ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (2,814)
  • Cell Line  (2,037)
  • American Association for the Advancement of Science (AAAS)  (4,482)
  • Elsevier  (128)
  • American Institute of Physics (AIP)
Collection
Keywords
Publisher
Years
  • 101
    Publication Date: 2013-04-20
    Description: Both bats and rats exhibit grid cells in medial entorhinal cortex that fire as they visit a regular array of spatial locations. In rats, grid-cell firing field properties correlate with theta-frequency rhythmicity of spiking and membrane-potential resonance; however, bat grid cells do not exhibit theta rhythmic spiking, generating controversy over the role of theta rhythm. To test whether this discrepancy reflects differences in rhythmicity at a cellular level, we performed whole-cell patch recordings from entorhinal neurons in both species to record theta-frequency resonance. Bat neurons showed no theta-frequency resonance, suggesting grid-cell coding via different mechanisms in bats and rats or lack of theta rhythmic contributions to grid-cell firing in either species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heys, James G -- MacLeod, Katrina M -- Moss, Cynthia F -- Hasselmo, Michael E -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):363-7. doi: 10.1126/science.1233831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program for Neuroscience, Center for Memory and Brain, Boston University, 2 Cummington Street, Boston, MA 02215, USA. jimheys@bu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23599495" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chiroptera ; Entorhinal Cortex/cytology/*physiology ; Female ; Male ; Membrane Potentials ; Models, Neurological ; Neurons/cytology/*physiology ; Patch-Clamp Techniques ; Rats ; Rats, Long-Evans ; *Theta Rhythm
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2013-04-06
    Description: We used a combined optogenetic-electrophysiological strategy to determine the functional identity of entorhinal cells with output to the place-cell population in the hippocampus. Channelrhodopsin-2 (ChR2) was expressed selectively in the hippocampus-targeting subset of entorhinal projection neurons by infusing retrogradely transportable ChR2-coding recombinant adeno-associated virus in the hippocampus. Virally transduced ChR2-expressing cells were identified in medial entorhinal cortex as cells that fired at fixed minimal latencies in response to local flashes of light. A large number of responsive cells were grid cells, but short-latency firing was also induced in border cells and head-direction cells, as well as cells with irregular or nonspatial firing correlates, which suggests that place fields may be generated by convergence of signals from a broad spectrum of entorhinal functional cell types.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Sheng-Jia -- Ye, Jing -- Miao, Chenglin -- Tsao, Albert -- Cerniauskas, Ignas -- Ledergerber, Debora -- Moser, May-Britt -- Moser, Edvard I -- New York, N.Y. -- Science. 2013 Apr 5;340(6128):1232627. doi: 10.1126/science.1232627.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway. sheng-jia.zhang@ntnu.no〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23559255" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; CA1 Region, Hippocampal/cytology/physiology ; *Cell Communication ; Dependovirus ; Entorhinal Cortex/cytology/*physiology ; Gene Targeting ; Hippocampus/cytology/*physiology ; Neurons/*physiology ; Photic Stimulation ; Rats ; Rhodopsin/biosynthesis/genetics ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2013-08-03
    Description: Robust transmission of information despite the presence of variation is a fundamental problem in cellular functions. However, the capability and characteristics of information transmission in signaling pathways remain poorly understood. We describe robustness and compensation of information transmission of signaling pathways at the cell population level. We calculated the mutual information transmitted through signaling pathways for the growth factor-mediated gene expression. Growth factors appeared to carry only information sufficient for a binary decision. Information transmission was generally more robust than average signal intensity despite pharmacological perturbations, and compensation of information transmission occurred. Information transmission to the biological output of neurite extension appeared robust. Cells may use information entropy as information so that messages can be robustly transmitted despite variation in molecular activities among individual cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uda, Shinsuke -- Saito, Takeshi H -- Kudo, Takamasa -- Kokaji, Toshiya -- Tsuchiya, Takaho -- Kubota, Hiroyuki -- Komori, Yasunori -- Ozaki, Yu-ichi -- Kuroda, Shinya -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):558-61. doi: 10.1126/science.1234511.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908238" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cyclic AMP Response Element-Binding Protein/metabolism ; Early Growth Response Protein 1/metabolism ; Gene Expression/drug effects ; *Information Theory ; Intercellular Signaling Peptides and Proteins/pharmacology ; PC12 Cells ; Proto-Oncogene Proteins c-fos/metabolism ; Rats ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2013-08-31
    Description: The lateral habenula (LHb) has recently emerged as a key brain region in the pathophysiology of depression. However, the molecular mechanism by which LHb becomes hyperactive in depression remains unknown. Through a quantitative proteomic screen, we found that expression of the beta form of calcium/calmodulin-dependent protein kinase type II (betaCaMKappaIotaIota) was significantly up-regulated in the LHb of animal models of depression and down-regulated by antidepressants. Increasing beta-, but not alpha-, CaMKII in the LHb strongly enhanced the synaptic efficacy and spike output of LHb neurons and was sufficient to produce profound depressive symptoms, including anhedonia and behavioral despair. Down-regulation of betaCaMKII levels, blocking its activity or its target molecule the glutamate receptor GluR1 reversed the depressive symptoms. These results identify betaCaMKII as a powerful regulator of LHb neuron function and a key molecular determinant of depression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3932364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Kun -- Zhou, Tao -- Liao, Lujian -- Yang, Zhongfei -- Wong, Catherine -- Henn, Fritz -- Malinow, Roberto -- Yates, John R 3rd -- Hu, Hailan -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH091119/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 30;341(6149):1016-20. doi: 10.1126/science.1240729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P R China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23990563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidepressive Agents/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & ; inhibitors/*biosynthesis/genetics ; Depressive Disorder, Major/*enzymology/genetics/psychology ; Disease Models, Animal ; Gene Knockdown Techniques ; Habenula/drug effects/*enzymology ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/enzymology ; Promoter Regions, Genetic ; Proteomics ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749839/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3749839/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nedergaard, Maiken -- R01 MH099578/MH/NIMH NIH HHS/ -- R01 NS075177/NS/NINDS NIH HHS/ -- R01 NS078167/NS/NINDS NIH HHS/ -- R01 NS078304/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1529-30. doi: 10.1126/science.1240514.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA. nedergaard@urmc.rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812703" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aquaporin 4/*metabolism ; Brain/*physiopathology ; Cerebrospinal Fluid/metabolism ; Extracellular Fluid/metabolism ; Humans ; Lymphatic Vessels/*metabolism ; Mice ; Neurodegenerative Diseases/cerebrospinal fluid/*physiopathology/*therapy ; Neuroglia/*metabolism ; Neurons/metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2013-07-28
    Description: The resolution of type 2 diabetes after Roux-en-Y gastric bypass (RYGB) attests to the important role of the gastrointestinal tract in glucose homeostasis. Previous studies in RYGB-treated rats have shown that the Roux limb displays hyperplasia and hypertrophy. Here, we report that the Roux limb of RYGB-treated rats exhibits reprogramming of intestinal glucose metabolism to meet its increased bioenergetic demands; glucose transporter-1 is up-regulated, basolateral glucose uptake is enhanced, aerobic glycolysis is augmented, and glucose is directed toward metabolic pathways that support tissue growth. We show that reprogramming of intestinal glucose metabolism is triggered by the exposure of the Roux limb to undigested nutrients. We demonstrate by positron emission tomography-computed tomography scanning and biodistribution analysis using 2-deoxy-2-[18F]fluoro-D-glucose that reprogramming of intestinal glucose metabolism renders the intestine a major tissue for glucose disposal, contributing to the improvement in glycemic control after RYGB.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068965/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeidi, Nima -- Meoli, Luca -- Nestoridi, Eirini -- Gupta, Nitin K -- Kvas, Stephanie -- Kucharczyk, John -- Bonab, Ali A -- Fischman, Alan J -- Yarmush, Martin L -- Stylopoulos, Nicholas -- DK089503/DK/NIDDK NIH HHS/ -- F32 DK095558/DK/NIDDK NIH HHS/ -- F32DK095558/DK/NIDDK NIH HHS/ -- P50 GM021700/GM/NIGMS NIH HHS/ -- T32DK007191/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):406-10. doi: 10.1126/science.1235103.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Basic and Translational Obesity Research, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888041" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Animals ; Blood Glucose/*metabolism ; Cholesterol/biosynthesis ; Diabetes Mellitus, Experimental/metabolism/surgery ; Digestion ; Energy Metabolism ; Fluorodeoxyglucose F18/metabolism ; *Gastric Bypass ; Gene Expression Regulation ; Glucose/*metabolism ; Glucose Transporter Type 1/metabolism ; Glycolysis ; Jejunum/*metabolism ; Male ; Metabolic Networks and Pathways ; Metabolomics ; Multimodal Imaging ; Pentose Phosphate Pathway ; Positron-Emission Tomography ; Rats ; Rats, Long-Evans ; Signal Transduction ; Tissue Distribution ; Tomography, X-Ray Computed ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2013-03-09
    Description: Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shilagardi, Khurts -- Li, Shuo -- Luo, Fengbao -- Marikar, Faiz -- Duan, Rui -- Jin, Peng -- Kim, Ji Hoon -- Murnen, Katherine -- Chen, Elizabeth H -- R01 GM098816/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):359-63. doi: 10.1126/science.1234781. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470732" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Communication ; Cell Culture Techniques ; *Cell Fusion ; Cell Line ; Cell Surface Extensions/metabolism/physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology ; Immunoglobulins/genetics/metabolism ; Membrane Glycoproteins/genetics/*metabolism ; Membrane Proteins/genetics/metabolism ; Muscle Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):833-6. doi: 10.1126/science.341.6148.833.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970676" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 9/genetics/*metabolism ; DNA, Bacterial/*genetics ; Disease Models, Animal ; Food Microbiology ; Gene Knockout Techniques/methods ; Gene Targeting/*methods ; Genome/genetics ; Humans ; Mice ; Rats ; *Streptococcus Phages ; Streptococcus thermophilus/*genetics/*immunology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2013-05-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2013 May 24;340(6135):909. doi: 10.1126/science.340.6135.909.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; *Cognition ; *Forecasting ; Hippocampus/physiology ; Neurons/physiology ; Neuropsychological Tests ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, Trisha -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1390. doi: 10.1126/science.340.6139.1390.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788774" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism ; DNA Methylation ; *Embryonic Stem Cells/physiology ; Humans ; Induced Pluripotent Stem Cells/physiology ; Nuclear Transfer Techniques ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-07-03
    Description: The thalamocortical (TC) projection to layer 4 (L4) is thought to be the main route by which sensory organs communicate with cortex. Sensory information is believed to then propagate through the cortical column along the L4--〉L2/3--〉L5/6 pathway. Here, we show that sensory-evoked responses of L5/6 neurons in rats derive instead from direct TC synapses. Many L5/6 neurons exhibited sensory-evoked postsynaptic potentials with the same latencies as L4. Paired in vivo recordings from L5/6 neurons and thalamic neurons revealed substantial convergence of direct TC synapses onto diverse types of infragranular neurons, particularly in L5B. Pharmacological inactivation of L4 had no effect on sensory-evoked synaptic input to L5/6 neurons. L4 is thus not an obligatory distribution hub for cortical activity, and thalamus activates two separate, independent "strata" of cortex in parallel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203320/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4203320/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Constantinople, Christine M -- Bruno, Randy M -- NS069679/NS/NINDS NIH HHS/ -- R01 NS069679/NS/NINDS NIH HHS/ -- T32 HD007430/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1591-4. doi: 10.1126/science.1236425.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812718" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Evoked Potentials, Somatosensory ; Neocortex/cytology/drug effects/*physiology ; Neurons/drug effects/physiology ; Rats ; Rats, Wistar ; Synapses/drug effects/physiology ; Thalamus/cytology/drug effects/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2013-07-28
    Description: Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bassi, C -- Ho, J -- Srikumar, T -- Dowling, R J O -- Gorrini, C -- Miller, S J -- Mak, T W -- Neel, B G -- Raught, B -- Stambolic, V -- R37 CA49152/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Aminopyridines/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/*enzymology/metabolism ; Cisplatin/pharmacology ; DNA Breaks, Double-Stranded ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Doxorubicin/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Morpholines/pharmacology ; Neoplasm Transplantation ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphatidylinositol 3-Kinase/antagonists & inhibitors ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Sumoylation ; Transplantation, Heterologous ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2013-10-26
    Description: The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to alpha-synuclein (alphasyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring alphasyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of alphasyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Chee Yeun -- Khurana, Vikram -- Auluck, Pavan K -- Tardiff, Daniel F -- Mazzulli, Joseph R -- Soldner, Frank -- Baru, Valeriya -- Lou, Yali -- Freyzon, Yelena -- Cho, Sukhee -- Mungenast, Alison E -- Muffat, Julien -- Mitalipova, Maisam -- Pluth, Michael D -- Jui, Nathan T -- Schule, Birgitt -- Lippard, Stephen J -- Tsai, Li-Huei -- Krainc, Dimitri -- Buchwald, Stephen L -- Jaenisch, Rudolf -- Lindquist, Susan -- 5 R01CA084198/CA/NCI NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- P50 AG005134/AG/NIA NIH HHS/ -- R01 CA084198/CA/NCI NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):983-7. doi: 10.1126/science.1245296. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158904" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Endoplasmic Reticulum Stress/drug effects ; Female ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mutation ; Neurogenesis ; Neurons/*drug effects/metabolism/pathology ; Parkinson Disease/genetics/*metabolism ; Rats ; alpha-Synuclein/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- Vogel, Gretchen -- New York, N.Y. -- Science. 2013 May 31;340(6136):1026-7. doi: 10.1126/science.340.6136.1026.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723209" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Culture Techniques ; Cell Line ; *Cloning, Organism ; Embryonic Stem Cells/*cytology ; Humans ; Oregon ; Peer Review, Research/*standards ; Scientific Misconduct ; Skin/*cytology ; Software ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2013-10-26
    Description: alpha-Synuclein (alpha-syn) is a small lipid-binding protein implicated in several neurodegenerative diseases, including Parkinson's disease, whose pathobiology is conserved from yeast to man. There are no therapies targeting these underlying cellular pathologies, or indeed those of any major neurodegenerative disease. Using unbiased phenotypic screens as an alternative to target-based approaches, we discovered an N-aryl benzimidazole (NAB) that strongly and selectively protected diverse cell types from alpha-syn toxicity. Three chemical genetic screens in wild-type yeast cells established that NAB promoted endosomal transport events dependent on the E3 ubiquitin ligase Rsp5/Nedd4. These same steps were perturbed by alpha-syn itself. Thus, NAB identifies a druggable node in the biology of alpha-syn that can correct multiple aspects of its underlying pathology, including dysfunctional endosomal and endoplasmic reticulum-to-Golgi vesicle trafficking.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993916/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993916/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tardiff, Daniel F -- Jui, Nathan T -- Khurana, Vikram -- Tambe, Mitali A -- Thompson, Michelle L -- Chung, Chee Yeun -- Kamadurai, Hari B -- Kim, Hyoung Tae -- Lancaster, Alex K -- Caldwell, Kim A -- Caldwell, Guy A -- Rochet, Jean-Christophe -- Buchwald, Stephen L -- Lindquist, Susan -- 5R01GM069530/GM/NIGMS NIH HHS/ -- F32GM099817/GM/NIGMS NIH HHS/ -- F32NS061419/NS/NINDS NIH HHS/ -- GM58160/GM/NIGMS NIH HHS/ -- K01 AG038546/AG/NIA NIH HHS/ -- R01 GM058160/GM/NIGMS NIH HHS/ -- R15 NS075684/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 22;342(6161):979-83. doi: 10.1126/science.1245321. Epub 2013 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research (WIBR), Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24158909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzimidazoles/chemistry/*pharmacology ; Caenorhabditis elegans ; Cells, Cultured ; *Cytoprotection ; Drug Evaluation, Preclinical ; Endosomal Sorting Complexes Required for Transport/*genetics ; Gene Regulatory Networks/*drug effects ; Neurodegenerative Diseases/*metabolism ; Neurons/*drug effects/metabolism ; Neuroprotective Agents/*pharmacology ; Parkinson Disease/metabolism ; Rats ; Saccharomyces cerevisiae/drug effects ; Saccharomyces cerevisiae Proteins/*genetics ; Small Molecule Libraries/chemistry/pharmacology ; Ubiquitin-Protein Ligase Complexes/*genetics ; Ubiquitin-Protein Ligases/*genetics ; alpha-Synuclein/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2013-04-27
    Description: Neurotransmitters have been thought to be fixed throughout life, but whether sensory stimuli alter behaviorally relevant transmitter expression in the mature brain is unknown. We found that populations of interneurons in the adult rat hypothalamus switched between dopamine and somatostatin expression in response to exposure to short- and long-day photoperiods. Changes in postsynaptic dopamine receptor expression matched changes in presynaptic dopamine, whereas somatostatin receptor expression remained constant. Pharmacological blockade or ablation of these dopaminergic neurons led to anxious and depressed behavior, phenocopying performance after exposure to the long-day photoperiod. Induction of newly dopaminergic neurons through exposure to the short-day photoperiod rescued the behavioral consequences of lesions. Natural stimulation of other sensory modalities may cause changes in transmitter expression that regulate different behaviors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dulcis, Davide -- Jamshidi, Pouya -- Leutgeb, Stefan -- Spitzer, Nicholas C -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):449-53. doi: 10.1126/science.1234152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences and Center for Neural Circuits and Behavior, University of California-San Diego, La Jolla, CA 92093-0357, USA. ddulcis@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/*physiology ; Brain/metabolism/*physiology ; Cell Count ; Dopamine/*metabolism ; Dopaminergic Neurons/metabolism/*physiology ; Hypothalamus/metabolism/physiology ; Male ; Maze Learning ; *Photoperiod ; Rats ; Rats, Long-Evans ; Receptors, Dopamine/metabolism ; Receptors, Somatostatin/metabolism ; Seasons ; Somatostatin/*metabolism ; Stress, Psychological/*psychology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2013-11-30
    Description: The late phase of long-term potentiation (LTP) at glutamatergic synapses, which is thought to underlie long-lasting memory, requires gene transcription in the nucleus. However, the mechanism by which signaling initiated at synapses is transmitted into the nucleus to induce transcription has remained elusive. Here, we found that induction of LTP in only three to seven dendritic spines in rat CA1 pyramidal neurons was sufficient to activate extracellular signal-regulated kinase (ERK) in the nucleus and regulate downstream transcription factors. Signaling from individual spines was integrated over a wide range of time (〉30 minutes) and space (〉80 micrometers). Spatially dispersed inputs over multiple branches activated nuclear ERK much more efficiently than clustered inputs over one branch. Thus, biochemical signals from individual dendritic spines exert profound effects on nuclear signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318497/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4318497/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhai, Shenyu -- Ark, Eugene D -- Parra-Bueno, Paula -- Yasuda, Ryohei -- R01 MH080047/MH/NIMH NIH HHS/ -- R01 NS068410/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1107-11. doi: 10.1126/science.1245622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288335" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/enzymology/*physiology ; Cells, Cultured ; Dendritic Spines/enzymology/*physiology ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Glutamates/metabolism ; *Long-Term Potentiation ; Rats ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2013-05-11
    Description: Mutations in the PARK2 (parkin) gene are responsible for an autosomal recessive form of Parkinson's disease. The parkin protein is a RING-in-between-RING E3 ubiquitin ligase that exhibits low basal activity. We describe the crystal structure of full-length rat parkin. The structure shows parkin in an autoinhibited state and provides insight into how it is activated. RING0 occludes the ubiquitin acceptor site Cys(431) in RING2, whereas a repressor element of parkin binds RING1 and blocks its E2-binding site. Mutations that disrupted these inhibitory interactions activated parkin both in vitro and in cells. Parkin is neuroprotective, and these findings may provide a structural and mechanistic framework for enhancing parkin activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trempe, Jean-Francois -- Sauve, Veronique -- Grenier, Karl -- Seirafi, Marjan -- Tang, Matthew Y -- Menade, Marie -- Al-Abdul-Wahid, Sameer -- Krett, Jonathan -- Wong, Kathy -- Kozlov, Guennadi -- Nagar, Bhushan -- Fon, Edward A -- Gehring, Kalle -- MOP-14219/Canadian Institutes of Health Research/Canada -- MOP-62714/Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1451-5. doi: 10.1126/science.1237908. Epub 2013 May 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉McGill Parkinson Program, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23661642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Parkinson Disease ; Parkinsonian Disorders ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Rats ; Ubiquitin-Protein Ligases/*chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-04-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Birren, Susan J -- Marder, Eve -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):436-7. doi: 10.1126/science.1238518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department and Volen Center, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620040" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Hormones/blood ; Animals ; Anxiety/blood/physiopathology ; Corticotropin-Releasing Hormone/*secretion ; Depression/blood/physiopathology ; Dopamine/*secretion ; Humans ; Hypothalamus/cytology/*physiology/secretion ; *Neuronal Plasticity ; Neurons/secretion ; *Photoperiod ; Rats ; Signal Transduction ; Somatostatin/*secretion ; Stress, Psychological/blood/physiopathology ; *Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2013-07-13
    Description: A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an "eat me" signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8(-/-) cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Jun -- Denning, Daniel P -- Imanishi, Eiichi -- Horvitz, H Robert -- Nagata, Shigekazu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):403-6. doi: 10.1126/science.1236758. Epub 2013 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23845944" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Calcium/metabolism ; Caspases/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Membrane/*metabolism ; CpG Islands ; Humans ; Macrophages/physiology ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Phagocytosis ; Phosphatidylserines/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2012-04-21
    Description: Salicylate, a plant product, has been in medicinal use since ancient times. More recently, it has been replaced by synthetic derivatives such as aspirin and salsalate, both of which are rapidly broken down to salicylate in vivo. At concentrations reached in plasma after administration of salsalate or of aspirin at high doses, salicylate activates adenosine monophosphate-activated protein kinase (AMPK), a central regulator of cell growth and metabolism. Salicylate binds at the same site as the synthetic activator A-769662 to cause allosteric activation and inhibition of dephosphorylation of the activating phosphorylation site, threonine-172. In AMPK knockout mice, effects of salicylate to increase fat utilization and to lower plasma fatty acids in vivo were lost. Our results suggest that AMPK activation could explain some beneficial effects of salsalate and aspirin in humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3399766/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hawley, Simon A -- Fullerton, Morgan D -- Ross, Fiona A -- Schertzer, Jonathan D -- Chevtzoff, Cyrille -- Walker, Katherine J -- Peggie, Mark W -- Zibrova, Darya -- Green, Kevin A -- Mustard, Kirsty J -- Kemp, Bruce E -- Sakamoto, Kei -- Steinberg, Gregory R -- Hardie, D Grahame -- 080982/Wellcome Trust/United Kingdom -- 097726/Wellcome Trust/United Kingdom -- MC_U127088492/Medical Research Council/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 May 18;336(6083):918-22. doi: 10.1126/science.1215327. Epub 2012 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22517326" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/genetics/*metabolism ; Amino Acid Substitution ; Animals ; Aspirin/pharmacology ; Binding Sites ; Carbohydrate Metabolism/drug effects ; Cell Line ; Enzyme Activation ; Enzyme Activators/pharmacology ; HEK293 Cells ; Humans ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Mice ; Mice, Knockout ; Mutation ; Oxygen Consumption/drug effects ; Phosphorylation ; Pyrones/pharmacology ; Rats ; Salicylates/blood/*metabolism/*pharmacology ; Thiophenes/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2012-10-09
    Description: Although synaptic transmission may be unidirectional, the establishment of synaptic connections with specific properties can involve bidirectional signaling. Pyramidal neurons in the hippocampus form functionally distinct synapses onto two types of interneurons. Excitatory synapses onto oriens-lacunosum moleculare (O-LM) interneurons are facilitating and have a low release probability, whereas synapses onto parvalbumin interneurons are depressing and have a high release probability. Here, we show that the extracellular leucine-rich repeat fibronectin containing 1 (Elfn1) protein is selectively expressed by O-LM interneurons and regulates presynaptic release probability to direct the formation of highly facilitating pyramidal-O-LM synapses. Thus, postsynaptic expression of Elfn1 in O-LM interneurons regulates presynaptic release probability, which confers target-specific synaptic properties to pyramidal cell axons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sylwestrak, Emily L -- Ghosh, Anirvan -- R01 NS067216/NS/NINDS NIH HHS/ -- R01NS067216/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):536-40. doi: 10.1126/science.1222482. Epub 2012 Oct 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0366, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042292" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; CA1 Region, Hippocampal/*metabolism ; Cells, Cultured ; Gene Knockdown Techniques ; Green Fluorescent Proteins/genetics/metabolism ; HEK293 Cells ; Humans ; Interneurons/*metabolism ; Mice ; Nerve Tissue Proteins/genetics/*metabolism ; RNA, Small Interfering/metabolism ; Rats ; Rats, Inbred LEC ; Synapses/genetics/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):30-1. doi: 10.1126/science.338.6103.30-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042864" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*physiology ; Hippocampus/physiology ; Humans ; *Mental Recall ; Neuronal Plasticity ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2012-01-24
    Description: Synaptic inputs on dendrites are nonlinearly converted to action potential outputs, yet the spatiotemporal patterns of dendritic activation remain to be elucidated at single-synapse resolution. In rodents, we optically imaged synaptic activities from hundreds of dendritic spines in hippocampal and neocortical pyramidal neurons ex vivo and in vivo. Adjacent spines were frequently synchronized in spontaneously active networks, thereby forming dendritic foci that received locally convergent inputs from presynaptic cell assemblies. This precise subcellular geometry manifested itself during N-methyl-D-aspartate receptor-dependent circuit remodeling. Thus, clustered synaptic plasticity is innately programmed to compartmentalize correlated inputs along dendrites and may reify nonlinear synaptic integration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takahashi, Naoya -- Kitamura, Kazuo -- Matsuo, Naoki -- Mayford, Mark -- Kano, Masanobu -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):353-6. doi: 10.1126/science.1210362.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267814" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA3 Region, Hippocampal/cytology/physiology ; Calcium/metabolism ; Dendritic Spines/*physiology/ultrastructure ; Excitatory Postsynaptic Potentials ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Nerve Net/*physiology ; Neuronal Plasticity ; Organ Culture Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors/metabolism ; Somatosensory Cortex/cytology/physiology ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2012-06-02
    Description: Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Javier M -- Stein, Alexander -- Behrmann, Elmar -- Riedel, Dietmar -- Cypionka, Anna -- Farsi, Zohreh -- Walla, Peter J -- Raunser, Stefan -- Jahn, Reinhard -- 3P01GM072694-05S1/GM/NIGMS NIH HHS/ -- P01 GM072694/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1581-4. doi: 10.1126/science.1221976. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653732" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Lipid Bilayers/chemistry/*metabolism ; *Liposomes/chemistry/metabolism ; *Membrane Fusion ; Protein Binding ; Protein Conformation ; Rats ; SNARE Proteins/chemistry/*metabolism ; Vesicle-Associated Membrane Protein 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2012-01-17
    Description: Painful stimuli activate nociceptive C fibers and induce synaptic long-term potentiation (LTP) at their spinal terminals. LTP at C-fiber synapses represents a cellular model for pain amplification (hyperalgesia) and for a memory trace of pain. mu-Opioid receptor agonists exert a powerful but reversible depression at C-fiber synapses that renders the continuous application of low opioid doses the gold standard in pain therapy. We discovered that brief application of a high opioid dose reversed various forms of activity-dependent LTP at C-fiber synapses. Depotentiation involved Ca(2+)-dependent signaling and normalization of the phosphorylation state of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This also reversed hyperalgesia in behaving animals. Opioids thus not only temporarily dampen pain but may also erase a spinal memory trace of pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drdla-Schutting, Ruth -- Benrath, Justus -- Wunderbaldinger, Gabriele -- Sandkuhler, Jurgen -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):235-8. doi: 10.1126/science.1211726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246779" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/*administration & dosage ; Animals ; Calcium Signaling ; Evoked Potentials ; Hyperalgesia/chemically induced/drug therapy ; Long-Term Potentiation/*drug effects ; Male ; Naloxone/administration & dosage ; Nerve Fibers, Unmyelinated/*drug effects/physiology ; Nociceptive Pain/*drug therapy/physiopathology ; Phosphorylation ; Piperidines/*administration & dosage ; Protein Kinase C/antagonists & inhibitors/metabolism ; Protein Phosphatase 1/antagonists & inhibitors/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, Opioid, mu/agonists/metabolism ; Sciatic Nerve/*drug effects/physiology ; Somatostatin/administration & dosage/analogs & derivatives ; Spinal Cord/physiology ; Synapses/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2012-09-29
    Description: Newly synthesized proteins exit the endoplasmic reticulum (ER) via coat protein complex II (COPII) vesicles. Procollagen (PC), however, forms prefibrils that are too large to fit into typical COPII vesicles; PC thus needs large transport carriers, which we term megacarriers. TANGO1 assists PC packing, but its role in promoting the growth of megacarriers is not known. We found that TANGO1 recruited Sedlin, a TRAPP component that is defective in spondyloepiphyseal dysplasia tarda (SEDT), and that Sedlin was required for the ER export of PC. Sedlin bound and promoted efficient cycling of Sar1, a guanosine triphosphatase that can constrict membranes, and thus allowed nascent carriers to grow and incorporate PC prefibrils. This joint action of TANGO1 and Sedlin sustained the ER export of PC, and its derangement may explain the defective chondrogenesis underlying SEDT.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471527/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471527/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venditti, Rossella -- Scanu, Tiziana -- Santoro, Michele -- Di Tullio, Giuseppe -- Spaar, Alexander -- Gaibisso, Renato -- Beznoussenko, Galina V -- Mironov, Alexander A -- Mironov, Alexander Jr -- Zelante, Leopoldo -- Piemontese, Maria Rosaria -- Notarangelo, Angelo -- Malhotra, Vivek -- Vertel, Barbara M -- Wilson, Cathal -- De Matteis, Maria Antonietta -- AR053696/AR/NIAMS NIH HHS/ -- GGP06166/Telethon/Italy -- GGP07075/Telethon/Italy -- GSP08002/Telethon/Italy -- GTF08001/Telethon/Italy -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1668-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine, Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019651" target="_blank"〉PubMed〈/a〉
    Keywords: Aryl Hydrocarbon Receptor Nuclear Translocator/*metabolism ; COP-Coated Vesicles/metabolism ; Cell Line ; Chondrogenesis/genetics ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/metabolism ; Humans ; Membrane Transport Proteins/genetics/*metabolism ; Monomeric GTP-Binding Proteins/*metabolism ; Mutation ; Osteochondrodysplasias/genetics/metabolism ; Procollagen/*metabolism ; Protein Transport ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2012-02-04
    Description: To combat the functional decline of the proteome, cells use the process of protein turnover to replace potentially impaired polypeptides with new functional copies. We found that extremely long-lived proteins (ELLPs) did not turn over in postmitotic cells of the rat central nervous system. These ELLPs were associated with chromatin and the nuclear pore complex, the central transport channels that mediate all molecular trafficking in and out of the nucleus. The longevity of these proteins would be expected to expose them to potentially harmful metabolites, putting them at risk of accumulating damage over extended periods of time. Thus, it is possible that failure to maintain proper levels and functional integrity of ELLPs in nonproliferative cells might contribute to age-related deterioration in cell and tissue function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296478/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296478/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Savas, Jeffrey N -- Toyama, Brandon H -- Xu, Tao -- Yates, John R 3rd -- Hetzer, Martin W -- F32 AG039127/AG/NIA NIH HHS/ -- F32 AG039127-01A1/AG/NIA NIH HHS/ -- F32AG039127/AG/NIA NIH HHS/ -- HHSN268201000035C/PHS HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P01 AG031097-03/AG/NIA NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- P30 CA014195-35/CA/NCI NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- P41 RR011823-14/RR/NCRR NIH HHS/ -- R01 MH067880/MH/NIMH NIH HHS/ -- R01 MH067880-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):942. doi: 10.1126/science.1217421. Epub 2012 Feb 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22300851" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/*metabolism ; Cell Aging ; Chromatin/metabolism ; Female ; Half-Life ; Liver/metabolism ; Mitosis ; Nuclear Pore/*metabolism ; Nuclear Pore Complex Proteins/*metabolism ; Proteome/metabolism ; Rats ; Rats, Sprague-Dawley ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2012-04-28
    Description: In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser(86), which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60(S86A) that cannot be phosphorylated by GSK3 could not undergo serum deprivation-induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1(-/-) mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Shu-Yong -- Li, Terytty Yang -- Liu, Qing -- Zhang, Cixiong -- Li, Xiaotong -- Chen, Yan -- Zhang, Shi-Meng -- Lian, Guili -- Liu, Qi -- Ruan, Ka -- Wang, Zhen -- Zhang, Chen-Song -- Chien, Kun-Yi -- Wu, Jiawei -- Li, Qinxi -- Han, Jiahuai -- Lin, Sheng-Cai -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):477-81. doi: 10.1126/science.1217032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Serum-Free ; Glucose/metabolism ; Glycogen Synthase Kinase 3/genetics/*metabolism ; HEK293 Cells ; Histone Acetyltransferases/genetics/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Rats ; *Signal Transduction ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2012-01-17
    Description: The cytokine tumor necrosis factor (TNF) is the primary trigger of inflammation. Like many extracellular signaling proteins, TNF is synthesized as a transmembrane protein; the active signal is its ectodomain, which is shed from cells after cleavage by an ADAM family metalloprotease, ADAM17 (TNFalpha-converting enzyme, TACE). We report that iRhom2 (RHBDF2), a proteolytically inactive member of the rhomboid family, is required for TNF release in mice. iRhom2 binds TACE and promotes its exit from the endoplasmic reticulum. The failure of TACE to exit the endoplasmic reticulum in the absence of iRhom2 prevents the furin-mediated maturation and trafficking of TACE to the cell surface, the site of TNF cleavage. Given the role of TNF in autoimmune and inflammatory diseases, iRhom2 may represent an attractive therapeutic target.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272371/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adrain, Colin -- Zettl, Markus -- Christova, Yonka -- Taylor, Neil -- Freeman, Matthew -- MC_U105178780/Medical Research Council/United Kingdom -- U.1051.01.009(78780)/Medical Research Council/United Kingdom -- U105178780/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):225-8. doi: 10.1126/science.1214400.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246777" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/*metabolism ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Endoplasmic Reticulum/metabolism ; Enzyme Activation ; Furin/metabolism ; Humans ; Lipopolysaccharides/immunology ; Macrophages/metabolism ; Mice ; Mice, Knockout ; Protein Binding ; Protein Transport ; *Signal Transduction ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2012-08-21
    Description: The origin of the spatial receptive fields of hippocampal place cells has not been established. A hippocampal CA1 pyramidal cell receives thousands of synaptic inputs, mostly from other spatially tuned neurons; however, how the postsynaptic neuron's cellular properties determine the response to these inputs during behavior is unknown. We discovered that, contrary to expectations from basic models of place cells and neuronal integration, a small, spatially uniform depolarization of the spatially untuned somatic membrane potential of a silent cell leads to the sudden and reversible emergence of a spatially tuned subthreshold response and place-field spiking. Such gating of inputs by postsynaptic neuronal excitability reveals a cellular mechanism for receptive field origin and may be critical for the formation of hippocampal memory representations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Doyun -- Lin, Bei-Jung -- Lee, Albert K -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):849-53. doi: 10.1126/science.1221489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA. leed@janelia.hhmi.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22904011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CA1 Region, Hippocampal/cytology/*physiology ; *Excitatory Postsynaptic Potentials ; *Memory ; Pyramidal Cells/*physiology ; Rats ; *Spatial Behavior ; Synapses/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2012-01-17
    Description: Exocytosis is essential to the lytic cycle of apicomplexan parasites and required for the pathogenesis of toxoplasmosis and malaria. DOC2 proteins recruit the membrane fusion machinery required for exocytosis in a Ca(2+)-dependent fashion. Here, the phenotype of a Toxoplasma gondii conditional mutant impaired in host cell invasion and egress was pinpointed to a defect in secretion of the micronemes, an apicomplexan-specific organelle that contains adhesion proteins. Whole-genome sequencing identified the etiological point mutation in TgDOC2.1. A conditional allele of the orthologous gene engineered into Plasmodium falciparum was also defective in microneme secretion. However, the major effect was on invasion, suggesting that microneme secretion is dispensable for Plasmodium egress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3354045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farrell, Andrew -- Thirugnanam, Sivasakthivel -- Lorestani, Alexander -- Dvorin, Jeffrey D -- Eidell, Keith P -- Ferguson, David J P -- Anderson-White, Brooke R -- Duraisingh, Manoj T -- Marth, Gabor T -- Gubbels, Marc-Jan -- AI057919/AI/NIAID NIH HHS/ -- AI081220/AI/NIAID NIH HHS/ -- AI087874/AI/NIAID NIH HHS/ -- AI088314/AI/NIAID NIH HHS/ -- HG004719/HG/NHGRI NIH HHS/ -- K08 AI087874/AI/NIAID NIH HHS/ -- K08 AI087874-02/AI/NIAID NIH HHS/ -- R01 AI057919/AI/NIAID NIH HHS/ -- R01 HG004719/HG/NHGRI NIH HHS/ -- R21 AI081220/AI/NIAID NIH HHS/ -- R21 AI088314/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):218-21. doi: 10.1126/science.1210829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston College, Chestnut Hill, MA 02467, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246776" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Calcium/*metabolism ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; *Exocytosis ; Genes, Protozoan ; Genetic Complementation Test ; Genome, Protozoan ; Humans ; Models, Molecular ; Molecular Sequence Data ; Movement ; Mutagenesis ; Organelles/*metabolism ; Plasmodium falciparum/genetics/growth & development/physiology ; Point Mutation ; Protein Structure, Tertiary ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Toxoplasma/genetics/growth & development/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2012-06-30
    Description: Influenza A virus (IAV) infection leads to variable and imperfectly understood pathogenicity. We report that segment 3 of the virus contains a second open reading frame ("X-ORF"), accessed via ribosomal frameshifting. The frameshift product, termed PA-X, comprises the endonuclease domain of the viral PA protein with a C-terminal domain encoded by the X-ORF and functions to repress cellular gene expression. PA-X also modulates IAV virulence in a mouse infection model, acting to decrease pathogenicity. Loss of PA-X expression leads to changes in the kinetics of the global host response, which notably includes increases in inflammatory, apoptotic, and T lymphocyte-signaling pathways. Thus, we have identified a previously unknown IAV protein that modulates the host response to infection, a finding with important implications for understanding IAV pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jagger, B W -- Wise, H M -- Kash, J C -- Walters, K-A -- Wills, N M -- Xiao, Y-L -- Dunfee, R L -- Schwartzman, L M -- Ozinsky, A -- Bell, G L -- Dalton, R M -- Lo, A -- Efstathiou, S -- Atkins, J F -- Firth, A E -- Taubenberger, J K -- Digard, P -- 073126/Wellcome Trust/United Kingdom -- 088789/Wellcome Trust/United Kingdom -- G0700815/Medical Research Council/United Kingdom -- G0700815(82260)/Medical Research Council/United Kingdom -- G9800943/Medical Research Council/United Kingdom -- MR/J002232/1/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):199-204. doi: 10.1126/science.1222213. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; Conserved Sequence ; Female ; *Frameshifting, Ribosomal ; Gene Expression Regulation ; Genome, Viral ; HEK293 Cells ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/growth & development/pathogenicity ; Influenza A virus/*genetics/metabolism ; Lung/pathology/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; *Open Reading Frames ; Orthomyxoviridae Infections/genetics/immunology/pathology/*virology ; Protein Interaction Domains and Motifs ; Proteome ; RNA Replicase/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Reassortant Viruses/genetics ; Repressor Proteins/chemistry/*genetics/*metabolism ; Viral Nonstructural Proteins/chemistry/*genetics/*metabolism ; Viral Proteins/biosynthesis/chemistry/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2012-05-26
    Description: Metabolic reprogramming has been proposed to be a hallmark of cancer, yet a systematic characterization of the metabolic pathways active in transformed cells is currently lacking. Using mass spectrometry, we measured the consumption and release (CORE) profiles of 219 metabolites from media across the NCI-60 cancer cell lines, and integrated these data with a preexisting atlas of gene expression. This analysis identified glycine consumption and expression of the mitochondrial glycine biosynthetic pathway as strongly correlated with rates of proliferation across cancer cells. Antagonizing glycine uptake and its mitochondrial biosynthesis preferentially impaired rapidly proliferating cells. Moreover, higher expression of this pathway was associated with greater mortality in breast cancer patients. Increased reliance on glycine may represent a metabolic vulnerability for selectively targeting rapid cancer cell proliferation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526189/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526189/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jain, Mohit -- Nilsson, Roland -- Sharma, Sonia -- Madhusudhan, Nikhil -- Kitami, Toshimori -- Souza, Amanda L -- Kafri, Ran -- Kirschner, Marc W -- Clish, Clary B -- Mootha, Vamsi K -- K08 HL107451/HL/NHLBI NIH HHS/ -- K08HL107451/HL/NHLBI NIH HHS/ -- R01 DK081457/DK/NIDDK NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01DK081457/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 May 25;336(6084):1040-4. doi: 10.1126/science.1218595.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628656" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/genetics/metabolism/pathology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Transformation, Neoplastic ; Chromatography, Liquid ; Culture Media ; Gene Expression ; Gene Expression Profiling ; Glycine/biosynthesis/*metabolism ; Humans ; Metabolic Networks and Pathways/genetics ; Metabolome ; Mitochondria/enzymology/metabolism ; Neoplasms/genetics/*metabolism/*pathology ; Purines/biosynthesis ; Tandem Mass Spectrometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2012-04-14
    Description: The mechanism of ion channel voltage gating-how channels open and close in response to voltage changes-has been debated since Hodgkin and Huxley's seminal discovery that the crux of nerve conduction is ion flow across cellular membranes. Using all-atom molecular dynamics simulations, we show how a voltage-gated potassium channel (KV) switches between activated and deactivated states. On deactivation, pore hydrophobic collapse rapidly halts ion flow. Subsequent voltage-sensing domain (VSD) relaxation, including inward, 15-angstrom S4-helix motion, completes the transition. On activation, outward S4 motion tightens the VSD-pore linker, perturbing linker-S6-helix packing. Fluctuations allow water, then potassium ions, to reenter the pore; linker-S6 repacking stabilizes the open pore. We propose a mechanistic model for the sodium/potassium/calcium voltage-gated ion channel superfamily that reconciles apparently conflicting experimental data.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jensen, Morten O -- Jogini, Vishwanath -- Borhani, David W -- Leffler, Abba E -- Dror, Ron O -- Shaw, David E -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉D E Shaw Research, New York, NY 10036, USA. morten.jensen@DEShawResearch.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499946" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Hydrophobic and Hydrophilic Interactions ; *Ion Channel Gating ; Kv1.2 Potassium Channel/*chemistry/*metabolism ; Membrane Potentials ; Models, Biological ; Models, Molecular ; Molecular Dynamics Simulation ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Shab Potassium Channels/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2012-11-20
    Description: Computational and learning theory models propose that behavioral control reflects value that is both cached (computed and stored during previous experience) and inferred (estimated on the fly on the basis of knowledge of the causal structure of the environment). The latter is thought to depend on the orbitofrontal cortex. Yet some accounts propose that the orbitofrontal cortex contributes to behavior by signaling "economic" value, regardless of the associative basis of the information. We found that the orbitofrontal cortex is critical for both value-based behavior and learning when value must be inferred but not when a cached value is sufficient. The orbitofrontal cortex is thus fundamental for accessing model-based representations of the environment to compute value rather than for signaling value per se.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592380/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592380/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Joshua L -- Esber, Guillem R -- McDannald, Michael A -- Gruber, Aaron J -- Hernandez, Alex -- Mirenzi, Aaron -- Schoenbaum, Geoffrey -- F32 DA031517/DA/NIDA NIH HHS/ -- F32-031517/PHS HHS/ -- R01 DA015718/DA/NIDA NIH HHS/ -- R01-DA015718/DA/NIDA NIH HHS/ -- ZIA DA000587-01/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):953-6. doi: 10.1126/science.1227489.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA. josh.jones@nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23162000" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Conditioning (Psychology) ; Cues ; Frontal Lobe/*physiology ; *Learning ; Male ; Rats ; Rats, Inbred LEC
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2012-11-01
    Description: Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Richard C -- Wei, Yongjie -- An, Zhenyi -- Zou, Zhongju -- Xiao, Guanghua -- Bhagat, Govind -- White, Michael -- Reichelt, Julia -- Levine, Beth -- K08 CA164047/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA071443/CA/NCI NIH HHS/ -- R01 CA084254/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA129451/CA/NCI NIH HHS/ -- R01 CA84254-S1/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):956-9. doi: 10.1126/science.1225967. Epub 2012 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/genetics/*metabolism ; *Autophagy ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Fibroblasts/metabolism/pathology ; HeLa Cells ; Humans ; Membrane Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Proto-Oncogene Proteins c-akt/genetics/*metabolism ; RNA, Small Interfering/genetics ; Rats ; Transduction, Genetic ; Vimentin/genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2012-08-04
    Description: Daily rhythms of mammalian physiology, metabolism, and behavior parallel the day-night cycle. They are orchestrated by a central circadian clock in the brain, the suprachiasmatic nucleus (SCN). Transcription of clock genes is sensitive to metabolic changes in reduction and oxidation (redox); however, circadian cycles in protein oxidation have been reported in anucleate cells, where no transcription occurs. We investigated whether the SCN also expresses redox cycles and how such metabolic oscillations might affect neuronal physiology. We detected self-sustained circadian rhythms of SCN redox state that required the molecular clockwork. The redox oscillation could determine the excitability of SCN neurons through nontranscriptional modulation of multiple potassium (K(+)) channels. Thus, dynamic regulation of SCN excitability appears to be closely tied to metabolism that engages the clockwork machinery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490628/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490628/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tongfei A -- Yu, Yanxun V -- Govindaiah, Gubbi -- Ye, Xiaoying -- Artinian, Liana -- Coleman, Todd P -- Sweedler, Jonathan V -- Cox, Charles L -- Gillette, Martha U -- EY014024/EY/NEI NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- P30DA018310/DA/NIDA NIH HHS/ -- R01 EY014024/EY/NEI NIH HHS/ -- R01 HL086870/HL/NHLBI NIH HHS/ -- R01 HL092571/HL/NHLBI NIH HHS/ -- R01HL086870/HL/NHLBI NIH HHS/ -- R01HL092571/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):839-42. doi: 10.1126/science.1222826. Epub 2012 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22859819" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors/genetics ; Animals ; *Circadian Rhythm ; Fluorometry ; Glutathione/metabolism ; Membrane Potentials ; Mice ; Mice, Mutant Strains ; NADP/metabolism ; Neurons/metabolism/*physiology ; Oxidation-Reduction ; Potassium Channels/metabolism ; Rats ; Suprachiasmatic Nucleus/cytology/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2012-03-01
    Description: Interhemispheric inhibition is thought to mediate cortical rivalry between the two hemispheres through callosal input. The long-lasting form of this inhibition is believed to operate via gamma-aminobutyric acid type B (GABA(B)) receptors, but the process is poorly understood at the cellular level. We found that the firing of layer 5 pyramidal neurons in rat somatosensory cortex due to contralateral sensory stimulation was inhibited for hundreds of milliseconds when paired with ipsilateral stimulation. The inhibition acted directly on apical dendrites via layer 1 interneurons but was silent in the absence of pyramidal cell firing, relying on metabotropic inhibition of active dendritic currents recruited during neuronal activity. The results not only reveal the microcircuitry underlying interhemispheric inhibition but also demonstrate the importance of active dendritic properties for cortical output.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmer, Lucy M -- Schulz, Jan M -- Murphy, Sean C -- Ledergerber, Debora -- Murayama, Masanori -- Larkum, Matthew E -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):989-93. doi: 10.1126/science.1217276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiologisches Institut, Universitat Bern, Buhlplatz 5, CH-3012 Bern, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22363012" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism ; Cerebrum/*physiology ; Corpus Callosum/physiology ; Dendrites/*physiology ; Electric Stimulation ; Hindlimb ; Interneurons/physiology ; *Neural Inhibition ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, GABA-B/*metabolism ; Somatosensory Cortex/cytology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2012-10-09
    Description: Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal's internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal's belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlsson, Mattias P -- Tervo, Dougal G R -- Karpova, Alla Y -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):135-9. doi: 10.1126/science.1226518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Male ; Nerve Net/cytology/*physiology ; Neurons/physiology ; Prefrontal Cortex/cytology/*physiology ; Rats ; Rats, Long-Evans ; Rejection (Psychology) ; Reward ; *Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2012-03-17
    Description: Neurotransmitters are released through nascent fusion pores, which ordinarily dilate after bilayer fusion, preventing consistent biochemical studies. We used lipid bilayer nanodiscs as fusion partners; their rigid protein framework prevents dilation and reveals properties of the fusion pore induced by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor). We found that although only one SNARE per nanodisc is required for maximum rates of bilayer fusion, efficient release of content on the physiologically relevant time scale of synaptic transmission apparently requires three or more SNARE complexes (SNAREpins) and the native transmembrane domain of vesicle-associated membrane protein 2 (VAMP2). We suggest that several SNAREpins simultaneously zippering their SNARE transmembrane helices within the freshly fused bilayers provide a radial force that prevents the nascent pore from resealing during synchronous neurotransmitter release.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736847/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Lei -- Shen, Qing-Tao -- Kiel, Alexander -- Wang, Jing -- Wang, Hong-Wei -- Melia, Thomas J -- Rothman, James E -- Pincet, Frederic -- R01 DK027044/DK/NIDDK NIH HHS/ -- R37 DK027044/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1355-9. doi: 10.1126/science.1214984.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422984" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Diffusion ; *Lipid Bilayers ; Liposomes ; *Membrane Fusion ; Membrane Proteins/chemistry/metabolism ; Mice ; Neurotransmitter Agents/metabolism ; Protein Structure, Tertiary ; Proteolipids/chemistry ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; SNARE Proteins/*chemistry/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/*chemistry/metabolism ; Synaptosomal-Associated Protein 25/chemistry/metabolism ; Syntaxin 1/chemistry/metabolism ; Vesicle-Associated Membrane Protein 2/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2012-03-10
    Description: We have identified tens of thousands of short extrachromosomal circular DNAs (microDNA) in mouse tissues as well as mouse and human cell lines. These microDNAs are 200 to 400 base pairs long, are derived from unique nonrepetitive sequence, and are enriched in the 5'-untranslated regions of genes, exons, and CpG islands. Chromosomal loci that are enriched sources of microDNA in the adult brain are somatically mosaic for microdeletions that appear to arise from the excision of microDNAs. Germline microdeletions identified by the "Thousand Genomes" project may also arise from the excision of microDNAs in the germline lineage. We have thus identified a previously unknown DNA entity in mammalian cells and provide evidence that their generation leaves behind deletions in different genomic loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yoshiyuki -- Kumar, Pankaj -- Layer, Ryan -- Willcox, Smaranda -- Gagan, Jeffrey R -- Griffith, Jack D -- Dutta, Anindya -- ES013773/ES/NIEHS NIH HHS/ -- GM31819/GM/NIGMS NIH HHS/ -- GM84465/GM/NIGMS NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA060499/CA/NCI NIH HHS/ -- R01 CA060499-18/CA/NCI NIH HHS/ -- R01 CA60499/CA/NCI NIH HHS/ -- R01 ES013773/ES/NIEHS NIH HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM084465/GM/NIGMS NIH HHS/ -- R01 GM084465-04/GM/NIGMS NIH HHS/ -- T32 GM008136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):82-6. doi: 10.1126/science.1213307. Epub 2012 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403181" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Animals ; Base Pairing ; Base Sequence ; Brain/*embryology ; Brain Chemistry ; Cell Line ; Cell Line, Tumor ; *Chromosome Deletion ; Chromosomes, Human/*genetics ; Chromosomes, Mammalian/*genetics ; CpG Islands ; DNA Replication ; *DNA, Circular/analysis/chemistry/isolation & purification/metabolism ; Exons ; Germ Cells/chemistry ; Heart/embryology ; Humans ; Liver/chemistry/embryology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2012-08-11
    Description: Many neurological and psychiatric diseases are associated with clinically detectable, altered brain dynamics. The aberrant brain activity, in principle, can be restored through electrical stimulation. In epilepsies, abnormal patterns emerge intermittently, and therefore, a closed-loop feedback brain control that leaves other aspects of brain functions unaffected is desirable. Here, we demonstrate that seizure-triggered, feedback transcranial electrical stimulation (TES) can dramatically reduce spike-and-wave episodes in a rodent model of generalized epilepsy. Closed-loop TES can be an effective clinical tool to reduce pathological brain patterns in drug-resistant patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berenyi, Antal -- Belluscio, Mariano -- Mao, Dun -- Buzsaki, Gyorgy -- MH54671/MH/NIMH NIH HHS/ -- NS074015/NS/NINDS NIH HHS/ -- NS34994/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):735-7. doi: 10.1126/science.1223154.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22879515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Waves ; Cerebral Cortex/physiopathology ; *Deep Brain Stimulation ; Electric Stimulation ; Electrodes, Implanted ; Epilepsy, Absence/physiopathology/*therapy ; Feedback, Physiological ; Male ; Rats ; Rats, Long-Evans ; Thalamus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1159, 1161. doi: 10.1126/science.337.6099.1159.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955811" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Conserved Sequence ; *DNA, Intergenic/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Gene Expression Regulation ; Gene Regulatory Networks ; Genetic Predisposition to Disease ; Genome ; *Genome, Human ; *Genomics ; Humans ; Mammals/genetics ; RNA, Untranslated/genetics/metabolism ; Sequence Analysis, DNA ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2012-07-24
    Description: Through hyperacetylation of histone H4 lysine 16 (H4K16), the male-specific lethal (MSL) complex in Drosophila approximately doubles transcription from the single male X chromosome in order to match X-linked expression in females and expression from diploid autosomes. By obtaining accurate measurements of RNA polymerase II (Pol II) occupancies and short promoter-proximal RNA production, we detected a consistent, genome-scale increase in Pol II activity at the promoters of male X-linked genes. Moreover, we found that enhanced Pol II recruitment to male X-linked promoters is largely dependent on the MSL complex. These observations provide insights into how global modulation of chromatin structure by histone acetylation contributes to the precise control of Pol II function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, Thomas -- Cavalli, Florence M G -- Vaquerizas, Juan M -- Luscombe, Nicholas M -- Akhtar, Asifa -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 10;337(6095):742-6. doi: 10.1126/science.1221428. Epub 2012 Jul 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22821985" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line ; Chromatin Immunoprecipitation ; DNA Polymerase II/*metabolism ; *Dosage Compensation, Genetic ; Drosophila/*genetics/metabolism ; Drosophila Proteins/*metabolism ; Female ; Genes, Insect ; *Genes, X-Linked ; Histones/metabolism ; Male ; Multigene Family ; *Promoter Regions, Genetic ; Sex Characteristics ; Transcription, Genetic ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2012-01-17
    Description: Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor-alpha (TNFalpha), which is shed from the plasma membrane after cleavage by the TNFalpha convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFalpha shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFalpha in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McIlwain, David R -- Lang, Philipp A -- Maretzky, Thorsten -- Hamada, Koichi -- Ohishi, Kazuhito -- Maney, Sathish Kumar -- Berger, Thorsten -- Murthy, Aditya -- Duncan, Gordon -- Xu, Haifeng C -- Lang, Karl S -- Haussinger, Dieter -- Wakeham, Andrew -- Itie-Youten, Annick -- Khokha, Rama -- Ohashi, Pamela S -- Blobel, Carl P -- Mak, Tak W -- GM64750/GM/NIGMS NIH HHS/ -- R01 GM064750/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):229-32. doi: 10.1126/science.1214448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246778" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/*metabolism ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/metabolism ; Base Sequence ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Gene Deletion ; *Immunity, Innate ; Lipopolysaccharides/*immunology ; Listeria monocytogenes/immunology/physiology ; Listeriosis/*immunology/metabolism/microbiology/pathology ; Macrophages/immunology/metabolism ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Mice ; Molecular Sequence Data ; Protein Transport ; Shock, Septic/*immunology/metabolism ; Spleen/cytology ; Tumor Necrosis Factor-alpha/blood/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2012-04-14
    Description: Drug use and relapse involve learned associations between drug-associated environmental cues and drug effects. Extinction procedures in the clinic can suppress conditioned responses to drug cues, but the extinguished responses typically reemerge after exposure to the drug itself (reinstatement), the drug-associated environment (renewal), or the passage of time (spontaneous recovery). We describe a memory retrieval-extinction procedure that decreases conditioned drug effects and drug seeking in rat models of relapse, and drug craving in abstinent heroin addicts. In rats, daily retrieval of drug-associated memories 10 minutes or 1 hour but not 6 hours before extinction sessions attenuated drug-induced reinstatement, spontaneous recovery, and renewal of conditioned drug effects and drug seeking. In heroin addicts, retrieval of drug-associated memories 10 minutes before extinction sessions attenuated cue-induced heroin craving 1, 30, and 180 days later. The memory retrieval-extinction procedure is a promising nonpharmacological method for decreasing drug craving and relapse during abstinence.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Yan-Xue -- Luo, Yi-Xiao -- Wu, Ping -- Shi, Hai-Shui -- Xue, Li-Fen -- Chen, Chen -- Zhu, Wei-Li -- Ding, Zeng-Bo -- Bao, Yan-ping -- Shi, Jie -- Epstein, David H -- Shaham, Yavin -- Lu, Lin -- Z99 DA999999/Intramural NIH HHS/ -- ZIA DA000434-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):241-5. doi: 10.1126/science.1215070.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute on Drug Dependence, Peking University, Beijing, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499948" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/enzymology ; Animals ; Behavior, Addictive/*prevention & control ; Cocaine/administration & dosage ; Cocaine-Related Disorders/*psychology/therapy ; Conditioning, Classical ; Conditioning, Operant ; Cues ; *Extinction, Psychological ; Heroin/administration & dosage ; Heroin Dependence/*psychology/therapy ; Humans ; Male ; *Memory ; Mental Recall ; Models, Animal ; Prefrontal Cortex/enzymology ; Protein Kinase C/metabolism ; Rats ; Rats, Sprague-Dawley ; Recurrence ; Self Administration ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-12-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soldner, Frank -- Jaenisch, Rudolf -- R01 CA084198/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1155-6. doi: 10.1126/science.1227682.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23197518" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Differentiation/genetics ; Cell Line ; Cellular Reprogramming/*genetics ; Disease/*genetics ; *Epigenesis, Genetic ; Genetic Engineering/*methods ; Humans ; Induced Pluripotent Stem Cells/*physiology ; *Models, Genetic ; Transfection/methods
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2012-05-26
    Description: Tumors exhibit numerous recurrent hemizygous focal deletions that contain no known tumor suppressors and are poorly understood. To investigate whether these regions contribute to tumorigenesis, we searched genetically for genes with cancer-relevant properties within these hemizygous deletions. We identified STOP and GO genes, which negatively and positively regulate proliferation, respectively. STOP genes include many known tumor suppressors, whereas GO genes are enriched for essential genes. Analysis of their chromosomal distribution revealed that recurring deletions preferentially overrepresent STOP genes and underrepresent GO genes. We propose a hypothesis called the cancer gene island model, whereby gene islands encompassing high densities of STOP genes and low densities of GO genes are hemizygously deleted to maximize proliferative fitness through cumulative haploinsufficiencies. Because hundreds to thousands of genes are hemizygously deleted per tumor, this mechanism may help to drive tumorigenesis across many cancer types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027969/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027969/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solimini, Nicole L -- Xu, Qikai -- Mermel, Craig H -- Liang, Anthony C -- Schlabach, Michael R -- Luo, Ji -- Burrows, Anna E -- Anselmo, Anthony N -- Bredemeyer, Andrea L -- Li, Mamie Z -- Beroukhim, Rameen -- Meyerson, Matthew -- Elledge, Stephen J -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM07753/GM/NIGMS NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jul 6;337(6090):104-9. doi: 10.1126/science.1219580. Epub 2012 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard University Medical School, and Division of Genetics, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22628553" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; *Cell Transformation, Neoplastic ; Chromosome Mapping ; Genes, Essential ; *Genes, Neoplasm ; Genes, Recessive ; Genes, Tumor Suppressor ; *Haploinsufficiency ; Hemizygote ; Humans ; Models, Genetic ; Neoplasms/*genetics/*pathology ; Oncogenes ; *Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2012-12-22
    Description: Most mammalian genes produce multiple distinct messenger RNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced complementary DNA from nine tissues from four mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific. Thousands of previously unknown, lineage-specific, and conserved alternative exons were identified; widely conserved alternative exons had signatures of binding by MBNL, PTB, RBFOX, STAR, and TIA family splicing factors, implicating them as ancestral mammalian splicing regulators. Our data also indicate that alternative splicing often alters protein phosphorylatability, delimiting the scope of kinase signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merkin, Jason -- Russell, Caitlin -- Chen, Ping -- Burge, Christopher B -- OD011092/OD/NIH HHS/ -- R01 HG002439/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1593-9. doi: 10.1126/science.1228186.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258891" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Biological Evolution ; Cattle ; Chickens ; Conserved Sequence ; DNA, Complementary ; DNA-Binding Proteins/metabolism ; *Evolution, Molecular ; Exons ; Gene Expression Profiling ; *Gene Expression Regulation ; Introns ; Macaca mulatta ; Male ; Mammals/*genetics ; Mice ; Models, Genetic ; Phosphorylation ; Phylogeny ; Protein Isoforms/chemistry/*genetics/metabolism ; Protein Kinases/genetics/metabolism ; RNA Splice Sites ; RNA Splicing ; RNA-Binding Proteins/metabolism ; Rats ; Sequence Analysis, DNA ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2012-02-11
    Description: In its physiological state, cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is a tetramer that contains a regulatory (R) subunit dimer and two catalytic (C) subunits. We describe here the 2.3 angstrom structure of full-length tetrameric RIIbeta(2):C(2) holoenzyme. This structure showing a dimer of dimers provides a mechanistic understanding of allosteric activation by cAMP. The heterodimers are anchored together by an interface created by the beta4-beta5 loop in the RIIbeta subunit, which docks onto the carboxyl-terminal tail of the adjacent C subunit, thereby forcing the C subunit into a fully closed conformation in the absence of nucleotide. Diffusion of magnesium adenosine triphosphate (ATP) into these crystals trapped not ATP, but the reaction products, adenosine diphosphate and the phosphorylated RIIbeta subunit. This complex has implications for the dissociation-reassociation cycling of PKA. The quaternary structure of the RIIbeta tetramer differs appreciably from our model of the RIalpha tetramer, confirming the small-angle x-ray scattering prediction that the structures of each PKA tetramer are different.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ping -- Smith-Nguyen, Eric V -- Keshwani, Malik M -- Deal, Michael S -- Kornev, Alexandr P -- Taylor, Susan S -- GM34921/GM/NIGMS NIH HHS/ -- R01 GM034921/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):712-6. doi: 10.1126/science.1213979.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22323819" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*chemistry/*metabolism ; Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit/*chemistry/*metabolism ; Holoenzymes/chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Binding ; Protein Folding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2012-12-22
    Description: Neurotransmitter release depends critically on Munc18-1, Munc13, the Ca(2+) sensor synaptotagmin-1, and the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) syntaxin-1, synaptobrevin, and SNAP-25. In vitro reconstitutions have shown that syntaxin-1-SNAP-25 liposomes fuse efficiently with synaptobrevin liposomes in the presence of synaptotagmin-1-Ca(2+), but neurotransmitter release also requires Munc18-1 and Munc13 in vivo. We found that Munc18-1 could displace SNAP-25 from syntaxin-1 and that fusion of syntaxin-1-Munc18-1 liposomes with synaptobrevin liposomes required Munc13, in addition to SNAP-25 and synaptotagmin-1-Ca(2+). Moreover, when starting with syntaxin-1-SNAP-25 liposomes, NSF-alpha-SNAP disassembled the syntaxin-1-SNAP-25 heterodimers and abrogated fusion, which then required Munc18-1 and Munc13. We propose that fusion does not proceed through syntaxin-1-SNAP-25 heterodimers but starts with the syntaxin-1-Munc18-1 complex; Munc18-1 and Munc13 then orchestrate membrane fusion together with the SNAREs and synaptotagmin-1-Ca(2+) in an NSF- and SNAP-resistant manner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ma, Cong -- Su, Lijing -- Seven, Alpay B -- Xu, Yibin -- Rizo, Josep -- NS37200/NS/NINDS NIH HHS/ -- NS40944/NS/NINDS NIH HHS/ -- R01 NS037200/NS/NINDS NIH HHS/ -- R01 NS040944/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):421-5. doi: 10.1126/science.1230473. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Molecular Biophysics, Ministry of Education, and Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China. cong.ma7@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258414" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Humans ; Liposomes ; *Membrane Fusion ; Models, Biological ; Munc18 Proteins/*metabolism ; Nerve Tissue Proteins/*metabolism ; Neurotransmitter Agents/*metabolism ; Protein Binding ; Protein Multimerization ; R-SNARE Proteins/metabolism ; Rats ; Synaptic Vesicles/*metabolism ; Synaptosomal-Associated Protein 25/metabolism ; Synaptotagmin I/metabolism ; Syntaxin 1/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2012-12-15
    Description: Actin and spectrin play important roles in neurons, but their organization in axons and dendrites remains unclear. We used stochastic optical reconstruction microscopy to study the organization of actin, spectrin, and associated proteins in neurons. Actin formed ringlike structures that wrapped around the circumference of axons and were evenly spaced along axonal shafts with a periodicity of ~180 to 190 nanometers. This periodic structure was not observed in dendrites, which instead contained long actin filaments running along dendritic shafts. Adducin, an actin-capping protein, colocalized with the actin rings. Spectrin exhibited periodic structures alternating with those of actin and adducin, and the distance between adjacent actin-adducin rings was comparable to the length of a spectrin tetramer. Sodium channels in axons were distributed in a periodic pattern coordinated with the underlying actin-spectrin-based cytoskeleton.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Ke -- Zhong, Guisheng -- Zhuang, Xiaowei -- R01 GM096450/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):452-6. doi: 10.1126/science.1232251. Epub 2012 Dec 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239625" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Capping Proteins/chemistry/ultrastructure ; Actin Cytoskeleton/chemistry/ultrastructure ; Actins/chemistry/*ultrastructure ; Animals ; Axons/*chemistry/*ultrastructure ; Calmodulin-Binding Proteins/chemistry/*ultrastructure ; Cells, Cultured ; Cytoskeleton/*chemistry/*ultrastructure ; Dendrites/chemistry/ultrastructure ; Hippocampus/ultrastructure ; Image Processing, Computer-Assisted ; Microscopy, Fluorescence/methods ; Neurons/chemistry/ultrastructure ; Protein Multimerization ; Rats ; Rats, Wistar ; Sodium Channels/chemistry/ultrastructure ; Spectrin/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2012-08-21
    Description: The mammalian hippocampal formation provides neuronal representations of environmental location, but the underlying mechanisms are poorly understood. Here, we report a class of cells whose spatially periodic firing patterns are composed of plane waves (or bands) drawn from a discrete set of orientations and wavelengths. The majority of cells recorded in parasubicular and medial entorhinal cortices of freely moving rats belonged to this class and included grid cells, an important subset that corresponds to three bands at 60 degrees orientations and has the most stable firing pattern. Occasional changes between hexagonal and nonhexagonal patterns imply a common underlying mechanism. Our results indicate a Fourier-like spatial analysis underlying neuronal representations of location, and suggest that path integration is performed by integrating displacement along a restricted set of directions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupic, Julija -- Burgess, Neil -- O'Keefe, John -- 082507/Wellcome Trust/United Kingdom -- 095811/Wellcome Trust/United Kingdom -- G1000854/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):853-7. doi: 10.1126/science.1222403.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22904012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Entorhinal Cortex/cytology/*physiology ; Fourier Analysis ; Hippocampus/cytology/*physiology ; Male ; Neurons/*physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2012-04-14
    Description: microRNAs (miRNAs) regulate gene expression through translational repression and/or messenger RNA (mRNA) deadenylation and decay. Because translation, deadenylation, and decay are closely linked processes, it is important to establish their ordering and thus to define the molecular mechanism of silencing. We have investigated the kinetics of these events in miRNA-mediated gene silencing by using a Drosophila S2 cell-based controllable expression system and show that mRNAs with both natural and engineered 3' untranslated regions with miRNA target sites are first subject to translational inhibition, followed by effects on deadenylation and decay. We next used a natural translational elongation stall to show that miRNA-mediated silencing inhibits translation at an early step, potentially translation initiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971879/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3971879/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djuranovic, Sergej -- Nahvi, Ali -- Green, Rachel -- R01 GM059425/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):237-40. doi: 10.1126/science.1215691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499947" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Cell Line ; Drosophila Proteins/genetics ; Drosophila melanogaster/*genetics/metabolism ; *Gene Silencing ; Kinetics ; MicroRNAs/*genetics/metabolism ; Peptide Chain Elongation, Translational ; Peptide Chain Initiation, Translational ; *Protein Biosynthesis ; *RNA Stability ; RNA, Messenger/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-10-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Greg -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):32-3. doi: 10.1126/science.338.6103.32.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042865" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antipsychotic Agents ; Brain/drug effects/*physiopathology ; Disease Models, Animal ; Drug Discovery/history/*trends ; Gene Expression Profiling ; Genome, Human ; History, 20th Century ; History, 21st Century ; Humans ; Intellectual Disability ; Mental Disorders/drug therapy/genetics/*therapy ; Mice ; Neural Pathways ; Neuroimaging ; Neurons/metabolism/physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2012-01-24
    Description: Natural killer (NK) cells are lymphocytes involved in antimicrobial and antitumoral immune responses. Using N-ethyl-N-nitrosourea mutagenesis in mice, we identified a mutant with increased resistance to viral infections because of the presence of hyperresponsive NK cells. Whole-genome sequencing and functional analysis revealed a loss-of-function mutation in the Ncr1 gene encoding the activating receptor NKp46. The down-regulation of NK cell activity by NKp46 was associated with the silencing of the Helios transcription factor in NK cells. NKp46 was critical for the subsequent development of antiviral and antibacterial T cell responses, which suggests that the regulation of NK cell function by NKp46 allows for the optimal development of adaptive immune responses. NKp46 blockade enhanced NK cell reactivity in vivo, which could enable the design of immunostimulation strategies in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narni-Mancinelli, Emilie -- Jaeger, Baptiste N -- Bernat, Claire -- Fenis, Aurore -- Kung, Sam -- De Gassart, Aude -- Mahmood, Sajid -- Gut, Marta -- Heath, Simon C -- Estelle, Jordi -- Bertosio, Elodie -- Vely, Frederic -- Gastinel, Louis N -- Beutler, Bruce -- Malissen, Bernard -- Malissen, Marie -- Gut, Ivo G -- Vivier, Eric -- Ugolini, Sophie -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):344-8. doi: 10.1126/science.1215621.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Campus de Luminy case 906, 13288 Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267813" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Amino Acid Substitution ; Animals ; Antibodies, Blocking/immunology ; Antibodies, Monoclonal/immunology ; Antigens, Ly/genetics/immunology/*physiology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; DNA-Binding Proteins/*genetics/physiology ; Down-Regulation ; Genetic Complementation Test ; Herpesviridae Infections/*immunology/virology ; Immunologic Memory ; Killer Cells, Natural/*immunology ; Listeriosis/immunology ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Muromegalovirus/physiology ; Mutagenesis ; Natural Cytotoxicity Triggering Receptor 1/antagonists & ; inhibitors/genetics/immunology/*physiology ; T-Lymphocytes/*immunology ; Transcription Factors/*genetics/physiology ; Transcription, Genetic ; Viral Load
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2012-03-17
    Description: The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily conserved role in cytokinetic abscission, the final step of cell division where daughter cells are physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C), a human ESCRT-III subunit, is involved in abscission timing. This function correlated with its differential spatiotemporal distribution during late stages of cytokinesis. Accordingly, CHMP4C functioned in the Aurora B-dependent abscission checkpoint to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. CHMP4C engaged the chromosomal passenger complex (CPC) via interaction with Borealin, which suggested a model whereby CHMP4C inhibits abscission upon phosphorylation by Aurora B. Thus, the ESCRT machinery may protect against genetic damage by coordinating midbody resolution with the abscission checkpoint.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jeremy G -- Caballe, Anna -- Agromayor, Monica -- Kloc, Magdalena -- Martin-Serrano, Juan -- 092429/Z/10/Z/Wellcome Trust/United Kingdom -- 093056/Wellcome Trust/United Kingdom -- G0802777/Medical Research Council/United Kingdom -- WT093056MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):220-5. doi: 10.1126/science.1217180. Epub 2012 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, King's College London School of Medicine, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422861" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase B ; Aurora Kinases ; Cell Cycle Checkpoints ; Cell Cycle Proteins/metabolism ; Cell Line ; Chromosomes, Human/metabolism ; *Cytokinesis ; DNA Damage ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Endosomes/metabolism ; HeLa Cells ; Histocompatibility Antigens Class I/metabolism ; Humans ; Mitosis ; Phosphorylation ; Protein Transport ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2012-04-12
    Description: Polycomb group (PcG) proteins control development and cell proliferation through chromatin-mediated transcriptional repression. We describe a transcription-independent function for PcG protein Posterior sex combs (PSC) in regulating the destruction of cyclin B (CYC-B). A substantial portion of PSC was found outside canonical PcG complexes, instead associated with CYC-B and the anaphase-promoting complex (APC). Cell-based experiments and reconstituted reactions established that PSC and Lemming (LMG, also called APC11) associate and ubiquitylate CYC-B cooperatively, marking it for proteosomal degradation. Thus, PSC appears to mediate both developmental gene silencing and posttranslational control of mitosis. Direct regulation of cell cycle progression might be a crucial part of the PcG system's function in development and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mohd-Sarip, Adone -- Lagarou, Anna -- Doyen, Cecile M -- van der Knaap, Jan A -- Aslan, Ulku -- Bezstarosti, Karel -- Yassin, Yasmin -- Brock, Hugh W -- Demmers, Jeroen A A -- Verrijzer, C Peter -- New York, N.Y. -- Science. 2012 May 11;336(6082):744-7. doi: 10.1126/science.1215927. Epub 2012 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, Post Office Box 1738, 3000 DR, Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22491092" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome ; Animals ; Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome ; Carrier Proteins/metabolism ; *Cell Cycle Checkpoints ; Cell Line ; Compound Eye, Arthropod/growth & development/metabolism ; Cyclin B/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/cytology/embryology/metabolism ; G2 Phase Cell Cycle Checkpoints ; Gene Silencing ; Imaginal Discs/metabolism ; *Mitosis ; Phenotype ; Polycomb Repressive Complex 1 ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; RNA Interference ; Transcription, Genetic ; Ubiquitin-Protein Ligase Complexes/metabolism ; Ubiquitination ; Wings, Animal/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2012-05-05
    Description: The hippocampus is critical for spatial learning and memory. Hippocampal neurons in awake animals exhibit place field activity that encodes current location, as well as sharp-wave ripple (SWR) activity during which representations based on past experiences are often replayed. The relationship between these patterns of activity and the memory functions of the hippocampus is poorly understood. We interrupted awake SWRs in animals learning a spatial alternation task. We observed a specific learning and performance deficit that persisted throughout training. This deficit was associated with awake SWR activity, as SWR interruption left place field activity and post-experience SWR reactivation intact. These results provide a link between awake SWRs and hippocampal memory processes, which suggests that awake replay of memory-related information during SWRs supports learning and memory-guided decision-making.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jadhav, Shantanu P -- Kemere, Caleb -- German, P Walter -- Frank, Loren M -- R01 MH080283/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 15;336(6087):1454-8. doi: 10.1126/science.1217230. Epub 2012 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22555434" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Waves/*physiology ; CA1 Region, Hippocampal/*physiology ; Decision Making ; Electric Stimulation ; Hippocampus/*physiology ; Male ; Maze Learning ; Memory/*physiology ; Memory, Short-Term ; Nerve Net/physiology ; Rats ; Rats, Long-Evans ; Space Perception ; Synaptic Potentials ; Wakefulness/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2012-01-28
    Description: Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition. Expression of the two genes is mediated by a conserved regulatory element in the noncoding intergenic region. Coordinated expression is important for their interdependent cellular role in vesicular transport to primary cilia. Hence, during vertebrate evolution of genes involved in ciliogenesis, nonparalogous genes were arranged to a functional gene cluster with shared regulatory elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671610/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671610/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeong Ho -- Silhavy, Jennifer L -- Lee, Ji Eun -- Al-Gazali, Lihadh -- Thomas, Sophie -- Davis, Erica E -- Bielas, Stephanie L -- Hill, Kiley J -- Iannicelli, Miriam -- Brancati, Francesco -- Gabriel, Stacey B -- Russ, Carsten -- Logan, Clare V -- Sharif, Saghira Malik -- Bennett, Christopher P -- Abe, Masumi -- Hildebrandt, Friedhelm -- Diplas, Bill H -- Attie-Bitach, Tania -- Katsanis, Nicholas -- Rajab, Anna -- Koul, Roshan -- Sztriha, Laszlo -- Waters, Elizabeth R -- Ferro-Novick, Susan -- Woods, C Geoffrey -- Johnson, Colin A -- Valente, Enza Maria -- Zaki, Maha S -- Gleeson, Joseph G -- DK068306/DK/NIDDK NIH HHS/ -- DK072301/DK/NIDDK NIH HHS/ -- DK075972/DK/NIDDK NIH HHS/ -- DK090917/DK/NIDDK NIH HHS/ -- EY021872/EY/NEI NIH HHS/ -- G0700073/Medical Research Council/United Kingdom -- GGP08145/Telethon/Italy -- HD042601/HD/NICHD NIH HHS/ -- NS04843/NS/NINDS NIH HHS/ -- NS052455/NS/NINDS NIH HHS/ -- P30 CA023100/CA/NCI NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01 DK068306/DK/NIDDK NIH HHS/ -- R01 DK072301/DK/NIDDK NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 EY021872/EY/NEI NIH HHS/ -- R01 HD042601/HD/NICHD NIH HHS/ -- R01 NS048453/NS/NINDS NIH HHS/ -- R01 NS052455/NS/NINDS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Feb 24;335(6071):966-9. doi: 10.1126/science.1213506. Epub 2012 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Laboratory, Howard Hughes Medical Institute (HHMI), Department of Neurosciences, University of California, San Diego, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22282472" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cerebellar Diseases/*genetics/metabolism/pathology ; Cilia/metabolism/*ultrastructure ; Conserved Sequence ; DNA, Intergenic ; *Evolution, Molecular ; Eye Abnormalities/*genetics/metabolism/pathology ; Gene Expression Profiling ; *Gene Expression Regulation ; Genetic Heterogeneity ; *Genetic Loci ; Humans ; Kidney Diseases, Cystic/*genetics/metabolism/pathology ; Membrane Proteins/chemistry/*genetics/metabolism ; Molecular Sequence Data ; Multigene Family ; Mutation ; Mutation, Missense ; Phenotype ; Protein Transport ; *Regulatory Sequences, Nucleic Acid ; Retina/abnormalities/metabolism/pathology ; Transport Vesicles/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2012-06-23
    Description: The autonomic nervous system, which includes the sympathetic neurons and adrenal medulla, originates from the neural crest. Combining avian blood vessel-specific gene manipulation and mouse genetics, we addressed a long-standing question of how neural crest cells (NCCs) generate sympathetic and medullary lineages during embryogenesis. We found that the dorsal aorta acts as a morphogenetic signaling center that coordinates NCC migration and cell lineage segregation. Bone morphogenetic proteins (BMPs) produced by the dorsal aorta are critical for the production of the chemokine stromal cell-derived factor-1 (SDF -1) and Neuregulin 1 in the para-aortic region, which act as chemoattractants for early migration. Later, BMP signaling is directly involved in the sympatho-medullary segregation. This study provides insights into the complex developmental signaling cascade that instructs one of the earliest events of neurovascular interactions guiding embryonic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saito, Daisuke -- Takase, Yuta -- Murai, Hidetaka -- Takahashi, Yoshiko -- New York, N.Y. -- Science. 2012 Jun 22;336(6088):1578-81. doi: 10.1126/science.1222369.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22723422" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex/embryology/metabolism ; Adrenal Medulla/*cytology/embryology ; Animals ; Aorta/*embryology/*metabolism ; Avian Proteins/metabolism ; Bone Morphogenetic Proteins/*metabolism ; Cell Line ; Cell Lineage ; Cell Movement ; Chemokine CXCL12/metabolism ; Chemotactic Factors/metabolism ; Chick Embryo ; Coculture Techniques ; Embryonic Development ; Ganglia, Sympathetic/*cytology ; Mice ; Mice, Knockout ; Morphogenesis ; Neural Crest/*cytology/physiology ; Neuregulin-1/metabolism ; Signal Transduction ; Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2012-06-02
    Description: Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van den Brand, Rubia -- Heutschi, Janine -- Barraud, Quentin -- DiGiovanna, Jack -- Bartholdi, Kay -- Huerlimann, Michele -- Friedli, Lucia -- Vollenweider, Isabel -- Moraud, Eduardo Martin -- Duis, Simone -- Dominici, Nadia -- Micera, Silvestro -- Musienko, Pavel -- Courtine, Gregoire -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1182-5. doi: 10.1126/science.1217416.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurology Department, University of Zurich, CH-8008 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654062" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Brain Stem/physiology ; Dopamine Agonists/administration & dosage ; Electric Stimulation ; Female ; Gait ; Hindlimb/*physiology ; *Locomotion ; Motor Cortex/*physiology ; Nerve Fibers/physiology ; Neuronal Plasticity ; Neurons/physiology ; Paralysis/physiopathology/*rehabilitation ; Pyramidal Tracts/cytology/*physiology ; Rats ; Rats, Inbred Lew ; Recovery of Function ; *Robotics ; Serotonin Receptor Agonists/administration & dosage ; Spinal Cord/cytology/physiology ; Spinal Cord Injuries/physiopathology/*rehabilitation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2012-06-16
    Description: The parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases. Activation of these enzymes requires the dimerization of the catalytic domain and typically occurs under stress. Using a dominant-negative strategy, we found that reducing adenylate cyclase activity by about 50% allowed trypanosome growth but reduced the parasite's ability to control the early innate immune defense of the host. Specifically, activation of trypanosome adenylate cyclase resulting from parasite phagocytosis by liver myeloid cells inhibited the synthesis of the trypanosome-controlling cytokine tumor necrosis factor-alpha through activation of protein kinase A in these cells. Thus, adenylate cyclase activity of lyzed trypanosomes favors early host colonization by live parasites. The role of adenylate cyclases at the host-parasite interface could explain the expansion and polymorphism of this gene family.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salmon, Didier -- Vanwalleghem, Gilles -- Morias, Yannick -- Denoeud, Julie -- Krumbholz, Carsten -- Lhomme, Frederic -- Bachmaier, Sabine -- Kador, Markus -- Gossmann, Jasmin -- Dias, Fernando Braga Stehling -- De Muylder, Geraldine -- Uzureau, Pierrick -- Magez, Stefan -- Moser, Muriel -- De Baetselier, Patrick -- Van Den Abbeele, Jan -- Beschin, Alain -- Boshart, Michael -- Pays, Etienne -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):463-6. doi: 10.1126/science.1222753. Epub 2012 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Parasitology, Institute for Molecular Biology and Medicine, Universite Libre de Bruxelles, 12, rue des Professeurs Jeener et Brachet, B6041 Gosselies, Belgium. salmon@bioqmed.ufrj.br〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22700656" target="_blank"〉PubMed〈/a〉
    Keywords: Adenylyl Cyclases/chemistry/genetics/*metabolism ; Animals ; Catalytic Domain ; Cell Line ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Enzyme Activation ; Host-Parasite Interactions ; *Immunity, Innate ; Liver/cytology ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Myeloid Cells/immunology ; Parasitemia ; Phagocytosis ; Protozoan Proteins/chemistry/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Trypanosoma brucei brucei/*enzymology/growth & development/*immunology ; Trypanosomiasis, African/*immunology/metabolism/parasitology ; Tumor Necrosis Factor-alpha/biosynthesis/blood
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2012-06-23
    Description: Defensins are antimicrobial peptides that contribute broadly to innate immunity, including protection of mucosal tissues. Human alpha-defensin (HD) 6 is highly expressed by secretory Paneth cells of the small intestine. However, in contrast to the other defensins, it lacks appreciable bactericidal activity. Nevertheless, we report here that HD6 affords protection against invasion by enteric bacterial pathogens in vitro and in vivo. After stochastic binding to bacterial surface proteins, HD6 undergoes ordered self-assembly to form fibrils and nanonets that surround and entangle bacteria. This self-assembly mechanism occurs in vivo, requires histidine-27, and is consistent with x-ray crystallography data. These findings support a key role for HD6 in protecting the small intestine against invasion by diverse enteric pathogens and may explain the conservation of HD6 throughout Hominidae evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332406/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4332406/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chu, Hiutung -- Pazgier, Marzena -- Jung, Grace -- Nuccio, Sean-Paul -- Castillo, Patricia A -- de Jong, Maarten F -- Winter, Maria G -- Winter, Sebastian E -- Wehkamp, Jan -- Shen, Bo -- Salzman, Nita H -- Underwood, Mark A -- Tsolis, Renee M -- Young, Glenn M -- Lu, Wuyuan -- Lehrer, Robert I -- Baumler, Andreas J -- Bevins, Charles L -- AI032738/AI/NIAID NIH HHS/ -- AI040124/AI/NIAID NIH HHS/ -- AI044170/AI/NIAID NIH HHS/ -- AI050843/AI/NIAID NIH HHS/ -- AI057757/AI/NIAID NIH HHS/ -- AI070726/AI/NIAID NIH HHS/ -- AI072732/AI/NIAID NIH HHS/ -- AI073120/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI082320/AI/NIAID NIH HHS/ -- AI088122/AI/NIAID NIH HHS/ -- HD059127/HD/NICHD NIH HHS/ -- R01 AI032738/AI/NIAID NIH HHS/ -- R01 AI050843/AI/NIAID NIH HHS/ -- R01 AI057757/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- R01 GM099526/GM/NIGMS NIH HHS/ -- T32AI060555/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):477-81. doi: 10.1126/science.1218831. Epub 2012 Jun 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722251" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/metabolism ; Animals ; Bacterial Proteins/metabolism ; Cell Line ; Humans ; *Immunity, Innate ; *Immunity, Mucosal ; Intestinal Mucosa/immunology/microbiology/ultrastructure ; Intestine, Small/*immunology/microbiology/ultrastructure ; Macromolecular Substances/chemistry/immunology/metabolism ; Mice ; Mice, Transgenic ; Microscopy, Electron, Scanning ; Models, Molecular ; Nanostructures ; Paneth Cells/immunology/metabolism ; Peptides/chemistry/metabolism ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Salmonella Infections, Animal/immunology/microbiology ; Salmonella typhimurium/immunology/pathogenicity/ultrastructure ; Yersinia enterocolitica/immunology/pathogenicity ; alpha-Defensins/*chemistry/immunology/*metabolism ; env Gene Products, Human Immunodeficiency Virus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2012-02-22
    Description: Neurotransmission depends on movements of transmitter-laden synaptic vesicles, but accurate, nanometer-scale monitoring of vesicle dynamics in presynaptic terminals has remained elusive. Here, we report three-dimensional, real-time tracking of quantum dot-loaded single synaptic vesicles with an accuracy of 20 to 30 nanometers, less than a vesicle diameter. Determination of the time, position, and mode of fusion, aided by trypan blue quenching of Qdot fluorescence, revealed that vesicles starting close to their ultimate fusion sites tended to fuse earlier than those positioned farther away. The mode of fusion depended on the prior motion of vesicles, with long-dwelling vesicles preferring kiss-and-run rather than full-collapse fusion. Kiss-and-run fusion events were concentrated near the center of the synapse, whereas full-collapse fusion events were broadly spread.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776413/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776413/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Hyokeun -- Li, Yulong -- Tsien, Richard W -- R01 MH064070/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1362-6. doi: 10.1126/science.1216937. Epub 2012 Feb 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22345401" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; *Exocytosis ; Imaging, Three-Dimensional ; *Membrane Fusion ; Microscopy, Fluorescence ; Neurons/physiology/ultrastructure ; Presynaptic Terminals/*physiology/ultrastructure ; Rats ; Synaptic Transmission ; Synaptic Vesicles/*physiology/ultrastructure ; Trypan Blue
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-03-03
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balter, Michael -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1036-7. doi: 10.1126/science.335.6072.1036.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383823" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Birds ; *Cognition ; Empathy ; Humans ; Learning ; Pan troglodytes ; Rats ; Theory of Mind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2012-03-31
    Description: Inflammasomes are sensory complexes that alert the immune system to the presence of infection or tissue damage. These complexes assemble NLR (nucleotide binding and oligomerization, leucine-rich repeat) or ALR (absent in melanoma 2-like receptor) proteins to activate caspase-1 cleavage and interleukin (IL)-1beta/IL-18 secretion. Here, we identified a non-NLR/ALR human protein that stimulates inflammasome assembly: guanylate binding protein 5 (GBP5). GBP5 promoted selective NLRP3 inflammasome responses to pathogenic bacteria and soluble but not crystalline inflammasome priming agents. Generation of Gbp5(-/-) mice revealed pronounced caspase-1 and IL-1beta/IL-18 cleavage defects in vitro and impaired host defense and Nlrp3-dependent inflammatory responses in vivo. Thus, GBP5 serves as a unique rheostat for NLRP3 inflammasome activation and extends our understanding of the inflammasome complex beyond its core machinery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shenoy, Avinash R -- Wellington, David A -- Kumar, Pradeep -- Kassa, Hilina -- Booth, Carmen J -- Cresswell, Peter -- MacMicking, John D -- R01 AI068041-06/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):481-5. doi: 10.1126/science.1217141. Epub 2012 Mar 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461501" target="_blank"〉PubMed〈/a〉
    Keywords: Alum Compounds ; Animals ; Apoptosis Regulatory Proteins ; Carrier Proteins/genetics/*metabolism ; Caspase 1/metabolism ; Cell Line ; Cytoskeletal Proteins/metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; Humans ; Inflammasomes/*metabolism ; Interferon-gamma/immunology ; Interleukin-1beta/secretion ; Lipopolysaccharides/immunology ; Listeria monocytogenes ; Listeriosis/immunology ; Macrophages/immunology/*metabolism ; Mice ; Protein Multimerization ; RNA Interference ; Salmonella typhimurium/immunology ; Uric Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2012-08-28
    Description: Cancer cells must satisfy the metabolic demands of rapid cell growth within a continually changing microenvironment. We demonstrated that the dynamic posttranslational modification of proteins by O-linked beta-N-acetylglucosamine (O-GlcNAcylation) is a key metabolic regulator of glucose metabolism. O-GlcNAcylation was induced at serine 529 of phosphofructokinase 1 (PFK1) in response to hypoxia. Glycosylation inhibited PFK1 activity and redirected glucose flux through the pentose phosphate pathway, thereby conferring a selective growth advantage on cancer cells. Blocking glycosylation of PFK1 at serine 529 reduced cancer cell proliferation in vitro and impaired tumor formation in vivo. These studies reveal a previously uncharacterized mechanism for the regulation of metabolic pathways in cancer and a possible target for therapeutic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534962/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534962/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Wen -- Clark, Peter M -- Mason, Daniel E -- Keenan, Marie C -- Hill, Collin -- Goddard, William A 3rd -- Peters, Eric C -- Driggers, Edward M -- Hsieh-Wilson, Linda C -- R01 GM084724/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):975-80. doi: 10.1126/science.1222278.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923583" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/metabolism ; Acylation ; Adenosine Triphosphate/metabolism ; Animals ; Cell Hypoxia ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Glucose/*metabolism ; Glycolysis ; Glycosylation ; Humans ; Lactic Acid/metabolism ; Mice ; Mice, Nude ; N-Acetylglucosaminyltransferases/genetics/metabolism ; NADP/metabolism ; Neoplasms/*metabolism/*pathology ; Pentose Phosphate Pathway ; Phosphofructokinase-1, Liver Type/antagonists & inhibitors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2012-05-05
    Description: Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca(2+)-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646550/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646550/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanley, Sarah A -- Gagner, Jennifer E -- Damanpour, Shadi -- Yoshida, Mitsukuni -- Dordick, Jonathan S -- Friedman, Jeffrey M -- R01 GM095654/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 May 4;336(6081):604-8. doi: 10.1126/science.1216753.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556257" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bioengineering ; Blood Glucose/*analysis ; Calcium/*metabolism ; Embryonic Stem Cells/metabolism ; Epitopes ; *Ferric Compounds ; Ferritins/administration & dosage/genetics/metabolism ; HEK293 Cells ; Hot Temperature ; Humans ; Insulin/blood/genetics/*metabolism ; Male ; *Metal Nanoparticles ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Neoplasms, Experimental/blood/pathology ; PC12 Cells ; *Radio Waves ; Rats ; Recombinant Fusion Proteins/administration & dosage ; TRPV Cation Channels/genetics/immunology/*metabolism ; Transfection ; Transplantation, Heterologous
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2012-04-28
    Description: Remodeling of immunoglobulin genes by activation-induced deaminase (AID) is required for affinity maturation and class-switch recombination in mature B lymphocytes. In the immunoglobulin heavy chain locus, these processes are predominantly controlled by the 3' cis-regulatory region. We now show that this region is transcribed and undergoes AID-mediated mutation and recombination around phylogenetically conserved switchlike DNA repeats. Such recombination, which we term locus suicide recombination, deletes the whole constant region gene cluster and thus stops expression of the immunoglobulin of the B cell surface, which is critical for B cell survival. The frequency of this event is approaching that of class switching and makes it a potential regulator of B cell homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peron, Sophie -- Laffleur, Brice -- Denis-Lagache, Nicolas -- Cook-Moreau, Jeanne -- Tinguely, Aurelien -- Delpy, Laurent -- Denizot, Yves -- Pinaud, Eric -- Cogne, Michel -- New York, N.Y. -- Science. 2012 May 18;336(6083):931-4. doi: 10.1126/science.1218692. Epub 2012 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Limoges University, CNRS, 2 rue Marcland, 87025 Limoges Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/*physiology ; Base Sequence ; Cell Line ; Cell Survival ; Cytidine Deaminase/*metabolism ; *Gene Deletion ; *Gene Rearrangement, B-Lymphocyte, Heavy Chain ; *Genes, Immunoglobulin Heavy Chain ; Homeostasis ; Humans ; Immunoglobulin Class Switching ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Recombination, Genetic ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2012-12-22
    Description: Cytosolic DNA induces type I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. We found that mammalian cytosolic extracts synthesized cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP) in vitro from adenosine triphosphate and guanosine triphosphate in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-beta. Thus, cGAMP functions as an endogenous second messenger in metazoans and triggers interferon production in response to cytosolic DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jiaxi -- Sun, Lijun -- Chen, Xiang -- Du, Fenghe -- Shi, Heping -- Chen, Chuo -- Chen, Zhijian J -- AI-093967/AI/NIAID NIH HHS/ -- GM-079554/GM/NIGMS NIH HHS/ -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 GM079554/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):826-30. doi: 10.1126/science.1229963. Epub 2012 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Extracts/chemistry ; Cell Line ; Cyclic AMP/*metabolism ; Cyclic GMP/*metabolism ; Cytosol/*immunology ; DNA/*immunology ; HEK293 Cells ; Herpesvirus 1, Human/immunology ; Humans ; *Immunity, Innate ; Interferon Regulatory Factor-3/metabolism ; Interferon-beta/biosynthesis ; Membrane Proteins/genetics/metabolism ; Mice ; Nucleotides, Cyclic/*metabolism ; RNA Interference ; Second Messenger Systems/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2011-04-09
    Description: The spliceosome, a ribonucleoprotein complex that includes proteins and small nuclear RNAs (snRNAs), catalyzes RNA splicing through intron excision and exon ligation to produce mature messenger RNAs, which, in turn serve as templates for protein translation. We identified four point mutations in the U4atac snRNA component of the minor spliceosome in patients with brain and bone malformations and unexplained postnatal death [microcephalic osteodysplastic primordial dwarfism type 1 (MOPD 1) or Taybi-Linder syndrome (TALS); Mendelian Inheritance in Man ID no. 210710]. Expression of a subgroup of genes, possibly linked to the disease phenotype, and minor intron splicing were affected in cell lines derived from TALS patients. Our findings demonstrate a crucial role of the minor spliceosome component U4atac snRNA in early human development and postnatal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edery, Patrick -- Marcaillou, Charles -- Sahbatou, Mourad -- Labalme, Audrey -- Chastang, Joelle -- Touraine, Renaud -- Tubacher, Emmanuel -- Senni, Faiza -- Bober, Michael B -- Nampoothiri, Sheela -- Jouk, Pierre-Simon -- Steichen, Elisabeth -- Berland, Siren -- Toutain, Annick -- Wise, Carol A -- Sanlaville, Damien -- Rousseau, Francis -- Clerget-Darpoux, Francoise -- Leutenegger, Anne-Louise -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):240-3. doi: 10.1126/science.1202205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hospices Civils de Lyon, Service de Cytogenetique Constitutionnelle, Bron, F-69677, France. patrick.edery@chu-lyon.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474761" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Cell Line ; Child, Preschool ; Chromosomes, Human, Pair 2/genetics ; Dwarfism/genetics/metabolism ; Female ; Fetal Growth Retardation/genetics/metabolism ; Humans ; Infant ; Introns ; Inverted Repeat Sequences ; Male ; Microcephaly/genetics/metabolism ; Microtubule-Associated Proteins/genetics ; Nucleic Acid Conformation ; Osteochondrodysplasias/genetics/metabolism ; Pedigree ; *Point Mutation ; RNA Splice Sites ; *RNA Splicing ; RNA, Small Nuclear/chemistry/*genetics/metabolism ; Spliceosomes/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2011-02-19
    Description: Although formation and stabilization of long-lasting associative memories are thought to require time-dependent coordinated hippocampal-cortical interactions, the underlying mechanisms remain unclear. Here, we present evidence that neurons in the rat cortex must undergo a "tagging process" upon encoding to ensure the progressive hippocampal-driven rewiring of cortical networks that support remote memory storage. This process was AMPA- and N-methyl-D-aspartate receptor-dependent, information-specific, and capable of modulating remote memory persistence by affecting the temporal dynamics of hippocampal-cortical interactions. Post-learning reinforcement of the tagging process via time-limited epigenetic modifications resulted in improved remote memory retrieval. Thus, early tagging of cortical networks is a crucial neurobiological process for remote memory formation whose functional properties fit the requirements imposed by the extended time scale of systems-level memory consolidation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lesburgueres, Edith -- Gobbo, Oliviero L -- Alaux-Cantin, Stephanie -- Hambucken, Anne -- Trifilieff, Pierre -- Bontempi, Bruno -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):924-8. doi: 10.1126/science.1196164.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Maladies Neurodegeneratives, CNRS UMR 5293, Universites Bordeaux 1 et 2, Talence, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330548" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Epigenesis, Genetic ; Excitatory Amino Acid Antagonists/pharmacology ; Food Preferences ; Frontal Lobe/*physiology ; Hippocampus/*physiology ; Histones/metabolism ; Learning ; Male ; *Memory, Long-Term ; Neural Pathways ; Neuronal Plasticity ; Neurons/cytology/*physiology ; Odors ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Reinforcement (Psychology) ; Signal Transduction ; Synapses/*physiology ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2011-09-10
    Description: Engineered fluorescent protein (FP) chimeras that modulate their fluorescence in response to changes in calcium ion (Ca(2+)) concentration are powerful tools for visualizing intracellular signaling activity. However, despite a decade of availability, the palette of single FP-based Ca(2+) indicators has remained limited to a single green hue. We have expanded this palette by developing blue, improved green, and red intensiometric indicators, as well as an emission ratiometric indicator with an 11,000% ratio change. This series enables improved single-color Ca(2+) imaging in neurons and transgenic Caenorhabditis elegans. In HeLa cells, Ca(2+) was imaged in three subcellular compartments, and, in conjunction with a cyan FP-yellow FP-based indicator, Ca(2+) and adenosine 5'-triphosphate were simultaneously imaged. This palette of indicators paints the way to a colorful new era of Ca(2+) imaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Yongxin -- Araki, Satoko -- Wu, Jiahui -- Teramoto, Takayuki -- Chang, Yu-Fen -- Nakano, Masahiro -- Abdelfattah, Ahmed S -- Fujiwara, Manabi -- Ishihara, Takeshi -- Nagai, Takeharu -- Campbell, Robert E -- 94487/Canadian Institutes of Health Research/Canada -- 99085/Canadian Institutes of Health Research/Canada -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1888-91. doi: 10.1126/science.1208592. Epub 2011 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21903779" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Animals, Genetically Modified ; Caenorhabditis elegans ; Calcium/*analysis ; *Calcium Signaling ; *Directed Molecular Evolution ; Fluorescence ; Fluorescence Resonance Energy Transfer ; Green Fluorescent Proteins/*chemistry/genetics ; HeLa Cells ; Humans ; Luminescent Proteins/*chemistry/genetics ; Molecular Sequence Data ; Neurons/metabolism ; *Protein Engineering ; Rats ; Recombinant Fusion Proteins/*chemistry ; Spectrometry, Fluorescence ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2011-04-23
    Description: Protein synthesis and autophagic degradation are regulated in an opposite manner by mammalian target of rapamycin (mTOR), whereas under certain conditions it would be beneficial if they occurred in unison to handle rapid protein turnover. We observed a distinct cellular compartment at the trans side of the Golgi apparatus, the TOR-autophagy spatial coupling compartment (TASCC), where (auto)lysosomes and mTOR accumulated during Ras-induced senescence. mTOR recruitment to the TASCC was amino acid- and Rag guanosine triphosphatase-dependent, and disruption of mTOR localization to the TASCC suppressed interleukin-6/8 synthesis. TASCC formation was observed during macrophage differentiation and in glomerular podocytes; both displayed increased protein secretion. The spatial coupling of cells' catabolic and anabolic machinery could augment their respective functions and facilitate the mass synthesis of secretory proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426290/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426290/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narita, Masako -- Young, Andrew R J -- Arakawa, Satoko -- Samarajiwa, Shamith A -- Nakashima, Takayuki -- Yoshida, Sei -- Hong, Sungki -- Berry, Lorraine S -- Reichelt, Stefanie -- Ferreira, Manuela -- Tavare, Simon -- Inoki, Ken -- Shimizu, Shigeomi -- Narita, Masashi -- DK083491/DK/NIDDK NIH HHS/ -- R01 DK083491/DK/NIDDK NIH HHS/ -- R01 DK083491-03/DK/NIDDK NIH HHS/ -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 May 20;332(6032):966-70. doi: 10.1126/science.1205407. Epub 2011 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Cambridge Research Institute (CRI), Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512002" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; *Autophagy ; *Cell Aging ; Cell Line ; Cytoplasm/metabolism ; Cytoplasmic Vesicles/*metabolism/ultrastructure ; Endoplasmic Reticulum, Rough/ultrastructure ; Genes, ras ; Golgi Apparatus/ultrastructure ; HL-60 Cells ; Humans ; Interleukin-6/metabolism ; Interleukin-8/metabolism ; Lysosomes/metabolism/ultrastructure ; Mice ; Monomeric GTP-Binding Proteins/genetics/metabolism ; Nocodazole/pharmacology ; Phagosomes/metabolism/ultrastructure ; Phenotype ; Podocytes/metabolism/ultrastructure ; Protein Biosynthesis ; Proteins/*secretion ; TOR Serine-Threonine Kinases/*metabolism ; Vacuoles/ultrastructure ; trans-Golgi Network/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2011-07-23
    Description: 5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495246/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Shinsuke -- Shen, Li -- Dai, Qing -- Wu, Susan C -- Collins, Leonard B -- Swenberg, James A -- He, Chuan -- Zhang, Yi -- GM071440/GM/NIGMS NIH HHS/ -- GM68804/GM/NIGMS NIH HHS/ -- P30 ES010126/ES/NIEHS NIH HHS/ -- P30 ES010126-11/ES/NIEHS NIH HHS/ -- P30ES10126/ES/NIEHS NIH HHS/ -- P42 ES005948/ES/NIEHS NIH HHS/ -- P42 ES005948-17/ES/NIEHS NIH HHS/ -- P42ES5948/ES/NIEHS NIH HHS/ -- R01 GM068804/GM/NIGMS NIH HHS/ -- U01 DK089565/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1300-3. doi: 10.1126/science.1210597. Epub 2011 Jul 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21778364" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/*metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Humans ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2011-01-29
    Description: Proper regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-kappaB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-kappaB-inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-kappaB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-kappaB pathway in B lymphoproliferative disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosebeck, Shaun -- Madden, Lisa -- Jin, Xiaohong -- Gu, Shufang -- Apel, Ingrid J -- Appert, Alex -- Hamoudi, Rifat A -- Noels, Heidi -- Sagaert, Xavier -- Van Loo, Peter -- Baens, Mathijs -- Du, Ming-Qing -- Lucas, Peter C -- McAllister-Lucas, Linda M -- R01 CA124540/CA/NCI NIH HHS/ -- R01 CA124540-04/CA/NCI NIH HHS/ -- R01 HL082914/HL/NHLBI NIH HHS/ -- R01CA124540/CA/NCI NIH HHS/ -- T32-HD07513/HD/NICHD NIH HHS/ -- T32-HL007622-21A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):468-72. doi: 10.1126/science.1198946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273489" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; B-Lymphocytes/*metabolism ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; I-kappa B Kinase/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics/*metabolism ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit/metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2011-07-30
    Description: In the auditory epithelium of the cochlea, the sensory hair cells and supporting cells are arranged in a checkerboard-like fashion, but the mechanism underlying this cellular patterning is unclear. We found that mouse hair cells and supporting cells express the immunoglobulin-like adhesion molecules nectin-1 and -3, respectively, and that their interaction mediates the heterotypic adhesion between these two cell types. Genetic removal of nectin-1 or -3 disrupted the checkerboard-like pattern, inducing aberrant attachment between hair cells. When cells expressing either nectin-1 or -3 were cocultured, they arranged themselves into a mosaic pattern. Thus, nectin-1 and -3 promote the formation of the checkerboard-like pattern of the auditory epithelia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Togashi, Hideru -- Kominami, Kanoko -- Waseda, Masazumi -- Komura, Hitomi -- Miyoshi, Jun -- Takeichi, Masatoshi -- Takai, Yoshimi -- New York, N.Y. -- Science. 2011 Aug 26;333(6046):1144-7. doi: 10.1126/science.1208467. Epub 2011 Jul 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21798896" target="_blank"〉PubMed〈/a〉
    Keywords: Adherens Junctions/metabolism ; Animals ; *Cell Adhesion ; Cell Adhesion Molecules/genetics/*metabolism ; Cell Differentiation ; Cell Line ; Coculture Techniques ; HEK293 Cells ; Hair Cells, Auditory/*cytology/*metabolism ; Humans ; Mice ; Mice, Knockout ; Organ of Corti/*cytology/*metabolism ; Phenotype ; Protein Binding ; RNA, Messenger/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2011-05-21
    Description: The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Mingyao -- Wang, Isabel X -- Li, Yun -- Bruzel, Alan -- Richards, Allison L -- Toung, Jonathan M -- Cheung, Vivian G -- R01 HG005854/HG/NHGRI NIH HHS/ -- R01 HG005854-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):53-8. doi: 10.1126/science.1207018. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596952" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; B-Lymphocytes ; Base Sequence ; Cell Line ; Cerebral Cortex/cytology ; DNA/chemistry/*genetics ; Exons ; Expressed Sequence Tags ; Fibroblasts ; Gene Expression Profiling ; *Genetic Variation ; *Genome, Human ; Genotype ; Humans ; Mass Spectrometry ; Middle Aged ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Proteins/chemistry ; Proteome/chemistry ; RNA, Messenger/chemistry/*genetics ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Skin/cytology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2011-03-26
    Description: Axon-dendrite polarization is crucial for neural network wiring and information processing in the brain. Polarization begins with the transformation of a single neurite into an axon and its subsequent rapid extension, which requires coordination of cellular energy status to allow for transport of building materials to support axon growth. We found that activation of the energy-sensing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway suppressed axon initiation and neuronal polarization. Phosphorylation of the kinesin light chain of the Kif5 motor protein by AMPK disrupted the association of the motor with phosphatidylinositol 3-kinase (PI3K), preventing PI3K targeting to the axonal tip and inhibiting polarization and axon growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, Stephen -- Liu, Xiuxin -- Zheng, Bin -- Cantley, Lewis -- Rakic, Pasko -- Man, Heng-Ye -- GM41890/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- K99CA133245/CA/NCI NIH HHS/ -- MH07907/MH/NIMH NIH HHS/ -- R00 CA133245/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 NS014841/NS/NINDS NIH HHS/ -- R01 NS014841-32/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):247-51. doi: 10.1126/science.1201678. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436401" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Aminoimidazole Carboxamide/analogs & derivatives/pharmacology ; Animals ; Axons/enzymology/*physiology/ultrastructure ; *Cell Polarity/drug effects ; Cells, Cultured ; Hippocampus/cytology/embryology ; Metformin/pharmacology ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/cytology/drug effects/enzymology/*physiology ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Ribonucleotides/pharmacology ; Signal Transduction ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2011-03-19
    Description: Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4090309/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malik, Fady I -- Hartman, James J -- Elias, Kathleen A -- Morgan, Bradley P -- Rodriguez, Hector -- Brejc, Katjusa -- Anderson, Robert L -- Sueoka, Sandra H -- Lee, Kenneth H -- Finer, Jeffrey T -- Sakowicz, Roman -- Baliga, Ramesh -- Cox, David R -- Garard, Marc -- Godinez, Guillermo -- Kawas, Raja -- Kraynack, Erica -- Lenzi, David -- Lu, Pu Ping -- Muci, Alexander -- Niu, Congrong -- Qian, Xiangping -- Pierce, Daniel W -- Pokrovskii, Maria -- Suehiro, Ion -- Sylvester, Sheila -- Tochimoto, Todd -- Valdez, Corey -- Wang, Wenyue -- Katori, Tatsuo -- Kass, David A -- Shen, You-Tang -- Vatner, Stephen F -- Morgans, David J -- 1-R43-HL-66647-1/HL/NHLBI NIH HHS/ -- R01 HL106511/HL/NHLBI NIH HHS/ -- R43 HL066647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 18;331(6023):1439-43. doi: 10.1126/science.1200113.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Preclinical Research and Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA. fmalik@cytokinetics.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21415352" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Actins/metabolism ; Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/metabolism ; Adrenergic beta-Agonists/pharmacology ; Allosteric Regulation ; Animals ; Binding Sites ; Calcium/metabolism ; Cardiac Myosins/chemistry/*metabolism ; Cardiac Output/drug effects ; Dogs ; Female ; Heart Failure, Systolic/*drug therapy/physiopathology ; Isoproterenol/pharmacology ; Male ; Myocardial Contraction/*drug effects ; Myocytes, Cardiac/*drug effects/physiology ; Phosphates/metabolism ; Protein Binding ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Rats ; Rats, Sprague-Dawley ; Urea/*analogs & derivatives/chemistry/metabolism/pharmacology ; Ventricular Function, Left/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2011-03-10
    Description: Many biological processes are regulated through the selective dephosphorylation of proteins. Protein serine-threonine phosphatases are assembled from catalytic subunits bound to diverse regulatory subunits that provide substrate specificity and subcellular localization. We describe a small molecule, guanabenz, that bound to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, selectively disrupting the stress-induced dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). Without affecting the related PPP1R15B-phosphatase complex and constitutive protein synthesis, guanabenz prolonged eIF2alpha phosphorylation in human stressed cells, adjusting the protein production rates to levels manageable by available chaperones. This favored protein folding and thereby rescued cells from protein misfolding stress. Thus, regulatory subunits of phosphatases are drug targets, a property used here to restore proteostasis in stressed cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsaytler, Pavel -- Harding, Heather P -- Ron, David -- Bertolotti, Anne -- 084812/Wellcome Trust/United Kingdom -- MC_U105185860/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):91-4. doi: 10.1126/science.1201396. Epub 2011 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385720" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-2 Receptor Agonists/*pharmacology ; Catalytic Domain/drug effects ; Cell Line ; Clonidine/pharmacology ; Endoplasmic Reticulum/drug effects/metabolism ; Enzyme Inhibitors/*pharmacology ; Eukaryotic Initiation Factor-2/metabolism ; Guanabenz/*pharmacology ; HeLa Cells ; Homeostasis ; Humans ; Molecular Chaperones/metabolism ; Phosphorylation ; Protein Biosynthesis/drug effects ; Protein Folding/drug effects ; Protein Phosphatase 1/*antagonists & inhibitors/metabolism ; Protein Subunits/drug effects/metabolism ; Proteins/metabolism ; Stress, Physiological ; Tunicamycin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2011-07-09
    Description: When new learning occurs against the background of established prior knowledge, relevant new information can be assimilated into a schema and thereby expand the knowledge base. An animal model of this important component of memory consolidation reveals that systems memory consolidation can be very fast. In experiments with rats, we found that the hippocampal-dependent learning of new paired associates is associated with a striking up-regulation of immediate early genes in the prelimbic region of the medial prefrontal cortex, and that pharmacological interventions targeted at that area can prevent both new learning and the recall of remotely and even recently consolidated information. These findings challenge the concept of distinct fast (hippocampal) and slow (cortical) learning systems, and shed new light on the neural mechanisms of memory assimilation into schemas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tse, Dorothy -- Takeuchi, Tomonori -- Kakeyama, Masaki -- Kajii, Yasushi -- Okuno, Hiroyuki -- Tohyama, Chiharu -- Bito, Haruhiko -- Morris, Richard G M -- G0700447/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):891-5. doi: 10.1126/science.1205274. Epub 2011 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21737703" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology ; Animals ; Cues ; Cytoskeletal Proteins/genetics ; Early Growth Response Protein 1/genetics ; *Genes, Immediate-Early ; Hippocampus/*physiology ; Learning ; Male ; *Memory ; *Mental Recall ; Neocortex/*physiology ; Nerve Tissue Proteins/genetics ; Prefrontal Cortex/*physiology ; Rats ; Receptors, AMPA/antagonists & inhibitors ; Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors ; Synaptic Transmission/drug effects ; *Transcriptional Activation ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2011-02-12
    Description: Endocrine tumors such as aldosterone-producing adrenal adenomas (APAs), a cause of severe hypertension, feature constitutive hormone production and unrestrained cell proliferation; the mechanisms linking these events are unknown. We identify two recurrent somatic mutations in and near the selectivity filter of the potassium (K(+)) channel KCNJ5 that are present in 8 of 22 human APAs studied. Both produce increased sodium (Na(+)) conductance and cell depolarization, which in adrenal glomerulosa cells produces calcium (Ca(2+)) entry, the signal for aldosterone production and cell proliferation. Similarly, we identify an inherited KCNJ5 mutation that produces increased Na(+) conductance in a Mendelian form of severe aldosteronism and massive bilateral adrenal hyperplasia. These findings explain pathogenesis in a subset of patients with severe hypertension and implicate loss of K(+) channel selectivity in constitutive cell proliferation and hormone production.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3371087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Murim -- Scholl, Ute I -- Yue, Peng -- Bjorklund, Peyman -- Zhao, Bixiao -- Nelson-Williams, Carol -- Ji, Weizhen -- Cho, Yoonsang -- Patel, Aniruddh -- Men, Clara J -- Lolis, Elias -- Wisgerhof, Max V -- Geller, David S -- Mane, Shrikant -- Hellman, Per -- Westin, Gunnar -- Akerstrom, Goran -- Wang, Wenhui -- Carling, Tobias -- Lifton, Richard P -- DK54983/DK/NIDDK NIH HHS/ -- K01 AR060300/AR/NIAMS NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):768-72. doi: 10.1126/science.1198785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311022" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics/metabolism/pathology ; Adrenal Glands/pathology ; Adrenocortical Adenoma/*genetics/metabolism/pathology ; Aldosterone/*metabolism ; Cell Line ; Cell Proliferation ; Female ; G Protein-Coupled Inwardly-Rectifying Potassium ; Channels/chemistry/*genetics/metabolism ; Humans ; Hyperaldosteronism/*genetics/metabolism/pathology ; Hyperplasia ; Hypertension/*genetics/metabolism ; Male ; Mutant Proteins/chemistry/genetics/metabolism ; *Mutation ; Potassium/metabolism ; Protein Multimerization ; Sodium/metabolism ; Zona Glomerulosa/metabolism/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-05
    Description: Once initiated near the soma, an action potential (AP) is thought to propagate autoregeneratively and distribute uniformly over axonal arbors. We challenge this classic view by showing that APs are subject to waveform modulation while they travel down axons. Using fluorescent patch-clamp pipettes, we recorded APs from axon branches of hippocampal CA3 pyramidal neurons ex vivo. The waveforms of axonal APs increased in width in response to the local application of glutamate and an adenosine A(1) receptor antagonist to the axon shafts, but not to other unrelated axon branches. Uncaging of calcium in periaxonal astrocytes caused AP broadening through ionotropic glutamate receptor activation. The broadened APs triggered larger calcium elevations in presynaptic boutons and facilitated synaptic transmission to postsynaptic neurons. This local AP modification may enable axonal computation through the geometry of axon wiring.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Takuya -- Matsuki, Norio -- Ikegaya, Yuji -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):599-601. doi: 10.1126/science.1197598.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292979" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials/drug effects ; Adenosine/metabolism/pharmacology ; Adenosine A1 Receptor Antagonists/pharmacology ; Animals ; Astrocytes/metabolism ; Axons/drug effects/*physiology ; CA3 Region, Hippocampal/*cytology/physiology ; Calcium/metabolism ; Excitatory Postsynaptic Potentials ; Glutamic Acid/pharmacology ; In Vitro Techniques ; Patch-Clamp Techniques ; Potassium Channels/metabolism ; Presynaptic Terminals/physiology ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptor, Adenosine A1/metabolism ; Receptors, AMPA/metabolism ; *Synaptic Transmission ; Xanthines/pharmacology ; gamma-Aminobutyric Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2011-11-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Jocelyn -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1043. doi: 10.1126/science.334.6059.1043.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116849" target="_blank"〉PubMed〈/a〉
    Keywords: *Biotechnology/economics/manpower ; California ; Cell Line ; Clinical Trials as Topic ; Embryonic Stem Cells/*cytology ; Humans ; Neural Stem Cells/*transplantation ; Neurogenesis ; Oligodendroglia/*cytology/transplantation ; Spinal Cord Injuries/*therapy ; *Stem Cell Transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2011-07-19
    Description: Reward-motivated behavior is strongly influenced by the learned significance of contextual stimuli in the environment. However, the neural pathways that mediate context-reward relations are not well understood. We have identified a circuit from area CA3 of dorsal hippocampus to ventral tegmental area (VTA) that uses lateral septum (LS) as a relay. Theta frequency stimulation of CA3 excited VTA dopamine (DA) neurons and inhibited non-DA neurons. DA neuron excitation was likely mediated by disinhibition because local antagonism of gamma-aminobutyric acid receptors blocked responses to CA3 stimulation. Inactivating components of the CA3-LS-VTA pathway blocked evoked responses in VTA and also reinstatement of cocaine-seeking by contextual stimuli. This transsynaptic link between hippocampus and VTA appears to be an important substrate by which environmental context regulates goal-directed behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150711/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150711/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luo, Alice H -- Tahsili-Fahadan, Pouya -- Wise, Roy A -- Lupica, Carl R -- Aston-Jones, Gary -- F31-MH071093/MH/NIMH NIH HHS/ -- R37 DA006214/DA/NIDA NIH HHS/ -- R37-DA006214/DA/NIDA NIH HHS/ -- UL1 RR029882/RR/NCRR NIH HHS/ -- ZIA DA000471-07/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):353-7. doi: 10.1126/science.1204622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Behavioral Neuroscience Section, Behavioral Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA. alice_luo@hotmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764750" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal ; Brain Mapping ; CA3 Region, Hippocampal/*physiology ; Cocaine/administration & dosage ; Dopamine/physiology ; Drug-Seeking Behavior ; Electric Stimulation ; GABA Agonists/pharmacology ; GABA Antagonists/pharmacology ; Hippocampus/physiology ; Male ; Models, Neurological ; Neural Inhibition ; Neural Pathways ; Neurons/*physiology ; Rats ; Rats, Sprague-Dawley ; *Reward ; Self Administration ; Septal Nuclei/*physiology ; Theta Rhythm ; Ventral Tegmental Area/*physiology ; gamma-Aminobutyric Acid/administration & dosage/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2011-01-15
    Description: Infection of chickens with avian influenza virus poses a global threat to both poultry production and human health that is not adequately controlled by vaccination or by biosecurity measures. A novel alternative strategy is to develop chickens that are genetically resistant to infection. We generated transgenic chickens expressing a short-hairpin RNA designed to function as a decoy that inhibits and blocks influenza virus polymerase and hence interferes with virus propagation. Susceptibility to primary challenge with highly pathogenic avian influenza virus and onward transmission dynamics were determined. Although the transgenic birds succumbed to the initial experimental challenge, onward transmission to both transgenic and nontransgenic birds was prevented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lyall, Jon -- Irvine, Richard M -- Sherman, Adrian -- McKinley, Trevelyan J -- Nunez, Alejandro -- Purdie, Auriol -- Outtrim, Linzy -- Brown, Ian H -- Rolleston-Smith, Genevieve -- Sang, Helen -- Tiley, Laurence -- BB/G00479X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/00239/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/00301/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):223-6. doi: 10.1126/science.1198020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233391" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Animals, Genetically Modified ; Cell Line ; Chickens/*genetics/virology ; Cloaca/virology ; Influenza A Virus, H5N1 Subtype/enzymology/isolation & purification/*physiology ; Influenza in Birds/*prevention & control/*transmission/virology ; Oropharynx/virology ; RNA Replicase/antagonists & inhibitors/genetics/metabolism ; RNA, Small Interfering/*genetics/metabolism ; RNA, Viral/analysis/genetics/metabolism ; Transfection ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2011-03-26
    Description: Caenorhabditis elegans proteins AFF-1 and EFF-1 [C. elegans fusion family (CeFF) proteins] are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed vesicular stomatitis virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSV glycoprotein. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric "flowers" on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified fusion family (FF) proteins within and beyond nematodes, and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus, FF proteins are part of an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Fridman, Karen -- Valansi, Clari -- Abutbul, Inbal -- Zeev-Ben-Mordehai, Tzviya -- Maurer, Ulrike E -- Sapir, Amir -- Danino, Dganit -- Grunewald, Kay -- White, Judith M -- Podbilewicz, Benjamin -- 090532/Wellcome Trust/United Kingdom -- 090895/Wellcome Trust/United Kingdom -- AI22470/AI/NIAID NIH HHS/ -- R01 AI022470/AI/NIAID NIH HHS/ -- R01 AI022470-24/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):589-92. doi: 10.1126/science.1202333. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436398" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arthropods/chemistry ; Biological Evolution ; Caenorhabditis elegans/chemistry ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism/ultrastructure ; *Cell Fusion ; Cell Line ; Cell Membrane/*metabolism ; Chordata, Nonvertebrate/chemistry ; Ctenophora/chemistry ; *Membrane Fusion ; Membrane Glycoproteins/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Naegleria fowleri/chemistry ; Nematoda/chemistry ; Recombinant Proteins/metabolism ; Recombination, Genetic ; Vesicular stomatitis Indiana virus/genetics/*physiology/ultrastructure ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2011-11-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markram, Henry -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):748-9. doi: 10.1126/science.334.6057.748.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076354" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain/physiology ; *Computer Simulation ; Consciousness ; Humans ; *Models, Neurological ; Rats ; Research Support as Topic ; Software
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2011-07-02
    Description: Mucolipidosis II is a severe lysosomal storage disorder caused by defects in the alpha and beta subunits of the hexameric N-acetylglucosamine-1-phosphotransferase complex essential for the formation of the mannose 6-phosphate targeting signal on lysosomal enzymes. Cleavage of the membrane-bound alpha/beta-subunit precursor by an unknown protease is required for catalytic activity. Here we found that the alpha/beta-subunit precursor is cleaved by the site-1 protease (S1P) that activates sterol regulatory element-binding proteins in response to cholesterol deprivation. S1P-deficient cells failed to activate the alpha/beta-subunit precursor and exhibited a mucolipidosis II-like phenotype. Thus, S1P functions in the biogenesis of lysosomes, and lipid-independent phenotypes of S1P deficiency may be caused by lysosomal dysfunction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marschner, Katrin -- Kollmann, Katrin -- Schweizer, Michaela -- Braulke, Thomas -- Pohl, Sandra -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):87-90. doi: 10.1126/science.1205677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21719679" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line ; Cholesterol/*metabolism ; Chondrocytes/cytology ; Cricetinae ; Cricetulus ; Enzyme Precursors/chemistry/*metabolism ; HeLa Cells ; Humans ; Lipid Metabolism ; Lysosomes/enzymology/*metabolism/ultrastructure ; Mannosephosphates/metabolism ; Mice ; Morphogenesis ; Mucolipidoses/enzymology/genetics/metabolism/pathology ; N-Acetylgalactosamine-4-Sulfatase/metabolism ; Osteogenesis ; Proprotein Convertases/genetics/*metabolism ; Protein Subunits/chemistry/metabolism ; RNA, Small Interfering ; Serine Endopeptidases/genetics/*metabolism ; Transferases (Other Substituted Phosphate Groups)/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2011-10-15
    Description: The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short beta-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pejchal, Robert -- Doores, Katie J -- Walker, Laura M -- Khayat, Reza -- Huang, Po-Ssu -- Wang, Sheng-Kai -- Stanfield, Robyn L -- Julien, Jean-Philippe -- Ramos, Alejandra -- Crispin, Max -- Depetris, Rafael -- Katpally, Umesh -- Marozsan, Andre -- Cupo, Albert -- Maloveste, Sebastien -- Liu, Yan -- McBride, Ryan -- Ito, Yukishige -- Sanders, Rogier W -- Ogohara, Cassandra -- Paulson, James C -- Feizi, Ten -- Scanlan, Christopher N -- Wong, Chi-Huey -- Moore, John P -- Olson, William C -- Ward, Andrew B -- Poignard, Pascal -- Schief, William R -- Burton, Dennis R -- Wilson, Ian A -- AI082362/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI74372/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- F32 AI074372-03/AI/NIAID NIH HHS/ -- HFE-224662/Canadian Institutes of Health Research/Canada -- P01 AI082362/AI/NIAID NIH HHS/ -- P01 AI082362-03/AI/NIAID NIH HHS/ -- P01 AI082362-04/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI033292-14/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R01 AI084817-04/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- U01 CA128416/CA/NCI NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1097-103. doi: 10.1126/science.1213256. Epub 2011 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Skaggs Institute for Chemical Biology and International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, nhe Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998254" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Neutralizing/chemistry/genetics/*immunology/metabolism ; Antibody Specificity ; Binding Sites, Antibody ; Carbohydrate Conformation ; Cell Line ; Crystallography, X-Ray ; Disaccharides/chemistry/metabolism ; Epitopes ; Glycosylation ; HIV Antibodies/chemistry/genetics/*immunology/*metabolism ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV-1/*immunology/physiology ; Humans ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Mannose/chemistry/immunology/metabolism ; Mannosides/chemistry/metabolism ; Models, Molecular ; Mutation ; Oligosaccharides/chemistry/*immunology/metabolism ; Polysaccharides/chemistry/*immunology/*metabolism ; Protein Conformation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...