ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-31
    Description: Article Transient receptor potential (TRP) proteins are Ca 2+ -permeable cation channels activated by a range of chemical and physical stimuli. Here the authors describe a cryo-EM structure of the full-length TRPV2 channel that provides insight into the regulation of the TRPV subfamily of channels. Nature Communications doi: 10.1038/ncomms11130 Authors: Kevin W. Huynh, Matthew R. Cohen, Jiansen Jiang, Amrita Samanta, David T. Lodowski, Z. Hong Zhou, Vera Y. Moiseenkova-Bell
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-07-19
    Description: Cytoplasmic dynein is a molecular motor that transports a large variety of cargoes (e.g., organelles, messenger RNAs, and viruses) along microtubules over long intracellular distances. The dynactin protein complex is important for dynein activity in vivo, but its precise role has been unclear. Here, we found that purified mammalian dynein did not move processively on microtubules in vitro. However, when dynein formed a complex with dynactin and one of four different cargo-specific adapter proteins, the motor became ultraprocessive, moving for distances similar to those of native cargoes in living cells. Thus, we propose that dynein is largely inactive in the cytoplasm and that a variety of adapter proteins activate processive motility by linking dynactin to dynein only when the motor is bound to its proper cargo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224444/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McKenney, Richard J -- Huynh, Walter -- Tanenbaum, Marvin E -- Bhabha, Gira -- Vale, Ronald D -- F32GM096484/GM/NIGMS NIH HHS/ -- R01 GM097312/GM/NIGMS NIH HHS/ -- R01GM097312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):337-41. doi: 10.1126/science.1254198. Epub 2014 Jun 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ; Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. vale@ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25035494" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cytoplasmic Dyneins/chemistry/*metabolism ; Humans ; Mice ; Microtubule-Associated Proteins/*metabolism ; Microtubules/chemistry/*metabolism ; Motion ; Protein Transport ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...