ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-09
    Description: Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal's internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal's belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlsson, Mattias P -- Tervo, Dougal G R -- Karpova, Alla Y -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 5;338(6103):135-9. doi: 10.1126/science.1226518.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23042898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Male ; Nerve Net/cytology/*physiology ; Neurons/physiology ; Prefrontal Cortex/cytology/*physiology ; Rats ; Rats, Long-Evans ; Rejection (Psychology) ; Reward ; *Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-05
    Description: How does an animal know where it is when it stops moving? Hippocampal place cells fire at discrete locations as subjects traverse space, thereby providing an explicit neural code for current location during locomotion. In contrast, during awake immobility, the hippocampus is thought to be dominated by neural firing representing past and possible future experience. The question of whether and how the hippocampus constructs a representation of current location in the absence of locomotion has been unresolved. Here we report that a distinct population of hippocampal neurons, located in the CA2 subregion, signals current location during immobility, and does so in association with a previously unidentified hippocampus-wide network pattern. In addition, signalling of location persists into brief periods of desynchronization prevalent in slow-wave sleep. The hippocampus thus generates a distinct representation of current location during immobility, pointing to mnemonic processing specific to experience occurring in the absence of locomotion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kay, Kenneth -- Sosa, Marielena -- Chung, Jason E -- Karlsson, Mattias P -- Larkin, Margaret C -- Frank, Loren M -- R01 MH090188/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 10;531(7593):185-90. doi: 10.1038/nature17144. Epub 2016 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, California 94158, USA. ; Howard Hughes Medical Institute, University of California San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26934224" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Hippocampus/anatomy & histology/*cytology/*physiology ; Male ; Models, Neurological ; Movement ; Neurons/*physiology ; Orientation/*physiology ; Rats ; Rats, Long-Evans ; Sleep/*physiology ; Space Perception/*physiology ; Spatial Memory/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-07
    Description: The SugarBind Database (SugarBindDB) covers knowledge of glycan binding of human pathogen lectins and adhesins. It is a curated database; each glycan–protein binding pair is associated with at least one published reference. The core data element of SugarBindDB is a set of three inseparable components: the pathogenic agent, a lectin/adhesin and a glycan ligand. Each entity (agent, lectin or ligand) is described by a range of properties that are summarized in an entity-dedicated page. Several search, navigation and visualisation tools are implemented to investigate the functional role of glycans in pathogen binding. The database is cross-linked to protein and glycan-relaled resources such as UniProtKB and UniCarbKB. It is tightly bound to the latter via a substructure search tool that maps each ligand to full structures where it occurs. Thus, a glycan–lectin binding pair of SugarBindDB can lead to the identification of a glycan-mediated protein–protein interaction, that is, a lectin–glycoprotein interaction, via substructure search and the knowledge of site-specific glycosylation stored in UniCarbKB. SugarBindDB is accessible at: http://sugarbind.expasy.org .
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...