ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-03
    Description: A novel technique for reconstructing the phase shifts of electron waves was applied to C s -corrected scanning transmission electron microscopy (STEM). To realize this method, a new STEM system equipped with an annular aperture, annularly arrayed detectors and an arrayed image processor has been developed and evaluated in experiments. We show a reconstructed phase image of graphite particles and demonstrate that this new method works effectively for high-resolution phase imaging.
    Print ISSN: 0022-0744
    Electronic ISSN: 1477-9986
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-03
    Description: A phase reconstruction method based on multiple scanning transmission electron microscope (STEM) images was evaluated quantitatively using image simulations. The simulation results indicated that the phase shift caused by a single atom was proportional to the 0.6th power of the atomic number Z. For a thin SrTiO 3 [001] crystal, the reconstructed phase at each atomic column increased according to the specimen thickness. The STEM phase images can quantify the oxygen vacancy concentration if the thickness is less than several nanometers.
    Print ISSN: 0022-0744
    Electronic ISSN: 1477-9986
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-03-21
    Description: Equal amounts of matter and antimatter are predicted to have been produced in the Big Bang, but our observable Universe is clearly matter-dominated. One of the prerequisites for understanding this elimination of antimatter is the nonconservation of charge-parity (CP) symmetry. So far, two types of CP violation have been observed in the neutral K meson (K(0)) and B meson (B(0)) systems: CP violation involving the mixing between K(0) and its antiparticle (and likewise for B(0) and ), and direct CP violation in the decay of each meson. The observed effects for both types of CP violation are substantially larger for the B(0) meson system. However, they are still consistent with the standard model of particle physics, which has a unique source of CP violation that is known to be too small to account for the matter-dominated Universe. Here we report that the direct CP violation in charged B(+/-)--〉K(+/-)pi(0) decay is different from that in the neutral B(0) counterpart. The direct CP-violating decay rate asymmetry, (that is, the difference between the number of observed B(-)--〉K(-)pi(0) event versus B(+)--〉K(+) pi(0) events, normalized to the sum of these events) is measured to be about +7%, with an uncertainty that is reduced by a factor of 1.7 from a previous measurement. However, the asymmetry for versus B(0)--〉K(+)pi(-) is at the -10% level. Although it is susceptible to strong interaction effects that need further clarification, this large deviation in direct CP violation between charged and neutral B meson decays could be an indication of new sources of CP violation-which would help to explain the dominance of matter in the Universe.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belle Collaboration -- Lin, S-W -- Unno, Y -- Hou, W-S -- Chang, P -- Adachi, I -- Aihara, H -- Akai, K -- Arinstein, K -- Aulchenko, V -- Aushev, T -- Aziz, T -- Bakich, A M -- Balagura, V -- Barberio, E -- Bay, A -- Bedny, I -- Bitenc, U -- Bondar, A -- Bozek, A -- Bracko, M -- Browder, T E -- Chang, M-C -- Chao, Y -- Chen, A -- Chen, K-F -- Chen, W T -- Cheon, B G -- Chiang, C-C -- Chistov, R -- Cho, I-S -- Choi, S-K -- Choi, Y -- Choi, Y K -- Cole, S -- Dalseno, J -- Danilov, M -- Dash, M -- Drutskoy, A -- Eidelman, S -- Epifanov, D -- Fratina, S -- Fujikawa, M -- Furukawa, K -- Gabyshev, N -- Goldenzweig, P -- Golob, B -- Ha, H -- Haba, J -- Hara, T -- Hayasaka, K -- Hayashii, H -- Hazumi, M -- Heffernan, D -- Hokuue, T -- Hoshi, Y -- Hsiung, Y B -- Hyun, H J -- Iijima, T -- Ikado, K -- Inami, K -- Ishikawa, A -- Ishino, H -- Itoh, R -- Iwabuchi, M -- Iwasaki, M -- Iwasaki, Y -- Kah, D H -- Kaji, H -- Kataoka, S U -- Kawai, H -- Kawasaki, T -- Kibayashi, A -- Kichimi, H -- Kikutani, E -- Kim, H J -- Kim, S K -- Kim, Y J -- Kinoshita, K -- Korpar, S -- Kozakai, Y -- Krizan, P -- Krokovny, P -- Kumar, R -- Kuo, C C -- Kuzmin, A -- Kwon, Y-J -- Lee, M J -- Lee, S E -- Lesiak, T -- Li, J -- Liu, Y -- Liventsev, D -- Mandl, F -- Marlow, D -- McOnie, S -- Medvedeva, T -- Mimashi, T -- Mitaroff, W -- Miyabayashi, K -- Miyake, H -- Miyazaki, Y -- Mizuk, R -- Mori, T -- Nakamura, T T -- Nakano, E -- Nakao, M -- Nakazawa, H -- Nishida, S -- Nitoh, O -- Noguchi, S -- Nozaki, T -- Ogawa, S -- Ogawa, Y -- Ohshima, T -- Okuno, S -- Olsen, S L -- Ozaki, H -- Pakhlova, G -- Park, C W -- Park, H -- Peak, L S -- Pestotnik, R -- Peters, M -- Piilonen, L E -- Poluektov, A -- Sahoo, H -- Sakai, Y -- Schneider, O -- Schumann, J -- Schwartz, A J -- Seidl, R -- Senyo, K -- Sevior, M E -- Shapkin, M -- Shen, C P -- Shibuya, H -- Shidara, T -- Shinomiya, S -- Shiu, J-G -- Shwartz, B -- Singh, J B -- Sokolov, A -- Somov, A -- Stanic, S -- Staric, M -- Sumisawa, K -- Sumiyoshi, T -- Suzuki, S -- Tajima, O -- Takasaki, F -- Tamura, N -- Tanaka, M -- Tawada, M -- Taylor, G N -- Teramoto, Y -- Tikhomirov, I -- Trabelsi, K -- Uehara, S -- Ueno, K -- Uglov, T -- Uno, S -- Urquijo, P -- Ushiroda, Y -- Usov, Y -- Varner, G -- Varvell, K E -- Vervink, K -- Villa, S -- Wang, C C -- Wang, C H -- Wang, M-Z -- Watanabe, Y -- Wedd, R -- Wicht, J -- Won, E -- Yabsley, B D -- Yamaguchi, A -- Yamashita, Y -- Yamauchi, M -- Yoshida, M -- Yuan, C Z -- Yusa, Y -- Zhang, C C -- Zhang, Z P -- Zhilich, V -- Zhulanov, V -- Zupanc, A -- England -- Nature. 2008 Mar 20;452(7185):332-5. doi: 10.1038/nature06827.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, National Taiwan University, Taipei, 106, Taiwan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18354478" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-06
    Description: Neural circuitry formation depends on the molecular control of axonal projection during development. By screening with fluorophore-assisted light inactivation in the developing mouse brain, we identified cartilage acidic protein-1B as a key molecule for lateral olfactory tract (LOT) formation and named it LOT usher substance (LOTUS). We further identified Nogo receptor-1 (NgR1) as a LOTUS-binding protein. NgR1 is a receptor of myelin-derived axon growth inhibitors, such as Nogo, which prevent neural regeneration in the adult. LOTUS suppressed Nogo-NgR1 binding and Nogo-induced growth cone collapse. A defasciculated LOT was present in lotus-deficient mice but not in mice lacking both lotus- and ngr1. These findings suggest that endogenous antagonism of NgR1 by LOTUS is crucial for normal LOT formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3244695/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yasufumi -- Iketani, Masumi -- Kurihara, Yuji -- Yamaguchi, Megumi -- Yamashita, Naoya -- Nakamura, Fumio -- Arie, Yuko -- Kawasaki, Takahiko -- Hirata, Tatsumi -- Abe, Takaya -- Kiyonari, Hiroshi -- Strittmatter, Stephen M -- Goshima, Yoshio -- Takei, Kohtaro -- R37 NS033020/NS/NINDS NIH HHS/ -- R37 NS033020-19/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Aug 5;333(6043):769-73. doi: 10.1126/science.1204144.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*physiology ; Binding Sites ; Calcium-Binding Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cells, Cultured ; GPI-Linked Proteins/genetics/metabolism ; Growth Cones/metabolism ; Humans ; Immunohistochemistry ; Ligands ; Mice ; Mice, Inbred ICR ; Myelin Proteins/genetics/*metabolism ; Olfactory Pathways/*cytology/*growth & development/metabolism ; Prosencephalon/embryology/metabolism ; Protein Binding ; Receptors, Cell Surface/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-15
    Description: Cardiac mesenchymal progenitors differentiate into adipocytes via Klf4 and c-Myc Cell Death and Disease 7, e2190 (April 2016). doi:10.1038/cddis.2016.31 Authors: D Kami, T Kitani, T Kawasaki & S Gojo
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-03-28
    Description: Many apparently achiral organic molecules on Earth may be chiral because of random substitution of the 1.11% naturally abundant 13C for 12C in an enantiotopic moiety within the structure. However, chirality from this source is experimentally difficult to discern because of the very small difference between 13C and 12C. We have demonstrated that this small difference can be amplified to an easily seen experimental outcome using asymmetric autocatalysis. In the reaction between pyrimidine-5-carbaldehyde and diisopropylzinc, addition of chiral molecules in large enantiomeric excess that are, however, chiral only by virtue of isotope substitution causes a slight enantiomeric excess in the zinc alkoxide of the produced pyrimidyl alkanol. Asymmetric autocatalysis then leads to pyrimidyl alcohol with a large enantiomeric excess. The sense of enantiomeric excess of the product alcohol varies consistently with the sense of the excess enantiomer of the carbon isotopically chiral compound.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawasaki, Tsuneomi -- Matsumura, Yukari -- Tsutsumi, Takashi -- Suzuki, Kenta -- Ito, Masateru -- Soai, Kenso -- New York, N.Y. -- Science. 2009 Apr 24;324(5926):492-5. doi: 10.1126/science.1170322. Epub 2009 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19325079" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-05
    Description: Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an extrahypothalamic neuromodulatory system, function as a gate for activating mating preferences based on familiarity. Basal levels of TN-GnRH3 neuronal activity suppress female receptivity for any male (default mode). Visual familiarization facilitates TN-GnRH3 neuron activity (preference mode), which correlates with female preference for the familiarized male. GnRH3 peptides, which are synthesized specifically in TN-GnRH3 neurons, are required for the mode-switching via self-facilitation. Our study demonstrates the central neural mechanisms underlying the regulation of medaka female mating preference based on visual social familiarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okuyama, Teruhiro -- Yokoi, Saori -- Abe, Hideki -- Isoe, Yasuko -- Suehiro, Yuji -- Imada, Haruka -- Tanaka, Minoru -- Kawasaki, Takashi -- Yuba, Shunsuke -- Taniguchi, Yoshihito -- Kamei, Yasuhiro -- Okubo, Kataaki -- Shimada, Atsuko -- Naruse, Kiyoshi -- Takeda, Hiroyuki -- Oka, Yoshitaka -- Kubo, Takeo -- Takeuchi, Hideaki -- New York, N.Y. -- Science. 2014 Jan 3;343(6166):91-4. doi: 10.1126/science.1244724.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24385628" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Gonadotropin-Releasing Hormone/*physiology ; Male ; *Mating Preference, Animal ; Mutation ; Neurons/*physiology ; Oryzias/genetics/*physiology ; Pyrrolidonecarboxylic Acid/*analogs & derivatives ; *Recognition (Psychology) ; Sex Factors ; *Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-28
    Description: mRNAs encodes not only information that determines amino acid sequences but also additional layers of information that regulate the translational processes. Notably, translational halt at specific position caused by rare codons or stable RNA structures is one of the potential factors regulating the protein expressions and structures. In this study, a quadruplex-forming potential (QFP) sequence derived from an open reading frame of human estrogen receptor α ( hERα ) mRNA was revealed to form parallel G-quadruplex and halt the translation elongation in vitro . Moreover, when the full-length hERα and variants containing synonymous mutations in the QFP sequence were expressed in cells, translation products cleaved at specific site were observed in quantities dependent on the thermodynamic stability of the G-quadruplexes. These results suggest that the G-quadruplex formation in the coding region of the hERα mRNA impacts folding and proteolysis of hERα protein by slowing down or temporarily stalling the translation elongation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-15
    Description: Major histocompatibility complex class I (MHCI) is an important immune protein that is expressed in various brain regions, with its deficiency leading to extensive synaptic transmission that results in learning and memory deficits. Although MHCI is highly expressed in dopaminergic neurons, its role in these neurons has not been examined. We show that MHCI expressed in dopaminergic neurons plays a key role in suppressing reward-seeking behavior. In wild-type mice, cocaine self-administration caused persistent reduction of MHCI specifically in dopaminergic neurons, which was accompanied by enhanced glutamatergic synaptic transmission and relapse to cocaine seeking. Functional MHCI knockout promoted this addictive phenotype for cocaine and a natural reward, namely, sucrose. In contrast, wild-type mice overexpressing a major MHCI gene (H2D) in dopaminergic neurons showed suppressed cocaine seeking. These results show that persistent cocaine-induced reduction of MHCI in dopaminergic neurons is necessary for relapse to cocaine seeking.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-06-20
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...