Semonov, Mikhail V -- MacDonald, Bryan T -- Zhang, Xiaowu -- Garcia Abreu, Jose -- Peng, Leilei -- He, Xi -- P30 HD-18655/HD/NICHD NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R00EB008737/EB/NIBIB NIH HHS/ -- R01 AR060359/AR/NIAMS NIH HHS/ -- R01 GM074241/GM/NIGMS NIH HHS/ -- R01EB015481/EB/NIBIB NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 17;340(6134):867-70. doi: 10.1126/science.1232389. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉F. M. Kirby Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579495" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Axin Protein/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/*metabolism ; Molecular Sequence Data ; Phosphorylation ; Protein Stability ; Signal Transduction ; Wnt Proteins/*metabolism ; Xenopus ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-10-26
    Description: The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to alpha-synuclein (alphasyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring alphasyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of alphasyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Chee Yeun -- Khurana, Vikram -- Auluck, Pavan K -- Tardiff, Daniel F -- Mazzulli, Joseph R -- Soldner, Frank -- Baru, Valeriya -- Lou, Yali -- Freyzon, Yelena -- Cho, Sukhee -- Mungenast, Alison E -- Muffat, Julien -- Mitalipova, Maisam -- Pluth, Michael D -- Jui, Nathan T -- Schule, Birgitt -- Lippard, Stephen J -- Tsai, Li-Huei -- Krainc, Dimitri -- Buchwald, Stephen L -- Jaenisch, Rudolf -- Lindquist, Susan -- 5 R01CA084198/CA/NCI NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 CA084198/CA/NCI NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):983-7. doi: 10.1126/science.1245296. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Endoplasmic Reticulum Stress/drug effects ; Female ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mutation ; Neurogenesis ; Neurons/*drug effects/metabolism/pathology ; Parkinson Disease/genetics/*metabolism ; Rats ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-10-26
    Description: alpha-Synuclein (alpha-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from alpha-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by alpha-syn itself. Thus, NAB identifies a druggable node in the biology of alpha-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum-to-Golgi vesicle trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tardiff, Daniel F -- Jui, Nathan T -- Khurana, Vikram -- Tambe, Mitali A -- Thompson, Michelle L -- Chung, Chee Yeun -- Kamadurai, Hari B -- Kim, Hyoung Tae -- Lancaster, Alex K -- Caldwell, Kim A -- Caldwell, Guy A -- Rochet, Jean-Christophe -- Buchwald, Stephen L -- Lindquist, Susan -- 5R01GM069530/GM/NIGMS NIH HHS/ -- F32GM099817/GM/NIGMS NIH HHS/ -- F32NS061419/NS/NINDS NIH HHS/ -- GM58160/GM/NIGMS NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- R15 NS075684/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):979-83. doi: 10.1126/science.1245321. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research (WIBR), Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Caenorhabditis elegans ; Cells, Cultured ; *Cytoprotection ; Drug Evaluation, Preclinical ; Endosomal Sorting Complexes Required for Transport/*genetics ; Gene Regulatory Networks/*drug effects ; Neurodegenerative Diseases/*metabolism ; Neurons/*drug effects/metabolism ; Neuroprotective Agents/*pharmacology ; Parkinson Disease/metabolism ; Rats ; Saccharomyces cerevisiae/drug effects ; Saccharomyces cerevisiae Proteins/*genetics ; Small Molecule Libraries/chemistry/pharmacology ; Ubiquitin-Protein Ligase Complexes/*genetics ; Ubiquitin-Protein Ligases/*genetics ; alpha-Synuclein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-02-23
    Description: Development, regeneration, and even day-to-day physiology require plant and animal cells to make decisions based on their locations. The principles by which cells may do this are deceptively straightforward. But when reliability needs to be high--as often occurs during development--successful strategies tend to be anything but simple. Increasingly, the challenge facing biologists is to relate the diverse diffusible molecules, control circuits, and gene regulatory networks that help cells know where they are to the varied, sometimes stringent, constraints imposed by the need for real-world precision and accuracy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932337/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932337/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lander, Arthur D -- P50 GM076516/GM/NIGMS NIH HHS/ -- P50GM076516/GM/NIGMS NIH HHS/ -- R01 GM067247/GM/NIGMS NIH HHS/ -- R01GM067247/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 22;339(6122):923-7. doi: 10.1126/science.1224186.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental and Cell Biology, and Center for Complex Biological Systems, University of California Irvine, Irvine, CA 92697, USA. adlander@uci.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23430648" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Physiological Phenomena ; Diffusion ; Embryonic Development ; Gene Regulatory Networks ; Intercellular Signaling Peptides and Proteins/*metabolism ; *Morphogenesis ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-21
    Description: Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive. We show that administering oleoylethanolamine, a gastrointestinal lipid messenger whose synthesis is suppressed after prolonged high-fat exposure, is sufficient to restore gut-stimulated dopamine release in high-fat-fed mice. Administering oleoylethanolamine to high-fat-fed mice also eliminated motivation deficits during flavorless intragastric feeding and increased oral intake of low-fat emulsions. Our findings suggest that high-fat-induced gastrointestinal dysfunctions play a key role in dopamine deficiency and that restoring gut-generated lipid signaling may increase the reward value of less palatable, yet healthier, foods.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tellez, Luis A -- Medina, Sara -- Han, Wenfei -- Ferreira, Jozelia G -- Licona-Limon, Paula -- Ren, Xueying -- Lam, Tukiet T -- Schwartz, Gary J -- de Araujo, Ivan E -- DC009997/DC/NIDCD NIH HHS/ -- DK020541/DK/NIDDK NIH HHS/ -- DK026687/DK/NIDDK NIH HHS/ -- DK085579/DK/NIDDK NIH HHS/ -- P30 DK026687/DK/NIDDK NIH HHS/ -- UL1RR024139/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):800-2. doi: 10.1126/science.1239275.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The John B. Pierce Laboratory, New Haven, CT 06519, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950538" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetite ; Corpus Striatum/*metabolism ; Dietary Fats/*administration & dosage ; Dopamine/deficiency/*metabolism ; Endocannabinoids/*administration & dosage/biosynthesis/*physiology ; Energy Intake ; Ethanolamines/*administration & dosage ; Feeding Behavior ; Gastrointestinal Tract/*metabolism ; Homeostasis ; Intestine, Small/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Oleic Acids/*administration & dosage/biosynthesis/*physiology ; PPAR alpha/genetics/metabolism ; Reward ; Signal Transduction ; Vagus Nerve/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-04-27
    Description: Neurotransmitters have been thought to be fixed throughout life, but whether sensory stimuli alter behaviorally relevant transmitter expression in the mature brain is unknown. We found that populations of interneurons in the adult rat hypothalamus switched between dopamine and somatostatin expression in response to exposure to short- and long-day photoperiods. Changes in postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin receptor expression remained constant. Pharmacological blockade or ablation of these dopaminergic neurons led to anxious and depressed behavior, phenocopying performance after exposure to the long-day photoperiod. Induction of newly dopaminergic neurons through exposure to the short-day photoperiod rescued the behavioral consequences of lesions. Natural stimulation of other sensory modalities may cause changes in transmitter expression that regulate different behaviors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dulcis, Davide -- Jamshidi, Pouya -- Leutgeb, Stefan -- Spitzer, Nicholas C -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):449-53. doi: 10.1126/science.1234152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California-San Diego, La Jolla, CA 92093-0357, USA. ddulcis@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Brain/metabolism/*physiology ; Cell Count ; Dopamine/*metabolism ; Dopaminergic Neurons/metabolism/*physiology ; Hypothalamus/metabolism/physiology ; Male ; Maze Learning ; *Photoperiod ; Rats ; Rats, Long-Evans ; Receptors, Dopamine/metabolism ; Receptors, Somatostatin/metabolism ; Seasons ; Somatostatin/*metabolism ; Stress, Psychological/*psychology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-11-30
    Description: The late phase of long-term potentiation (LTP) at glutamatergic synapses, which is thought to underlie long-lasting memory, requires gene transcription in the nucleus. However, the mechanism by which signaling initiated at synapses is transmitted into the nucleus to induce transcription has remained elusive. Here, we found that induction of LTP in only three to seven dendritic spines in rat CA1 pyramidal neurons was sufficient to activate extracellular signal-regulated kinase (ERK) in the nucleus and regulate downstream transcription factors. Signaling from individual spines was integrated over a wide range of time (〉30 minutes) and space (〉80 micrometers). Spatially dispersed inputs over multiple branches activated nuclear ERK much more efficiently than clustered inputs over one branch. Thus, biochemical signals from individual dendritic spines exert profound effects on nuclear signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhai, Shenyu -- Ark, Eugene D -- Parra-Bueno, Paula -- Yasuda, Ryohei -- R01 MH080047/MH/NIMH NIH HHS/ -- R01 NS068410/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1107-11. doi: 10.1126/science.1245622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/enzymology/*physiology ; Cells, Cultured ; Dendritic Spines/enzymology/*physiology ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Glutamates/metabolism ; *Long-Term Potentiation ; Rats ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-23
    Description: Cardiac pacemaker cells autonomously generate electrical impulses that initiate and maintain the rhythmic contraction of the heart. Although the majority of heart cells are thought to originate from the primary and secondary heart fields, we found that chick pacemaker cells arise from a discrete region of mesoderm outside of these fields. Shortly after gastrulation, canonical Wnts promote the recruitment of mesodermal cells within this region into the pacemaker lineage. These findings suggest that cardiac pacemaker cells are physically segregated and molecularly programmed in a tertiary heart field prior to the onset of cardiac morphogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bressan, Michael -- Liu, Gary -- Mikawa, Takashi -- R01 HL093566/HL/NHLBI NIH HHS/ -- R01 HL112268/HL/NHLBI NIH HHS/ -- R01HL093566/HL/NHLBI NIH HHS/ -- R01HL112268/HL/NHLBI NIH HHS/ -- R37 HL078921/HL/NHLBI NIH HHS/ -- T32 HL007544/HL/NHLBI NIH HHS/ -- T32HL007544/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 May 10;340(6133):744-8. doi: 10.1126/science.1232877. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519212" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Cell Lineage ; Chick Embryo ; Cues ; Gastrulation ; Heart/*embryology/physiology ; *Heart Rate ; Mesoderm/cytology/*physiology ; Myocytes, Cardiac/*physiology ; Signal Transduction ; Sinoatrial Node/cytology/embryology/*physiology ; Wnt Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-11-02
    Description: Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lu O -- Jiang, Zheng -- Rivlin-Etzion, Michal -- Hand, Randal -- Brady, Colleen M -- Matsuoka, Ryota L -- Yau, King-Wai -- Feller, Marla B -- Kolodkin, Alex L -- EY013528/EY/NEI NIH HHS/ -- EY019498/EY/NEI NIH HHS/ -- EY06837/EY/NEI NIH HHS/ -- NS35165/NS/NINDS NIH HHS/ -- P30 NS050274/NS/NINDS NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY019498/EY/NEI NIH HHS/ -- R01 NS035165/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):1241974. doi: 10.1126/science.1241974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179230" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/cytology/metabolism/*physiology ; Animals ; Dendrites/metabolism/physiology ; Mice ; Mice, Mutant Strains ; Motion ; *Motion Perception ; Nerve Tissue Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Retina/metabolism/*physiology ; Semaphorins/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-04-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birren, Susan J -- Marder, Eve -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):436-7. doi: 10.1126/science.1238518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620040" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Hormones/blood ; Animals ; Anxiety/blood/physiopathology ; Corticotropin-Releasing Hormone/*secretion ; Depression/blood/physiopathology ; Dopamine/*secretion ; Humans ; Hypothalamus/cytology/*physiology/secretion ; *Neuronal Plasticity ; Neurons/secretion ; *Photoperiod ; Rats ; Signal Transduction ; Somatostatin/*secretion ; Stress, Psychological/blood/physiopathology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-07
    Description: A fundamental problem in biology is to understand how genetic circuits implement core cellular functions. Time-lapse microscopy techniques are beginning to provide a direct view of circuit dynamics in individual living cells. Unexpectedly, we are discovering that key transcription and regulatory factors pulse on and off repeatedly, and often stochastically, even when cells are maintained in constant conditions. This type of spontaneous dynamic behavior is pervasive, appearing in diverse cell types from microbes to mammalian cells. Here, we review recent work showing how pulsing is generated and controlled by underlying regulatory circuits and how it provides critical capabilities to cells in stress response, signaling, and development. A major theme is the ability of pulsing to enable time-based regulation analogous to strategies used in engineered systems. Thus, pulsatile dynamics is emerging as a central, and still largely unexplored, layer of temporal organization in the cell.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100686/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100686/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levine, Joe H -- Lin, Yihan -- Elowitz, Michael B -- P50GM068763/GM/NIGMS NIH HHS/ -- R01 GM079771/GM/NIGMS NIH HHS/ -- R01 GM079771-06/GM/NIGMS NIH HHS/ -- R01 GM086793A/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1193-200. doi: 10.1126/science.1239999.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311681" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bacterial Physiological Phenomena ; Cell Differentiation ; *Cell Physiological Phenomena ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Signal Transduction ; Single-Cell Analysis ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-01-19
    Description: The retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) melanoma differentiation-associated protein 5 (MDA5) senses cytoplasmic viral RNA and activates antiviral innate immunity. To reveal how paramyxoviruses counteract this response, we determined the crystal structure of the MDA5 adenosine 5'-triphosphate (ATP)-hydrolysis domain in complex with the viral inhibitor V protein. The V protein unfolded the ATP-hydrolysis domain of MDA5 via a beta-hairpin motif and recognized a structural motif of MDA5 that is normally buried in the conserved helicase fold. This leads to disruption of the MDA5 ATP-hydrolysis site and prevention of RNA-bound MDA5 filament formation. The structure explains why V proteins inactivate MDA5, but not RIG-I, and mutating only two amino acids in RIG-I induces robust V protein binding. Our results suggest an inhibition mechanism of RLR signalosome formation by unfolding of receptor and inhibitor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Motz, Carina -- Schuhmann, Kerstin Monika -- Kirchhofer, Axel -- Moldt, Manuela -- Witte, Gregor -- Conzelmann, Karl-Klaus -- Hopfner, Karl-Peter -- U19AI083025/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):690-3. doi: 10.1126/science.1230949. Epub 2013 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23328395" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; DEAD-box RNA Helicases/*chemistry/genetics/*metabolism ; HEK293 Cells ; Humans ; Hydrolysis ; Immunity, Innate ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Parainfluenza Virus 5/immunology ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; RNA, Double-Stranded/*metabolism ; Signal Transduction ; Sus scrofa ; Viral Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2012-10-09
    Description: Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylwestrak, Emily L -- Ghosh, Anirvan -- R01 NS067216/NS/NINDS NIH HHS/ -- R01NS067216/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):536-40. doi: 10.1126/science.1222482. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; CA1 Region, Hippocampal/*metabolism ; Cells, Cultured ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; HEK293 Cells ; Humans ; Interneurons/*metabolism ; Mice ; Nerve Tissue Proteins/genetics/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Rats, Inbred LEC ; Synapses/genetics/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2012-03-31
    Description: Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin disrupted a second mTOR complex, mTORC2, in vivo and that mTORC2 was required for the insulin-mediated suppression of hepatic gluconeogenesis. Further, decreased mTORC1 signaling was sufficient to extend life span independently from changes in glucose homeostasis, as female mice heterozygous for both mTOR and mLST8 exhibited decreased mTORC1 activity and extended life span but had normal glucose tolerance and insulin sensitivity. Thus, mTORC2 disruption is an important mediator of the effects of rapamycin in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324089/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lamming, Dudley W -- Ye, Lan -- Katajisto, Pekka -- Goncalves, Marcus D -- Saitoh, Maki -- Stevens, Deanna M -- Davis, James G -- Salmon, Adam B -- Richardson, Arlan -- Ahima, Rexford S -- Guertin, David A -- Sabatini, David M -- Baur, Joseph A -- 1F32AG032833-01A1/AG/NIA NIH HHS/ -- CA129105/CA/NCI NIH HHS/ -- F32 AG032833/AG/NIA NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1638-43. doi: 10.1126/science.1215135.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461615" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Female ; Gluconeogenesis ; Glucose/metabolism ; Glucose Clamp Technique ; Homeostasis ; Insulin/administration & dosage/blood ; *Insulin Resistance ; Liver/metabolism ; *Longevity ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Muscle, Skeletal/metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):30-1. doi: 10.1126/science.338.6103.30-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042864" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Hippocampus/physiology ; Humans ; *Mental Recall ; Neuronal Plasticity ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2012-01-24
    Description: Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Naoya -- Kitamura, Kazuo -- Matsuo, Naoki -- Mayford, Mark -- Kano, Masanobu -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267814" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA3 Region, Hippocampal/cytology/physiology ; Calcium/metabolism ; Dendritic Spines/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/*physiology ; Neuronal Plasticity ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Somatosensory Cortex/cytology/physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2012-06-02
    Description: Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Javier M -- Stein, Alexander -- Behrmann, Elmar -- Riedel, Dietmar -- Cypionka, Anna -- Farsi, Zohreh -- Walla, Peter J -- Raunser, Stefan -- Jahn, Reinhard -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1581-4. doi: 10.1126/science.1221976. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Lipid Bilayers/chemistry/*metabolism ; *Liposomes/chemistry/metabolism ; *Membrane Fusion ; Protein Binding ; Protein Conformation ; Rats ; SNARE Proteins/chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-10
    Description: Iron lies at the center of a battle for nutritional resource between higher organisms and their microbial pathogens. The iron status of the human host affects the pathogenicity of numerous infections including malaria, HIV-1, and tuberculosis. Hepcidin, an antimicrobial-like peptide hormone, has emerged as the master regulator of iron metabolism. Hepcidin controls the absorption of dietary iron and the distribution of iron among cell types in the body, and its synthesis is regulated by both iron and innate immunity. We describe how hepcidin integrates signals from diverse physiological inputs, forming a key molecular bridge between iron trafficking and response to infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drakesmith, Hal -- Prentice, Andrew M -- G0700844/Medical Research Council/United Kingdom -- G0901149/Medical Research Council/United Kingdom -- MC-A760-5QX00/Medical Research Council/United Kingdom -- MC_U123292699/Medical Research Council/United Kingdom -- MC_U123292700/Medical Research Council/United Kingdom -- MC_U123292701/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):768-72. doi: 10.1126/science.1224577.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Immunology Group and Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK. alexander.drakesmith@ndm.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23139325" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimicrobial Cationic Peptides/*metabolism ; Bacteria/metabolism/pathogenicity ; Hepcidins ; Host-Pathogen Interactions ; Humans ; *Immunity, Innate ; Infection/*immunology/*metabolism/microbiology ; Inflammation/metabolism ; Iron/*metabolism ; Iron, Dietary/metabolism ; Leukocytes/metabolism ; Liver/metabolism ; Macrophages/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2012-01-17
    Description: Painful stimuli activate nociceptive C fibers and induce synaptic long-term potentiation (LTP) at their spinal terminals. LTP at C-fiber synapses represents a cellular model for pain amplification (hyperalgesia) and for a memory trace of pain. mu-Opioid receptor agonists exert a powerful but reversible depression at C-fiber synapses that renders the continuous application of low opioid doses the gold standard in pain therapy. We discovered that brief application of a high opioid dose reversed various forms of activity-dependent LTP at C-fiber synapses. Depotentiation involved Ca(2+)-dependent signaling and normalization of the phosphorylation state of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This also reversed hyperalgesia in behaving animals. Opioids thus not only temporarily dampen pain but may also erase a spinal memory trace of pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drdla-Schutting, Ruth -- Benrath, Justus -- Wunderbaldinger, Gabriele -- Sandkuhler, Jurgen -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):235-8. doi: 10.1126/science.1211726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246779" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/*administration & dosage ; Animals ; Calcium Signaling ; Evoked Potentials ; Hyperalgesia/chemically induced/drug therapy ; Long-Term Potentiation/*drug effects ; Male ; Naloxone/administration & dosage ; Nerve Fibers, Unmyelinated/*drug effects/physiology ; Nociceptive Pain/*drug therapy/physiopathology ; Phosphorylation ; Piperidines/*administration & dosage ; Protein Kinase C/antagonists & inhibitors/metabolism ; Protein Phosphatase 1/antagonists & inhibitors/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, Opioid, mu/agonists/metabolism ; Sciatic Nerve/*drug effects/physiology ; Somatostatin/administration & dosage/analogs & derivatives ; Spinal Cord/physiology ; Synapses/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubes, Gary -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):31. doi: 10.1126/science.335.6064.31.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223789" target="_blank"〉PubMed〈/a〉
    Keywords: Glucose/*metabolism ; *Glycolysis ; Humans ; Insulin/metabolism ; Neoplasms/*metabolism ; Signal Transduction ; Somatomedins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-01-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taubes, Gary -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):28, 30-2. doi: 10.1126/science.335.6064.28.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223787" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Diabetes Mellitus, Type 2/complications/*metabolism ; Diet ; Glucose/metabolism ; Humans ; Insulin/blood/*metabolism ; Mutation ; Neoplasms/*etiology/genetics/metabolism/pathology ; Obesity/complications/*metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Receptor, Insulin/metabolism ; Receptors, Somatomedin/metabolism ; Signal Transduction ; Somatomedins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2012-03-03
    Description: Endogenous thymic regeneration is a crucial function that allows for renewal of immune competence after stress, infection, or immunodepletion. However, the mechanisms governing this regeneration remain poorly understood. We detail such a mechanism, centered on interleukin-22 (IL-22) and triggered by the depletion of CD4(+)CD8(+) double-positive thymocytes. Intrathymic levels of IL-22 were increased after thymic insult, and thymic recovery was impaired in IL-22-deficient mice. IL-22, which signaled through thymic epithelial cells and promoted their proliferation and survival, was up-regulated by radio-resistant RORgamma(t)(+)CCR6(+)NKp46(-) lymphoid tissue inducer cells after thymic injury in an IL-23-dependent manner. Administration of IL-22 enhanced thymic recovery after total body irradiation. These studies reveal mechanisms of endogenous thymic repair and offer innovative regenerative strategies for improving immune competence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudakov, Jarrod A -- Hanash, Alan M -- Jenq, Robert R -- Young, Lauren F -- Ghosh, Arnab -- Singer, Natalie V -- West, Mallory L -- Smith, Odette M -- Holland, Amanda M -- Tsai, Jennifer J -- Boyd, Richard L -- van den Brink, Marcel R M -- AI080455/AI/NIAID NIH HHS/ -- CA107096/CA/NCI NIH HHS/ -- HL069929/HL/NHLBI NIH HHS/ -- HL095075/HL/NHLBI NIH HHS/ -- R01 AI080455/AI/NIAID NIH HHS/ -- R01 CA107096/CA/NCI NIH HHS/ -- R01 HL069929/HL/NHLBI NIH HHS/ -- R01 HL095075/HL/NHLBI NIH HHS/ -- T32 CA009207/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):91-5. doi: 10.1126/science.1218004. Epub 2012 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. dudakovj@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383805" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Proliferation ; Cell Survival ; Dendritic Cells/physiology ; Epithelial Cells/cytology/physiology ; Interleukin-23/metabolism ; Interleukins/administration & dosage/deficiency/genetics/*metabolism ; Lymphocytes/cytology/physiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Nuclear Receptor Subfamily 1, Group F, Member 3/genetics/metabolism ; Radiation Dosage ; Receptors, Interleukin/metabolism ; Recombinant Proteins/administration & dosage ; *Regeneration ; Signal Transduction ; Thymocytes/*physiology ; Thymus Gland/cytology/immunology/*physiology/radiation effects ; Up-Regulation ; Whole-Body Irradiation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...