ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-01-29
    Description: In the vertebrate retina, establishment of precise synaptic connections among distinct retinal neuron cell types is critical for processing visual information and for accurate visual perception. Retinal ganglion cells (RGCs), amacrine cells and bipolar cells establish stereotypic neurite arborization patterns to form functional neural circuits in the inner plexiform layer (IPL), a laminar region that is conventionally divided into five major parallel sublaminae. However, the molecular mechanisms governing distinct retinal subtype targeting to specific sublaminae within the IPL remain to be elucidated. Here we show that the transmembrane semaphorin Sema6A signals through its receptor PlexinA4 (PlexA4) to control lamina-specific neuronal stratification in the mouse retina. Expression analyses demonstrate that Sema6A and PlexA4 proteins are expressed in a complementary fashion in the developing retina: Sema6A in most ON sublaminae and PlexA4 in OFF sublaminae of the IPL. Mice with null mutations in PlexA4 or Sema6A exhibit severe defects in stereotypic lamina-specific neurite arborization of tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells, intrinsically photosensitive RGCs (ipRGCs) and calbindin-positive cells in the IPL. Sema6A and PlexA4 genetically interact in vivo for the regulation of dopaminergic amacrine cell laminar targeting. Therefore, neuronal targeting to subdivisions of the IPL in the mammalian retina is directed by repulsive transmembrane guidance cues present on neuronal processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063100/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063100/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, Ryota L -- Nguyen-Ba-Charvet, Kim T -- Parray, Aijaz -- Badea, Tudor C -- Chedotal, Alain -- Kolodkin, Alex L -- R01 NS35165/NS/NINDS NIH HHS/ -- R37 NS035165/NS/NINDS NIH HHS/ -- R37 NS035165-13/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Feb 10;470(7333):259-63. doi: 10.1038/nature09675.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21270798" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/enzymology/metabolism ; Animals ; Calbindins ; Cell Membrane/*metabolism ; Dopamine/metabolism ; Gene Expression Profiling ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Nerve Tissue Proteins ; Neurites/metabolism ; Neurons/*cytology/*metabolism ; Receptors, Cell Surface/deficiency/genetics/metabolism ; Retina/*cytology/embryology/*metabolism ; Retinal Ganglion Cells/metabolism ; Rod Opsins/metabolism ; S100 Calcium Binding Protein G/metabolism ; Semaphorins/deficiency/genetics/*metabolism ; *Signal Transduction ; Tyrosine 3-Monooxygenase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-02
    Description: Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Lu O -- Jiang, Zheng -- Rivlin-Etzion, Michal -- Hand, Randal -- Brady, Colleen M -- Matsuoka, Ryota L -- Yau, King-Wai -- Feller, Marla B -- Kolodkin, Alex L -- EY013528/EY/NEI NIH HHS/ -- EY019498/EY/NEI NIH HHS/ -- EY06837/EY/NEI NIH HHS/ -- NS35165/NS/NINDS NIH HHS/ -- P30 NS050274/NS/NINDS NIH HHS/ -- R01 EY006837/EY/NEI NIH HHS/ -- R01 EY019498/EY/NEI NIH HHS/ -- R01 NS035165/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):1241974. doi: 10.1126/science.1241974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179230" target="_blank"〉PubMed〈/a〉
    Keywords: Amacrine Cells/cytology/metabolism/*physiology ; Animals ; Dendrites/metabolism/physiology ; Mice ; Mice, Mutant Strains ; Motion ; *Motion Perception ; Nerve Tissue Proteins/genetics/*metabolism ; Receptors, Cell Surface/genetics/*metabolism ; Retina/metabolism/*physiology ; Semaphorins/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-09
    Description: Rice is an excellent source of starch, which is normally hydrolyzed by enzymes in the digestive tract to be converted into glucose that cells directly use to produce energy for their metabolic functions. However, when there is less energy demand from cells, any excess calories from starch are stored in...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...