ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-12
    Description: The occurrence of arthropods in amber exclusively from the Cretaceous and Cenozoic is widely regarded to be a result of the production and preservation of large amounts of tree resin beginning ca. 130 million years (Ma) ago. Abundant 230 million-year-old amber from the Late Triassic (Carnian) of northeastern Italy has previously yielded...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-01-29
    Description: Proteins capable of self-perpetuating changes in conformation and function (known as prions) can serve as genetic elements. To test whether novel prions could be created by recombinant methods, a yeast prion determinant was fused to the rat glucocorticoid receptor. The fusion protein existed in different heritable functional states, switched between states at a low spontaneous rate, and could be induced to switch by experimental manipulations. The complete change in phenotype achieved by transferring a prion determinant from one protein to another confirms the protein-only nature of prion inheritance and establishes a mechanism for engineering heritable changes in phenotype that should be broadly applicable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, L -- Lindquist, S -- New York, N.Y. -- Science. 2000 Jan 28;287(5453):661-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, University of Chicago, 5841 South Maryland Avenue MC1028, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10650001" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fungal Proteins/*chemistry/genetics/*metabolism ; Genes, Reporter ; Guanidine/pharmacology ; Heat-Shock Proteins/pharmacology ; Peptide Termination Factors ; Phenotype ; Prions/*chemistry/genetics/*metabolism ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/chemistry/genetics ; *Saccharomyces cerevisiae Proteins ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-10-19
    Description: A rare conformation of the prion protein, PrPSc, is found only in mammals with transmissible prion diseases and represents either the infectious agent itself or a major component of it. The mechanism for initiating PrPSc formation is unknown. We report that PrP retrogradely transported out of the endoplasmic reticulum produced both amorphous aggregates and a PrPSc-like conformation in the cytosol. The distribution between these forms correlated with the rate of appearance in the cytosol. Once conversion to the PrPSc-like conformation occurred, it was sustained. Thus, PrP has an inherent capacity to promote its own conformational conversion in mammalian cells. These observations might explain the origin of PrPSc.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Jiyan -- Lindquist, Susan -- GMS 25874/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1785-8. Epub 2002 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), University of Chicago, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386336" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcysteine/*analogs & derivatives/pharmacology ; Animals ; COS Cells ; Cysteine Endopeptidases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cystic Fibrosis Transmembrane Conductance Regulator/chemistry/metabolism ; Cytosol/*metabolism ; Endopeptidase K/metabolism ; Endoplasmic Reticulum/metabolism ; Leupeptins/pharmacology ; Mice ; Models, Biological ; Multienzyme Complexes/antagonists & inhibitors/metabolism ; Neurons ; Oligopeptides/pharmacology ; PrPSc Proteins/*chemistry/metabolism ; Prions/*chemistry/genetics/*metabolism ; Proteasome Endopeptidase Complex ; *Protein Conformation ; Protein Folding ; Protein Transport ; Solubility ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2002-10-19
    Description: Changes in prion protein (PrP) folding are associated with fatal neurodegenerative disorders, but the neurotoxic species is unknown. Like other proteins that traffic through the endoplasmic reticulum, misfolded PrP is retrograde transported to the cytosol for degradation by proteasomes. Accumulation of even small amounts of cytosolic PrP was strongly neurotoxic in cultured cells and transgenic mice. Mice developed normally but acquired severe ataxia, with cerebellar degeneration and gliosis. This establishes a mechanism for converting wild-type PrP to a highly neurotoxic species that is distinct from the self-propagating PrP(Sc) isoform and suggests a potential common framework for seemingly diverse PrP neurodegenerative disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Jiyan -- Wollmann, Robert -- Lindquist, Susan -- GM25874/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Nov 29;298(5599):1781-5. Epub 2002 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pathology, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12386337" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Brain/metabolism/pathology ; Cell Survival ; Cysteine Endopeptidases ; Cysteine Proteinase Inhibitors/pharmacology ; Cytosol/*metabolism ; Glycosylation ; In Situ Nick-End Labeling ; Leupeptins/pharmacology ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Transgenic ; Multienzyme Complexes/antagonists & inhibitors ; *Nerve Degeneration ; Neurons/*physiology ; PrPSc Proteins/chemistry/metabolism ; Presenilin-1 ; Prion Diseases/*metabolism/pathology ; Prions/*chemistry/genetics/*metabolism ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex ; Protein Conformation ; Protein Folding ; Protein Transport ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-01-11
    Description: The amp operon, which is located on the Escherichia coli chromosome, modulates the induction of plasmid-borne beta-lactamase genes by extracellular beta-lactam antibiotics. This suggests that the gene products AmpD and AmpE may function in the transduction of external signals. beta-Lactam antibiotics are analogs of cell wall components that can be released during cell wall morphogenesis of enterobacteria. The amp operon was studied to determine its importance in signal transduction during cell wall morphogenesis. The peptidoglycan compositions of amp mutants were determined by high-performance liquid chromatography and fast atom bombardment mass spectrometry. When a chromosomal or plasmid-borne copy of ampD was present, the amount of pentapeptide-containing muropeptides in the cell wall increased upon addition of the cell wall constituent diaminopimelic acid to the growth medium. These results suggest that beta-lactamase induction and modulation of the composition of the cell wall share elements of a regulatory circuit that involves AmpD. Escherichia coli requires AmpD to respond to extracellular signaling amino acids, such as diaminopimelic acid, and this signal transduction system may regulate peptidoglycan composition in response to cell wall turnover products.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tuomanen, E -- Lindquist, S -- Sande, S -- Galleni, M -- Light, K -- Gage, D -- Normark, S -- AI23459/AI/NIAID NIH HHS/ -- AI27913/AI/NIAID NIH HHS/ -- DRR00480/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Jan 11;251(4990):201-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Microbiology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1987637" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*genetics/metabolism ; Carboxypeptidases/metabolism ; Cell Wall/metabolism ; Diaminopimelic Acid/pharmacology ; Enzyme Induction ; Escherichia coli/*genetics/metabolism ; *Gene Expression Regulation/drug effects ; Genotype ; Membrane Proteins/*genetics/metabolism ; Molecular Sequence Data ; Mutation ; *N-Acetylmuramoyl-L-alanine Amidase ; Oligopeptides/metabolism ; *Operon ; Peptidoglycan/metabolism ; Plasmids ; Signal Transduction ; Spectrometry, Mass, Fast Atom Bombardment ; beta-Lactamases/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-10-30
    Description: Prions are an unusual form of epigenetics: Their stable inheritance and complex phenotypes come about through protein folding rather than nucleic acid-associated changes. With intimate ties to protein homeostasis and a remarkable sensitivity to stress, prions are a robust mechanism that links environmental extremes with the acquisition and inheritance of new traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Halfmann, Randal -- Lindquist, Susan -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):629-32. doi: 10.1126/science.1191081.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030648" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Biological Evolution ; *Epigenesis, Genetic ; Genetic Variation ; Homeostasis ; Peptide Termination Factors/chemistry/metabolism/physiology ; Phenotype ; Prions/*chemistry/metabolism/*physiology ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/metabolism/physiology ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-05-25
    Description: The protein-remodeling factor Hsp104 governs inheritance of [PSI+], a yeast prion formed by self-perpetuating amyloid conformers of the translation termination factor Sup35. Perplexingly, either excess or insufficient Hsp104 eliminates [PSI+]. In vitro, at low concentrations, Hsp104 catalyzed the formation of oligomeric intermediates that proved critical for the nucleation of Sup 35 fibrillization de novo and displayed a conformation common among amyloidogenic polypeptides. At higher Hsp104 concentrations, amyloidogenic oligomerization and contingent fibrillization were abolished. Hsp104 also disassembled mature fibers in a manner that initially exposed new surfaces for conformational replication but eventually exterminated prion conformers. These Hsp104 activities differed in their reaction mechanism and can explain [PSI+] inheritance patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shorter, James -- Lindquist, Susan -- GM25874/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2004 Jun 18;304(5678):1793-7. Epub 2004 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15155912" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Amyloid/chemistry ; Amyloid beta-Peptides/chemistry/immunology ; Antibodies/immunology ; Biopolymers ; Catalysis ; Heat-Shock Proteins/chemistry/genetics/*metabolism ; Hydrolysis ; Mutation ; Peptide Fragments/chemistry/immunology ; Peptide Termination Factors ; Prions/*chemistry/*metabolism ; Protein Conformation ; Protein Structure, Tertiary ; Saccharomyces cerevisiae Proteins/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-12-13
    Description: Sir2 (silent information regulator 2) is a nicotinamide adenine dinucleotide-dependent deacetylase required for longevity due to calorie restriction in yeast and Drosophila. In mammals, calorie restriction induces a complex pattern of physiological and behavioral changes. Here we report that the mammalian Sir2 ortholog, Sirt1, is required for the induction of a phenotype by calorie restriction in mice.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Danica -- Steele, Andrew D -- Lindquist, Susan -- Guarente, Leonard -- AG11119/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Caloric Restriction ; Eating ; Mice ; Mice, Knockout ; *Motor Activity ; Movement ; Sirtuin 1 ; Sirtuins/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-10-01
    Description: Hsp90 is a molecular chaperone for many signal transducers and may influence evolution by releasing previously silent genetic variation in response to environmental change. In fungi separated by approximately 800 million years of evolution, Hsp90 potentiated the evolution of drug resistance in a different way, by enabling new mutations to have immediate phenotypic consequences. Resistance was abrogated by Hsp90 inhibitors and by febrile temperatures, suggesting new therapeutic strategies and a clinical benefit of fever. During selection in a human host, drug resistance that was initially Hsp90-dependent evolved toward independence. Thus, Hsp90 can act in diverse ways to couple environmental contingency to the emergence and fixation of new traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowen, Leah E -- Lindquist, Susan -- P30ES02109/ES/NIEHS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2185-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195452" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS-Related Opportunistic Infections/microbiology ; Antifungal Agents/*pharmacology ; Aspergillosis/microbiology ; Aspergillus/drug effects/genetics ; *Biological Evolution ; Calcineurin/genetics/*physiology ; Calcineurin Inhibitors ; Candida albicans/*drug effects/genetics ; Candidiasis/microbiology ; Cyclophilin A/metabolism ; *Drug Resistance, Fungal ; Echinocandins ; Ergosterol/biosynthesis ; Fluconazole/pharmacology ; HSP90 Heat-Shock Proteins/antagonists & inhibitors/genetics/*physiology ; Humans ; Mutation ; Peptides, Cyclic/pharmacology ; Phenotype ; Saccharomyces cerevisiae/*drug effects/genetics/metabolism ; Saccharomyces cerevisiae Proteins/antagonists & inhibitors/genetics/*physiology ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-12-06
    Description: Alpha-synuclein is implicated in several neurodegenerative disorders, such as Parkinson's disease and multiple system atrophy, yet its functions remain obscure. When expressed in yeast, alpha-synuclein associated with the plasma membrane in a highly selective manner, before forming cytoplasmic inclusions through a concentration-dependent, nucleated process. Alpha-synuclein inhibited phospholipase D, induced lipid droplet accumulation, and affected vesicle trafficking. This readily manipulable system provides an opportunity to dissect the molecular pathways underlying normal alpha-synuclein biology and the pathogenic consequences of its misfolding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Outeiro, Tiago Fleming -- Lindquist, Susan -- NS044829-01/NS/NINDS NIH HHS/ -- R21 NS044829/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Dec 5;302(5651):1772-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14657500" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Division ; Cell Membrane/metabolism ; Cytoplasm/metabolism ; Endocytosis ; Fluorescent Dyes/metabolism ; Inclusion Bodies/metabolism ; Intracellular Membranes/metabolism ; Lipid Metabolism ; Nerve Tissue Proteins/chemistry/*genetics/*metabolism ; Nuclear Proteins/metabolism ; Phospholipase D/antagonists & inhibitors/metabolism ; Point Mutation ; Protein Folding ; Pyridinium Compounds/metabolism ; Quaternary Ammonium Compounds/metabolism ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism/physiology ; Synucleins ; Ubiquitin/metabolism ; Vacuoles/metabolism ; alpha-Synuclein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...