ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,649)
  • Latest Papers from Table of Contents or Articles in Press  (1,649)
  • Cells, Cultured  (1,649)
  • Medicine  (1,649)
Collection
  • Articles  (1,649)
Source
  • Latest Papers from Table of Contents or Articles in Press  (1,649)
Keywords
Years
Topic
  • 1
    Publication Date: 2016-02-26
    Description: Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Boxing -- Tadross, Michael R -- Tsien, Richard W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):863-7. doi: 10.1126/science.aad3647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. ; Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. tadrossm@janelia.hhmi.org. ; Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Gene Expression Regulation ; HEK293 Cells ; Hippocampus/cytology ; Humans ; Long QT Syndrome/genetics/metabolism ; Neuronal Plasticity/*genetics ; Neurons/drug effects/*metabolism ; Nimodipine/pharmacology ; Protein Conformation/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Syndactyly/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-23
    Description: Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soucie, Erinn L -- Weng, Ziming -- Geirsdottir, Laufey -- Molawi, Kaaweh -- Maurizio, Julien -- Fenouil, Romain -- Mossadegh-Keller, Noushine -- Gimenez, Gregory -- VanHille, Laurent -- Beniazza, Meryam -- Favret, Jeremy -- Berruyer, Carole -- Perrin, Pierre -- Hacohen, Nir -- Andrau, J-C -- Ferrier, Pierre -- Dubreuil, Patrice -- Sidow, Arend -- Sieweke, Michael H -- P01AG036695/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):aad5510. doi: 10.1126/science.aad5510. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. ; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Institut de Genetique Moleculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier, France. ; Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. Department of Genetics, Stanford University, Stanford, CA 94305, USA. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Lineage/*genetics ; Cell Proliferation ; Cells, Cultured ; Down-Regulation ; Embryonic Stem Cells/*cytology ; Enhancer Elements, Genetic/*physiology ; *Gene Expression Regulation ; Gene Regulatory Networks ; Macrophages/*cytology ; MafB Transcription Factor/metabolism ; Mice ; Proto-Oncogene Proteins c-maf/metabolism ; Single-Cell Analysis ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-28
    Description: Inflammasomes are intracellular protein complexes that drive the activation of inflammatory caspases. So far, four inflammasomes involving NLRP1, NLRP3, NLRC4 and AIM2 have been described that recruit the common adaptor protein ASC to activate caspase-1, leading to the secretion of mature IL-1beta and IL-18 proteins. The NLRP3 inflammasome has been implicated in the pathogenesis of several acquired inflammatory diseases as well as cryopyrin-associated periodic fever syndromes (CAPS) caused by inherited NLRP3 mutations. Potassium efflux is a common step that is essential for NLRP3 inflammasome activation induced by many stimuli. Despite extensive investigation, the molecular mechanism leading to NLRP3 activation in response to potassium efflux remains unknown. Here we report the identification of NEK7, a member of the family of mammalian NIMA-related kinases (NEK proteins), as an NLRP3-binding protein that acts downstream of potassium efflux to regulate NLRP3 oligomerization and activation. In the absence of NEK7, caspase-1 activation and IL-1beta release were abrogated in response to signals that activate NLRP3, but not NLRC4 or AIM2 inflammasomes. NLRP3-activating stimuli promoted the NLRP3-NEK7 interaction in a process that was dependent on potassium efflux. NLRP3 associated with the catalytic domain of NEK7, but the catalytic activity of NEK7 was shown to be dispensable for activation of the NLRP3 inflammasome. Activated macrophages formed a high-molecular-mass NLRP3-NEK7 complex, which, along with ASC oligomerization and ASC speck formation, was abrogated in the absence of NEK7. NEK7 was required for macrophages containing the CAPS-associated NLRP3(R258W) activating mutation to activate caspase-1. Mouse chimaeras reconstituted with wild-type, Nek7(-/-) or Nlrp3(-/-) haematopoietic cells showed that NEK7 was required for NLRP3 inflammasome activation in vivo. These studies demonstrate that NEK7 is an essential protein that acts downstream of potassium efflux to mediate NLRP3 inflammasome assembly and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yuan -- Zeng, Melody Y -- Yang, Dahai -- Motro, Benny -- Nunez, Gabriel -- R01AI063331/AI/NIAID NIH HHS/ -- R01DK091191/DK/NIDDK NIH HHS/ -- T32 HL007517/HL/NHLBI NIH HHS/ -- T32DK094775/DK/NIDDK NIH HHS/ -- T32HL007517/HL/NHLBI NIH HHS/ -- England -- Nature. 2016 Feb 18;530(7590):354-7. doi: 10.1038/nature16959. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA. ; The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/deficiency/genetics/metabolism ; Biocatalysis ; Carrier Proteins/chemistry/genetics/*metabolism ; Caspase 1/metabolism ; Catalytic Domain ; Cells, Cultured ; Cryopyrin-Associated Periodic Syndromes/genetics ; Enzyme Activation ; HEK293 Cells ; Humans ; Inflammasomes/*chemistry/*metabolism ; Interleukin-1beta/secretion ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Potassium/*metabolism ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/chemistry/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-13
    Description: Since its discovery in 1989, efforts to grow clinical isolates of the hepatitis C virus (HCV) in cell culture have met with limited success. Only the JFH-1 isolate has the capacity to replicate efficiently in cultured hepatoma cells without cell culture-adaptive mutations. We hypothesized that cultured cells lack one or more factors required for the replication of clinical isolates. To identify the missing factors, we transduced Huh-7.5 human hepatoma cells with a pooled lentivirus-based human complementary DNA (cDNA) library, transfected the cells with HCV subgenomic replicons lacking adaptive mutations, and selected for stable replicon colonies. This led to the identification of a single cDNA, SEC14L2, that enabled RNA replication of diverse HCV genotypes in several hepatoma cell lines. This effect was dose-dependent, and required the continuous presence of SEC14L2. Full-length HCV genomes also replicated and produced low levels of infectious virus. Remarkably, SEC14L2-expressing Huh-7.5 cells also supported HCV replication following inoculation with patient sera. Mechanistic studies suggest that SEC14L2 promotes HCV infection by enhancing vitamin E-mediated protection against lipid peroxidation. This provides a foundation for development of in vitro replication systems for all HCV isolates, creating a useful platform to dissect the mechanisms by which cell culture-adaptive mutations act.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632207/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632207/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saeed, Mohsan -- Andreo, Ursula -- Chung, Hyo-Young -- Espiritu, Christine -- Branch, Andrea D -- Silva, Jose M -- Rice, Charles M -- DA031095/DA/NIDA NIH HHS/ -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01 DA031095/DA/NIDA NIH HHS/ -- R01 DK090317/DK/NIDDK NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- R01DK090317/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):471-5. doi: 10.1038/nature14899. Epub 2015 Aug 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065, USA. ; Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26266980" target="_blank"〉PubMed〈/a〉
    Keywords: Antioxidants/metabolism ; Carcinoma, Hepatocellular/genetics/*metabolism/*virology ; Carrier Proteins/genetics/*metabolism ; *Cell Culture Techniques ; Cell Line, Tumor ; Cells, Cultured ; Gene Library ; Genome, Viral/genetics ; *Genotype ; Hepacivirus/*genetics/*growth & development/physiology ; Host-Derived Cellular Factors/genetics/*metabolism ; Humans ; Lentivirus/genetics ; Lipid Peroxidation ; Lipoproteins/genetics/*metabolism ; Mutation/genetics ; RNA, Viral/biosynthesis/genetics ; Replicon/genetics ; Serum/virology ; Trans-Activators/genetics/*metabolism ; Transduction, Genetic ; *Virus Replication/genetics ; Vitamin E/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-26
    Description: Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Tychele N -- Sharma, Kamal -- Oh, Edwin C -- Liu, Yangfan P -- Collins, Ryan L -- Sosa, Maria X -- Auer, Dallas R -- Brand, Harrison -- Sanders, Stephan J -- Moreno-De-Luca, Daniel -- Pihur, Vasyl -- Plona, Teri -- Pike, Kristen -- Soppet, Daniel R -- Smith, Michael W -- Cheung, Sau Wai -- Martin, Christa Lese -- State, Matthew W -- Talkowski, Michael E -- Cook, Edwin -- Huganir, Richard -- Katsanis, Nicholas -- Chakravarti, Aravinda -- 1U24MH081810/MH/NIMH NIH HHS/ -- 5R25MH071584-07/MH/NIMH NIH HHS/ -- MH095867/MH/NIMH NIH HHS/ -- MH19961-14/MH/NIMH NIH HHS/ -- R00 MH095867/MH/NIMH NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 MH060007/MH/NIMH NIH HHS/ -- R01 MH074090/MH/NIMH NIH HHS/ -- R01MH074090/MH/NIMH NIH HHS/ -- R01MH081754/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):51-6. doi: 10.1038/nature14186. Epub 2015 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Predoctoral Training Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA. ; Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; 1] Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, Yale University, New Haven, Connecticut 06511, USA. ; Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA. ; National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Autism &Developmental Medicine Institute, Geisinger Health System, Lewisburg, Pennsylvania 17837, USA. ; University of Illinois at Chicago, Chicago, Illinois 60608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25807484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*genetics/*metabolism ; Brain/embryology/*metabolism ; Catenins/*deficiency/*genetics/metabolism ; Cells, Cultured ; Chromatin/genetics/metabolism ; DNA Copy Number Variations/genetics ; Embryo, Mammalian/cytology/metabolism ; Exome/genetics ; Female ; Gene Expression ; Gene Expression Regulation, Developmental ; Hippocampus/pathology ; Humans ; Male ; Mice ; Models, Genetic ; Multifactorial Inheritance/genetics ; Mutation, Missense ; Nerve Net ; Neurons/cytology/metabolism ; Sex Characteristics ; Zebrafish/embryology/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-07
    Description: Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Bergeijk, Petra -- Adrian, Max -- Hoogenraad, Casper C -- Kapitein, Lukas C -- England -- Nature. 2015 Feb 5;518(7537):111-4. doi: 10.1038/nature14128. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25561173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology/radiation effects ; Biological Transport/radiation effects ; Cell Compartmentation/*physiology/radiation effects ; Cells, Cultured ; Cytoskeleton/metabolism/radiation effects ; Dendritic Spines/metabolism/radiation effects ; Dyneins/metabolism/radiation effects ; Endosomes/*metabolism/radiation effects ; Hippocampus/cytology ; Intracellular Space/metabolism/radiation effects ; Kinesin/metabolism/radiation effects ; Microtubules/metabolism/radiation effects ; Mitochondria/*metabolism/radiation effects ; Myosin Type V/metabolism/radiation effects ; Optogenetics/*methods ; Peroxisomes/*metabolism/radiation effects ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-04
    Description: Long-standing evidence indicates that human immunodeficiency virus type 1 (HIV-1) preferentially integrates into a subset of transcriptionally active genes of the host cell genome. However, the reason why the virus selects only certain genes among all transcriptionally active regions in a target cell remains largely unknown. Here we show that HIV-1 integration occurs in the outer shell of the nucleus in close correspondence with the nuclear pore. This region contains a series of cellular genes, which are preferentially targeted by the virus, and characterized by the presence of active transcription chromatin marks before viral infection. In contrast, the virus strongly disfavours the heterochromatic regions in the nuclear lamin-associated domains and other transcriptionally active regions located centrally in the nucleus. Functional viral integrase and the presence of the cellular Nup153 and LEDGF/p75 integration cofactors are indispensable for the peripheral integration of the virus. Once integrated at the nuclear pore, the HIV-1 DNA makes contact with various nucleoporins; this association takes part in the transcriptional regulation of the viral genome. These results indicate that nuclear topography is an essential determinant of the HIV-1 life cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marini, Bruna -- Kertesz-Farkas, Attila -- Ali, Hashim -- Lucic, Bojana -- Lisek, Kamil -- Manganaro, Lara -- Pongor, Sandor -- Luzzati, Roberto -- Recchia, Alessandra -- Mavilio, Fulvio -- Giacca, Mauro -- Lusic, Marina -- England -- Nature. 2015 May 14;521(7551):227-31. doi: 10.1038/nature14226. Epub 2015 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy. ; Protein Structure and Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy. ; 1] Struttura Complessa Malattie Infettive, Azienda Ospedaliero-Universitaria, 34134 Trieste, Italy [2] Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy. ; Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy. ; 1] Department of Life Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy [2] Genethon, 91002 Evry, France. ; 1] Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy [2] Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25731161" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; CD4-Positive T-Lymphocytes/cytology/metabolism ; Cell Nucleus/*genetics/*metabolism ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromosome Positioning/*genetics ; Genetic Loci/*genetics ; HIV Integrase/metabolism ; HIV-1/*genetics/*physiology ; Half-Life ; Humans ; Nuclear Pore/genetics/metabolism ; Nuclear Pore Complex Proteins/metabolism ; Transcription Factors/metabolism ; Transcriptional Activation/genetics ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-11
    Description: The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Lan -- Oliver, Eduardo -- Maratou, Klio -- Atanur, Santosh S -- Dubois, Olivier D -- Cotroneo, Emanuele -- Chen, Chien-Nien -- Wang, Lei -- Arce, Cristina -- Chabosseau, Pauline L -- Ponsa-Cobas, Joan -- Frid, Maria G -- Moyon, Benjamin -- Webster, Zoe -- Aldashev, Almaz -- Ferrer, Jorge -- Rutter, Guy A -- Stenmark, Kurt R -- Aitman, Timothy J -- Wilkins, Martin R -- 098424/Wellcome Trust/United Kingdom -- 101033/Wellcome Trust/United Kingdom -- MR/J0003042/1/Medical Research Council/United Kingdom -- P01 HL014985/HL/NHLBI NIH HHS/ -- PG/04/035/16912/British Heart Foundation/United Kingdom -- PG/10/59/28478/British Heart Foundation/United Kingdom -- PG/12/61/29818/British Heart Foundation/United Kingdom -- PG/2000137/British Heart Foundation/United Kingdom -- PG/95170/British Heart Foundation/United Kingdom -- PG/98018/British Heart Foundation/United Kingdom -- RG/10/16/28575/British Heart Foundation/United Kingdom -- WT098424AIA/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Aug 20;524(7565):356-60. doi: 10.1038/nature14620. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Pharmacology and Therapeutics, Division of Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Physiological Genomics and Medicine Group, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Section of Epigenomics and Disease, Department of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK. ; Department of Pediatrics and Medicine, Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Denver, Colorado 80045, USA. ; Transgenics and Embryonic Stem Cell Laboratory, Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London W12 0NN, UK. ; Institute of Molecular Biology and Medicine, 3 Togolok Moldo Street, Bishkek 720040, Kyrgyzstan. ; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258299" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Congenic ; Anoxia/genetics/*metabolism ; Arterioles/metabolism ; Cation Transport Proteins/deficiency/genetics/*metabolism ; Cattle ; Cell Hypoxia ; Cell Proliferation ; Cells, Cultured ; Chromosomes, Mammalian/genetics ; Chronic Disease ; Female ; Gene Knockdown Techniques ; Homeostasis ; Humans ; Hypertension, Pulmonary/genetics/*metabolism ; Intracellular Space/metabolism ; Male ; Muscle, Smooth, Vascular/cytology/*metabolism ; Rats ; Rats, Inbred F344 ; Rats, Inbred WKY ; Zinc/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-18
    Description: Eukaryotic transcription factors (TFs) are key determinants of gene activity, yet they bind only a fraction of their corresponding DNA sequence motifs in any given cell type. Chromatin has the potential to restrict accessibility of binding sites; however, in which context chromatin states are instructive for TF binding remains mainly unknown. To explore the contribution of DNA methylation to constrained TF binding, we mapped DNase-I-hypersensitive sites in murine stem cells in the presence and absence of DNA methylation. Methylation-restricted sites are enriched for TF motifs containing CpGs, especially for those of NRF1. In fact, the TF NRF1 occupies several thousand additional sites in the unmethylated genome, resulting in increased transcription. Restoring de novo methyltransferase activity initiates remethylation at these sites and outcompetes NRF1 binding. This suggests that binding of DNA-methylation-sensitive TFs relies on additional determinants to induce local hypomethylation. In support of this model, removal of neighbouring motifs in cis or of a TF in trans causes local hypermethylation and subsequent loss of NRF1 binding. This competition between DNA methylation and TFs in vivo reveals a case of cooperativity between TFs that acts indirectly via DNA methylation. Methylation removal by methylation-insensitive factors enables occupancy of methylation-sensitive factors, a principle that rationalizes hypomethylation of regulatory regions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Domcke, Silvia -- Bardet, Anais Flore -- Adrian Ginno, Paul -- Hartl, Dominik -- Burger, Lukas -- Schubeler, Dirk -- England -- Nature. 2015 Dec 24;528(7583):575-9. doi: 10.1038/nature16462. Epub 2015 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH 4058 Basel, Switzerland. ; University of Basel, Faculty of Sciences, Petersplatz 1, CH 4003 Basel, Switzerland. ; Swiss Institute of Bioinformatics, Maulbeerstrasse 66, CH 4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26675734" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Binding, Competitive ; Cells, Cultured ; Chromatin/chemistry/genetics/*metabolism ; *DNA Methylation ; Deoxyribonuclease I/metabolism ; Genome/genetics ; Humans ; Mice ; Mouse Embryonic Stem Cells/metabolism ; Nuclear Respiratory Factor 1/*metabolism ; Protein Binding ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-03
    Description: Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dou, Zhixun -- Xu, Caiyue -- Donahue, Greg -- Shimi, Takeshi -- Pan, Ji-An -- Zhu, Jiajun -- Ivanov, Andrejs -- Capell, Brian C -- Drake, Adam M -- Shah, Parisha P -- Catanzaro, Joseph M -- Ricketts, M Daniel -- Lamark, Trond -- Adam, Stephen A -- Marmorstein, Ronen -- Zong, Wei-Xing -- Johansen, Terje -- Goldman, Robert D -- Adams, Peter D -- Berger, Shelley L -- P01AG031862/AG/NIA NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 GM106023/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Nov 5;527(7576):105-9. doi: 10.1038/nature15548. Epub 2015 Oct 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA. ; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA. ; Institute of Cancer Sciences, University of Glasgow and Beatson Institute for Cancer Research, Glasgow G61 1BD, UK. ; Department of Biochemistry &Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Molecular Cancer Research Group, Institute of Medical Biology, University of Tromso - The Arctic University of Norway, 9037 Tromso, Norway. ; Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26524528" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Cell Aging ; Cell Transformation, Neoplastic ; Cells, Cultured ; Chromatin/chemistry/metabolism ; Cytoplasm/metabolism ; Fibroblasts ; HEK293 Cells ; Humans ; Lamin Type B/genetics/metabolism ; Lysosomes/metabolism ; Mice ; Microfilament Proteins/metabolism ; Microtubule-Associated Proteins/metabolism ; Nuclear Lamina/*metabolism ; Oncogene Protein p21(ras)/metabolism ; Protein Binding ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-05-15
    Description: Intramembrane proteases catalyse the signal-generating step of various cell signalling pathways, and continue to be implicated in diseases ranging from malaria infection to Parkinsonian neurodegeneration. Despite playing such decisive roles, it remains unclear whether or how these membrane-immersed enzymes might be regulated directly. To address this limitation, here we focus on intramembrane proteases containing domains known to exert regulatory functions in other contexts, and characterize a rhomboid protease that harbours calcium-binding EF-hands. We find calcium potently stimulates proteolysis by endogenous rhomboid-4 in Drosophila cells, and, remarkably, when rhomboid-4 is purified and reconstituted in liposomes. Interestingly, deleting the amino-terminal EF-hands activates proteolysis prematurely, while residues in cytoplasmic loops connecting distal transmembrane segments mediate calcium stimulation. Rhomboid regulation is not orchestrated by either dimerization or substrate interactions. Instead, calcium increases catalytic rate by promoting substrate gating. Substrates with cleavage sites outside the membrane can be cleaved but lose the capacity to be regulated. These observations indicate substrate gating is not an essential step in catalysis, but instead evolved as a mechanism for regulating proteolysis inside the membrane. Moreover, these insights provide new approaches for studying rhomboid functions by investigating upstream inputs that trigger proteolysis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490020/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490020/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Rosanna P -- Urban, Sinisa -- 2R01AI066025/AI/NIAID NIH HHS/ -- R01 AI066025/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 2;523(7558):101-5. doi: 10.1038/nature14357. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology &Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, Maryland 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970241" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Cell Membrane/*enzymology ; Cells, Cultured ; Cytosol/*metabolism ; Drosophila/*enzymology ; Drosophila Proteins/*metabolism ; Membrane Proteins/*metabolism ; Peptide Hydrolases/*metabolism ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-11-26
    Description: Copy number variations have been frequently associated with developmental delay, intellectual disability and autism spectrum disorders. MECP2 duplication syndrome is one of the most common genomic rearrangements in males and is characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory tract infections and early death. The broad range of deficits caused by methyl-CpG-binding protein 2 (MeCP2) overexpression poses a daunting challenge to traditional biochemical-pathway-based therapeutic approaches. Accordingly, we sought strategies that directly target MeCP2 and are amenable to translation into clinical therapy. The first question that we addressed was whether the neurological dysfunction is reversible after symptoms set in. Reversal of phenotypes in adult symptomatic mice has been demonstrated in some models of monogenic loss-of-function neurological disorders, including loss of MeCP2 in Rett syndrome, indicating that, at least in some cases, the neuroanatomy may remain sufficiently intact so that correction of the molecular dysfunction underlying these disorders can restore healthy physiology. Given the absence of neurodegeneration in MECP2 duplication syndrome, we propose that restoration of normal MeCP2 levels in MECP2 duplication adult mice would rescue their phenotype. By generating and characterizing a conditional Mecp2-overexpressing mouse model, here we show that correction of MeCP2 levels largely reverses the behavioural, molecular and electrophysiological deficits. We also reduced MeCP2 using an antisense oligonucleotide strategy, which has greater translational potential. Antisense oligonucleotides are small, modified nucleic acids that can selectively hybridize with messenger RNA transcribed from a target gene and silence it, and have been successfully used to correct deficits in different mouse models. We find that antisense oligonucleotide treatment induces a broad phenotypic rescue in adult symptomatic transgenic MECP2 duplication mice (MECP2-TG), and corrected MECP2 levels in lymphoblastoid cells from MECP2 duplication patients in a dose-dependent manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sztainberg, Yehezkel -- Chen, Hong-mei -- Swann, John W -- Hao, Shuang -- Tang, Bin -- Wu, Zhenyu -- Tang, Jianrong -- Wan, Ying-Wooi -- Liu, Zhandong -- Rigo, Frank -- Zoghbi, Huda Y -- 1U54HD083092/HD/NICHD NIH HHS/ -- 5P30HD024064/HD/NICHD NIH HHS/ -- 5R01NS057819/NS/NINDS NIH HHS/ -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 NS057819/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 3;528(7580):123-6. doi: 10.1038/nature16159. Epub 2015 Nov 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. ; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA. ; The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA. ; Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA. ; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26605526" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Attachment Sites, Microbiological/genetics ; Cells, Cultured ; Disease Models, Animal ; Electroencephalography ; Gene Dosage/*genetics ; Gene Duplication/genetics ; *Gene Knockdown Techniques ; Genes, Duplicate/*genetics ; Humans ; Integrases/genetics/metabolism ; Mental Retardation, X-Linked/*genetics/physiopathology ; Methyl-CpG-Binding Protein 2/*genetics/metabolism ; Mice ; Mice, Transgenic ; Oligonucleotides, Antisense/*genetics ; *Phenotype
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-05-15
    Description: Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor alpha (PPAR-alpha) by the PPAR-alpha agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-alpha agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-alpha alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-alpha co-occupies many chromatin sites with GR; when activated by PPAR-alpha agonists, additional PPAR-alpha is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-alpha agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-alpha agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Hsiang-Ying -- Gao, Xiaofei -- Barrasa, M Inmaculada -- Li, Hu -- Elmes, Russell R -- Peters, Luanne L -- Lodish, Harvey F -- 2 P01 HL032262-25/HL/NHLBI NIH HHS/ -- DK100692/DK/NIDDK NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- R01 DK100692/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jun 25;522(7557):474-7. doi: 10.1038/nature14326. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA. ; The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970251" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Anemia/drug therapy/metabolism/pathology ; Anemia, Hemolytic/metabolism ; Animals ; Butyrates/pharmacology/therapeutic use ; Cell Culture Techniques ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chronic Disease ; Disease Models, Animal ; Erythroid Precursor Cells/*cytology/drug effects/metabolism ; *Erythropoiesis/drug effects ; Erythropoietin/pharmacology ; Female ; Fenofibrate/pharmacology ; Glucocorticoids/pharmacology ; Humans ; Liver/cytology/drug effects/embryology ; Mice ; PPAR alpha/agonists/deficiency/*metabolism ; Phenylhydrazines/pharmacology ; Phenylurea Compounds/pharmacology/therapeutic use ; Receptors, Glucocorticoid/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-11-26
    Description: Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cinque, Laura -- Forrester, Alison -- Bartolomeo, Rosa -- Svelto, Maria -- Venditti, Rossella -- Montefusco, Sandro -- Polishchuk, Elena -- Nusco, Edoardo -- Rossi, Antonio -- Medina, Diego L -- Polishchuk, Roman -- De Matteis, Maria Antonietta -- Settembre, Carmine -- England -- Nature. 2015 Dec 10;528(7581):272-5. doi: 10.1038/nature16063. Epub 2015 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy. ; Dulbecco Telethon Institute, Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy. ; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, 80131 Naples, Italy. ; Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26595272" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Bone Development/genetics/*physiology ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Chondrocytes/cytology/metabolism ; Collagen Type II/secretion ; Embryo, Mammalian ; Extracellular Matrix/genetics ; Fibroblast Growth Factors/*genetics/metabolism ; Growth Plate/cytology/metabolism ; MAP Kinase Signaling System ; Mice ; Microtubule-Associated Proteins/genetics/metabolism ; Receptor, Fibroblast Growth Factor, Type 4/genetics/metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-09-15
    Description: Bromodomain and extra terminal protein (BET) inhibitors are first-in-class targeted therapies that deliver a new therapeutic opportunity by directly targeting bromodomain proteins that bind acetylated chromatin marks. Early clinical trials have shown promise, especially in acute myeloid leukaemia, and therefore the evaluation of resistance mechanisms is crucial to optimize the clinical efficacy of these drugs. Here we use primary mouse haematopoietic stem and progenitor cells immortalized with the fusion protein MLL-AF9 to generate several single-cell clones that demonstrate resistance, in vitro and in vivo, to the prototypical BET inhibitor, I-BET. Resistance to I-BET confers cross-resistance to chemically distinct BET inhibitors such as JQ1, as well as resistance to genetic knockdown of BET proteins. Resistance is not mediated through increased drug efflux or metabolism, but is shown to emerge from leukaemia stem cells both ex vivo and in vivo. Chromatin-bound BRD4 is globally reduced in resistant cells, whereas the expression of key target genes such as Myc remains unaltered, highlighting the existence of alternative mechanisms to regulate transcription. We demonstrate that resistance to BET inhibitors, in human and mouse leukaemia cells, is in part a consequence of increased Wnt/beta-catenin signalling, and negative regulation of this pathway results in restoration of sensitivity to I-BET in vitro and in vivo. Together, these findings provide new insights into the biology of acute myeloid leukaemia, highlight potential therapeutic limitations of BET inhibitors, and identify strategies that may enhance the clinical utility of these unique targeted therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fong, Chun Yew -- Gilan, Omer -- Lam, Enid Y N -- Rubin, Alan F -- Ftouni, Sarah -- Tyler, Dean -- Stanley, Kym -- Sinha, Devbarna -- Yeh, Paul -- Morison, Jessica -- Giotopoulos, George -- Lugo, Dave -- Jeffrey, Philip -- Lee, Stanley Chun-Wei -- Carpenter, Christopher -- Gregory, Richard -- Ramsay, Robert G -- Lane, Steven W -- Abdel-Wahab, Omar -- Kouzarides, Tony -- Johnstone, Ricky W -- Dawson, Sarah-Jane -- Huntly, Brian J P -- Prinjha, Rab K -- Papenfuss, Anthony T -- Dawson, Mark A -- England -- Nature. 2015 Sep 24;525(7570):538-42. doi: 10.1038/nature14888. Epub 2015 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. ; Sir Peter MacCallum Department of Oncology, The University of Melbourne, East Melbourne, Victoria 3002, Australia. ; Department of Haematology, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia. ; Bioinformatics Division, The Walter &Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia. ; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia. ; Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust-MRC Stem Cell Institute, Cambridge CB2 0XY, UK. ; Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK. ; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Cancer Epigenetics DPU, Oncology R&D, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, USA. ; QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland 4029, Australia. ; Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26367796" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azepines/pharmacology ; Benzodiazepines/*pharmacology ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/metabolism ; Clone Cells/drug effects/metabolism/pathology ; Drug Resistance, Neoplasm/*drug effects/genetics ; Epigenesis, Genetic ; Gene Expression Regulation, Neoplastic/drug effects ; Genes, myc/genetics ; Hematopoietic Stem Cells/cytology/drug effects/metabolism ; Humans ; Leukemia, Myeloid, Acute/*drug therapy/genetics/*metabolism/pathology ; Mice ; Molecular Targeted Therapy ; Neoplastic Stem Cells/*drug effects/metabolism/*pathology ; Nuclear Proteins/*antagonists & inhibitors/metabolism ; Transcription Factors/*antagonists & inhibitors/metabolism ; Transcription, Genetic/drug effects ; Triazoles/pharmacology ; Wnt Signaling Pathway/drug effects ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-12-15
    Description: Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheloufi, Sihem -- Elling, Ulrich -- Hopfgartner, Barbara -- Jung, Youngsook L -- Murn, Jernej -- Ninova, Maria -- Hubmann, Maria -- Badeaux, Aimee I -- Euong Ang, Cheen -- Tenen, Danielle -- Wesche, Daniel J -- Abazova, Nadezhda -- Hogue, Max -- Tasdemir, Nilgun -- Brumbaugh, Justin -- Rathert, Philipp -- Jude, Julian -- Ferrari, Francesco -- Blanco, Andres -- Fellner, Michaela -- Wenzel, Daniel -- Zinner, Marietta -- Vidal, Simon E -- Bell, Oliver -- Stadtfeld, Matthias -- Chang, Howard Y -- Almouzni, Genevieve -- Lowe, Scott W -- Rinn, John -- Wernig, Marius -- Aravin, Alexei -- Shi, Yang -- Park, Peter J -- Penninger, Josef M -- Zuber, Johannes -- Hochedlinger, Konrad -- P50-HG007735/HG/NHGRI NIH HHS/ -- R01 HD058013-06/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Dec 10;528(7581):218-24. doi: 10.1038/nature15749.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. ; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria. ; Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria. ; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA. ; Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA. ; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA. ; Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA. ; Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA. ; Centre de Recherche, Institut Curie, 75248 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26659182" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cellular Reprogramming/*genetics ; Chromatin/metabolism ; Chromatin Assembly Factor-1/antagonists & inhibitors/genetics/*metabolism ; Gene Expression Regulation/genetics ; Heterochromatin/metabolism ; Mice ; Nucleosomes/metabolism ; RNA Interference ; Transduction, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-05-15
    Description: Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5' splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Duff, Michael O -- Olson, Sara -- Wei, Xintao -- Garrett, Sandra C -- Osman, Ahmad -- Bolisetty, Mohan -- Plocik, Alex -- Celniker, Susan E -- Graveley, Brenton R -- R01 GM095296/GM/NIGMS NIH HHS/ -- R01GM095296/GM/NIGMS NIH HHS/ -- U54 HG006994/HG/NHGRI NIH HHS/ -- U54HG006994/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):376-9. doi: 10.1038/nature14475. Epub 2015 May 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA. ; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970244" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Drosophila melanogaster/*genetics ; Exons/genetics ; Female ; Genes, Insect/genetics ; Genome, Insect/*genetics ; Humans ; Introns/genetics ; Male ; Nuclear Proteins/deficiency/genetics/metabolism ; Nucleotides/*genetics ; RNA Splice Sites/genetics ; RNA Splicing/*genetics ; Reproducibility of Results ; Ribonucleoproteins/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-02-20
    Description: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530010/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Roadmap Epigenomics Consortium -- Kundaje, Anshul -- Meuleman, Wouter -- Ernst, Jason -- Bilenky, Misha -- Yen, Angela -- Heravi-Moussavi, Alireza -- Kheradpour, Pouya -- Zhang, Zhizhuo -- Wang, Jianrong -- Ziller, Michael J -- Amin, Viren -- Whitaker, John W -- Schultz, Matthew D -- Ward, Lucas D -- Sarkar, Abhishek -- Quon, Gerald -- Sandstrom, Richard S -- Eaton, Matthew L -- Wu, Yi-Chieh -- Pfenning, Andreas R -- Wang, Xinchen -- Claussnitzer, Melina -- Liu, Yaping -- Coarfa, Cristian -- Harris, R Alan -- Shoresh, Noam -- Epstein, Charles B -- Gjoneska, Elizabeta -- Leung, Danny -- Xie, Wei -- Hawkins, R David -- Lister, Ryan -- Hong, Chibo -- Gascard, Philippe -- Mungall, Andrew J -- Moore, Richard -- Chuah, Eric -- Tam, Angela -- Canfield, Theresa K -- Hansen, R Scott -- Kaul, Rajinder -- Sabo, Peter J -- Bansal, Mukul S -- Carles, Annaick -- Dixon, Jesse R -- Farh, Kai-How -- Feizi, Soheil -- Karlic, Rosa -- Kim, Ah-Ram -- Kulkarni, Ashwinikumar -- Li, Daofeng -- Lowdon, Rebecca -- Elliott, GiNell -- Mercer, Tim R -- Neph, Shane J -- Onuchic, Vitor -- Polak, Paz -- Rajagopal, Nisha -- Ray, Pradipta -- Sallari, Richard C -- Siebenthall, Kyle T -- Sinnott-Armstrong, Nicholas A -- Stevens, Michael -- Thurman, Robert E -- Wu, Jie -- Zhang, Bo -- Zhou, Xin -- Beaudet, Arthur E -- Boyer, Laurie A -- De Jager, Philip L -- Farnham, Peggy J -- Fisher, Susan J -- Haussler, David -- Jones, Steven J M -- Li, Wei -- Marra, Marco A -- McManus, Michael T -- Sunyaev, Shamil -- Thomson, James A -- Tlsty, Thea D -- Tsai, Li-Huei -- Wang, Wei -- Waterland, Robert A -- Zhang, Michael Q -- Chadwick, Lisa H -- Bernstein, Bradley E -- Costello, Joseph F -- Ecker, Joseph R -- Hirst, Martin -- Meissner, Alexander -- Milosavljevic, Aleksandar -- Ren, Bing -- Stamatoyannopoulos, John A -- Wang, Ting -- Kellis, Manolis -- 5R24HD000836/HD/NICHD NIH HHS/ -- ES017166/ES/NIEHS NIH HHS/ -- F32 HL110473/HL/NHLBI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- K99 HL119617/HL/NHLBI NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 DA008227/DA/NIDA NIH HHS/ -- P30AG10161/AG/NIA NIH HHS/ -- P50 MH096890/MH/NIMH NIH HHS/ -- R01 AG015819/AG/NIA NIH HHS/ -- R01 AG017917/AG/NIA NIH HHS/ -- R01 ES024984/ES/NIEHS NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01AG15819/AG/NIA NIH HHS/ -- R01AG17917/AG/NIA NIH HHS/ -- R01HG004037/HG/NHGRI NIH HHS/ -- R01HG004037-S1/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- RF1 AG015819/AG/NIA NIH HHS/ -- T32 ES007032/ES/NIEHS NIH HHS/ -- T32 GM007198/GM/NIGMS NIH HHS/ -- T32 GM007266/GM/NIGMS NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 ES017154/ES/NIEHS NIH HHS/ -- U01AG46152/AG/NIA NIH HHS/ -- U01DA025956/DA/NIDA NIH HHS/ -- U01ES017154/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- U01ES017156/ES/NIEHS NIH HHS/ -- U01ES017166/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Feb 19;518(7539):317-30. doi: 10.1038/nature14248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Genetics, Department of Computer Science, 300 Pasteur Dr., Lane Building, L301, Stanford, California 94305-5120, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E Young Dr South, Los Angeles, California 90095, USA. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, Massachusetts 02138, USA. ; Epigenome Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Genomic Analysis Laboratory, Howard Hughes Medical Institute &The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, Washington 98195, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, Massachusetts 02139, USA. ; 1] Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Neurosurgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, California 94158, USA. ; Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0511, USA. ; Department of Medicine, Division of Medical Genetics, University of Washington, 2211 Elliot Avenue, Seattle, Washington 98121, USA. ; 1] Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, Massachusetts 02139, USA. [2] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [3] Department of Computer Science &Engineering, University of Connecticut, 371 Fairfield Way, Storrs, Connecticut 06269, USA. ; Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Bioinformatics Group, Department of Molecular Biology, Division of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia. ; Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. ; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University in St Louis, 4444 Forest Park Ave, St Louis, Missouri 63108, USA. [2] Department of Computer Science and Engineeering, Washington University in St. Louis, St. Louis, Missouri 63130, USA. ; 1] Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA. [2] Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA. ; Molecular and Human Genetics Department, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; Biology Department, Massachusetts Institute of Technology, 31 Ames St, Cambridge, Massachusetts 02142, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Brigham &Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, USA. [3] Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; Department of Biochemistry, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, California 90089-9601, USA. ; ObGyn, Reproductive Sciences, University of California San Francisco, 35 Medical Center Way, San Francisco, California 94143, USA. ; Center for Biomolecular Sciences and Engineering, University of Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. [3] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4. ; Department of Microbiology and Immunology, Diabetes Center, University of California, San Francisco, 513 Parnassus Ave, San Francisco, California 94143-0534, USA. ; 1] University of Wisconsin, Madison, Wisconsin 53715, USA. [2] Morgridge Institute for Research, 330 N. Orchard Street, Madison, Wisconsin 53707, USA. ; USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, USA. ; 1] Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas, Dallas, NSERL, RL10, 800 W Campbell Road, Richardson, Texas 75080, USA. [2] Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing 100084, China. ; National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA. ; 1] The Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, Massachusetts 02142, USA. [2] Massachusetts General Hospital, 55 Fruit St, Boston, Massachusetts 02114, USA. [3] Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815-6789, USA. ; 1] Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. [2] Department of Microbiology and Immunology and Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693563" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Lineage/genetics ; Cells, Cultured ; Chromatin/chemistry/genetics/metabolism ; Chromosomes, Human/chemistry/genetics/metabolism ; DNA/chemistry/genetics/metabolism ; DNA Methylation ; Datasets as Topic ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Genetic Variation/genetics ; Genome, Human/*genetics ; Genome-Wide Association Study ; Histones/metabolism ; Humans ; Organ Specificity/genetics ; RNA/genetics ; Reference Values
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-20
    Description: The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minajigi, Anand -- Froberg, John E -- Wei, Chunyao -- Sunwoo, Hongjae -- Kesner, Barry -- Colognori, David -- Lessing, Derek -- Payer, Bernhard -- Boukhali, Myriam -- Haas, Wilhelm -- Lee, Jeannie T -- R01-DA-38695/DA/NIDA NIH HHS/ -- R03-MH97478/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Massachusetts General Hospital Cancer Center, Charlestown, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA, USA. ; Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. lee@molbio.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089354" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Cells, Cultured ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Fibroblasts/metabolism ; Gene Knockdown Techniques ; Gene Silencing ; Mice ; Multiprotein Complexes/metabolism ; Nucleic Acid Conformation ; Proteomics ; RNA Helicases/metabolism ; RNA, Long Noncoding/*metabolism ; X Chromosome/chemistry/genetics/*metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-05-09
    Description: Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Elizabeth S -- Jiang, Rays H Y -- Moechtar, Mischka A -- Barteneva, Natasha S -- Weekes, Michael P -- Nobre, Luis V -- Gygi, Steven P -- Paulo, Joao A -- Frantzreb, Charles -- Tani, Yoshihiko -- Takahashi, Junko -- Watanabe, Seishi -- Goldberg, Jonathan -- Paul, Aditya S -- Brugnara, Carlo -- Root, David E -- Wiegand, Roger C -- Doench, John G -- Duraisingh, Manoj T -- 100140/Wellcome Trust/United Kingdom -- 1K08AI103034-01A1/AI/NIAID NIH HHS/ -- K01 DK098285/DK/NIDDK NIH HHS/ -- K01DK098285/DK/NIDDK NIH HHS/ -- K08 AI103034/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- R01AI091787/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):711-4. doi: 10.1126/science.aaa3526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ; Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. ; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. ; Japanese Red Cross Kinki Block Blood Center, Osaka, Japan. ; Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan. ; Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ; The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. mduraisi@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/genetics ; Antigens, CD55/*genetics ; Cell Differentiation/genetics ; Cells, Cultured ; Erythrocytes/cytology/metabolism/*parasitology ; Genetic Testing ; Hematopoietic Stem Cells/cytology ; Host-Parasite Interactions/*genetics ; Humans ; Malaria, Falciparum/*genetics/*parasitology ; Plasmodium falciparum/*pathogenicity ; RNA, Small Interfering/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-09-01
    Description: Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and beta-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinson, John T -- Chopra, Anant -- Nafissi, Navid -- Polacheck, William J -- Benson, Craig C -- Swist, Sandra -- Gorham, Joshua -- Yang, Luhan -- Schafer, Sebastian -- Sheng, Calvin C -- Haghighi, Alireza -- Homsy, Jason -- Hubner, Norbert -- Church, George -- Cook, Stuart A -- Linke, Wolfgang A -- Chen, Christopher S -- Seidman, J G -- Seidman, Christine E -- EB017103/EB/NIBIB NIH HHS/ -- HG005550/HG/NHGRI NIH HHS/ -- HL007374/HL/NHLBI NIH HHS/ -- HL115553/HL/NHLBI NIH HHS/ -- HL125807/HL/NHLBI NIH HHS/ -- K08 HL125807/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):982-6. doi: 10.1126/science.aaa5458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu. ; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56 D-44780, Bochum, Germany. ; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. ; National Institute for Health Research (NIHR) Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Imperial College London, London, UK. National Heart Centre and Duke-National University, Singapore, Singapore. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315439" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/pharmacology ; Cardiomyopathy, Dilated/*genetics/pathology/*physiopathology ; Cells, Cultured ; Connectin/chemistry/*genetics/*physiology ; Heart Rate ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Isoproterenol/pharmacology ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocytes, Cardiac/*physiology ; RNA/genetics/metabolism ; Sarcomeres/*physiology/ultrastructure ; Sequence Analysis, RNA ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-06-06
    Description: Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holubcova, Zuzana -- Blayney, Martyn -- Elder, Kay -- Schuh, Melina -- MC_U105192711/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1143-7. doi: 10.1126/science.aaa9529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. mschuh@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045437" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; *Aneuploidy ; Animals ; Cells, Cultured ; *Chromosome Segregation ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Humans ; Kinetochores/metabolism ; *Meiosis ; Mice ; Microtubule-Associated Proteins/genetics/metabolism ; Microtubule-Organizing Center/metabolism ; Oocytes/*pathology ; Spindle Apparatus/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-09-05
    Description: Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)-rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)-induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuijs, Martijn J -- Willart, Monique A -- Vergote, Karl -- Gras, Delphine -- Deswarte, Kim -- Ege, Markus J -- Madeira, Filipe Branco -- Beyaert, Rudi -- van Loo, Geert -- Bracher, Franz -- von Mutius, Erika -- Chanez, Pascal -- Lambrecht, Bart N -- Hammad, Hamida -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1106-10. doi: 10.1126/science.aac6623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. ; Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France. ; Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universitat, Munich, Germany. ; Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. ; Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University, Butenandtstrasse 5-13, D-81377 Munich, Germany. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands. hamida.hammad@ugent.be bart.lambrecht@ugent.be. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. hamida.hammad@ugent.be bart.lambrecht@ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/prevention & control ; Cells, Cultured ; Child ; DNA-Binding Proteins/*biosynthesis ; Dairying ; Dendritic Cells/immunology ; Dust/*immunology ; Female ; Humans ; Hygiene Hypothesis ; Hypersensitivity/enzymology/immunology/*prevention & control ; Inhalation Exposure ; Intracellular Signaling Peptides and Proteins/*biosynthesis ; Lipopolysaccharides/*immunology ; Lung/*enzymology/immunology ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*biosynthesis ; Pyroglyphidae/*immunology ; Respiratory Mucosa/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-08
    Description: Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Jonathan P -- Pletnikova, Olga -- Troncoso, Juan C -- Wong, Philip C -- P50AG05146/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):650-5. doi: 10.1126/science.aab0983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. wong@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250685" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*genetics ; Animals ; Base Sequence ; Cells, Cultured ; Cysteine Endopeptidases/genetics ; DNA-Binding Proteins/genetics/*physiology ; Embryonic Stem Cells ; Exons/*genetics ; Frontotemporal Dementia/*genetics ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Protein Isoforms/genetics ; *RNA Splicing ; RNA Stability ; RNA, Messenger/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-07-18
    Description: Secretion of the cytokine interleukin-1beta (IL-1beta) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1beta, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1beta for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1beta transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1beta production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating T helper 17 (TH17) cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warnatsch, Annika -- Ioannou, Marianna -- Wang, Qian -- Papayannopoulos, Venizelos -- MC_UP_1202/13/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):316-20. doi: 10.1126/science.aaa8064. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. ; Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. veni.p@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26185250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*immunology ; Cells, Cultured ; Cholesterol/chemistry/immunology ; Disease Models, Animal ; Extracellular Traps/*immunology ; Humans ; Inflammasomes/immunology ; Inflammation/immunology ; Interleukin-1beta/*biosynthesis/genetics ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Neutrophils/*immunology ; Signal Transduction ; Th17 Cells/immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-01-24
    Description: The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment-that is, in the absence of proteotoxic stress-only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asano, Shoh -- Fukuda, Yoshiyuki -- Beck, Florian -- Aufderheide, Antje -- Forster, Friedrich -- Danev, Radostin -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):439-42. doi: 10.1126/science.1261197.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. ; Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. baumeist@biochem.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Hippocampus/*cytology/enzymology ; Neurons/*enzymology/*ultrastructure ; Proteasome Endopeptidase Complex/*chemistry ; Protein Conformation ; Rats ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-09-26
    Description: Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-kappaB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Chanhee -- Xu, Qikai -- Martin, Timothy D -- Li, Mamie Z -- Demaria, Marco -- Aron, Liviu -- Lu, Tao -- Yankner, Bruce A -- Campisi, Judith -- Elledge, Stephen J -- AG009909/AG/NIA NIH HHS/ -- AG017242/AG/NIA NIH HHS/ -- AG046174/AG/NIA NIH HHS/ -- DP1 OD006849/OD/NIH HHS/ -- DP1OD006849/OD/NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Buck Institute for Research on Aging, Novato, CA 94945, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. selledge@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404840" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics/metabolism ; Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; Autophagy/*genetics ; Brain/metabolism ; Cell Aging/*genetics ; Cell Cycle/genetics ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; *DNA Damage ; Fibroblasts ; GATA4 Transcription Factor/genetics/*metabolism ; Gene Expression Profiling ; Humans ; Inflammation/*genetics ; Interleukin-1alpha/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/metabolism ; NF-kappa B/metabolism ; Phenotype ; Promoter Regions, Genetic ; Tumor Necrosis Factor Receptor-Associated Peptides and ; Proteins/genetics/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-02-24
    Description: Pancreatic beta cells lower insulin release in response to nutrient depletion. The question of whether starved beta cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic beta cells was suppressed upon starvation. Instead, starved beta cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, beta cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goginashvili, Alexander -- Zhang, Zhirong -- Erbs, Eric -- Spiegelhalter, Coralie -- Kessler, Pascal -- Mihlan, Michael -- Pasquier, Adrien -- Krupina, Ksenia -- Schieber, Nicole -- Cinque, Laura -- Morvan, Joelle -- Sumara, Izabela -- Schwab, Yannick -- Settembre, Carmine -- Ricci, Romeo -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):878-82. doi: 10.1126/science.aaa2628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. ; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Via Pansini 5, 80131 Naples, Italy. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. Nouvel Hopital Civil, Laboratoire de Biochimie et de Biologie Moleculaire, Universite de Strasbourg, 67091 Strasbourg, France. romeo.ricci@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cells, Cultured ; Fasting ; Humans ; Insulin/*secretion ; Insulin-Secreting Cells/*physiology/secretion/ultrastructure ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 13/genetics ; Protein Kinase C/physiology ; Secretory Vesicles/*physiology/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-02-24
    Description: Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. We found that in melanocytes, CPDs are generated for 〉3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These "dark CPDs" constitute the majority of CPDs and include the cytosine-containing CPDs that initiate UV-signature C--〉T mutations. Dark CPDs arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but induces CPDs by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically generated excited electronic states are relevant to mammalian biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premi, Sanjay -- Wallisch, Silvia -- Mano, Camila M -- Weiner, Adam B -- Bacchiocchi, Antonella -- Wakamatsu, Kazumasa -- Bechara, Etelvino J H -- Halaban, Ruth -- Douki, Thierry -- Brash, Douglas E -- 2 P50 CA121974/CA/NCI NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK34989/DK/NIDDK NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):842-7. doi: 10.1126/science.1256022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan. ; Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo 09972-270 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. ; INAC/LCIB UMR-E3 CEA-UJF/Commissariat a l'Energie Atomique (CEA), 38054 Grenoble Cedex 9, France. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. douglas.brash@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cytosine/metabolism ; DNA/chemistry/genetics/*radiation effects ; DNA Damage/*genetics ; Energy Transfer ; Humans ; Melanins/chemistry/*metabolism ; Melanocytes/metabolism/*radiation effects ; Melanoma/*genetics ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Mutation ; Neoplasms, Radiation-Induced/*genetics ; Photons ; Pyrimidine Dimers/*metabolism ; Receptor, Melanocortin, Type 1/genetics ; Skin Neoplasms/*genetics ; Sunlight/adverse effects ; Thymine/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-11-07
    Description: In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Notta, Faiyaz -- Zandi, Sasan -- Takayama, Naoya -- Dobson, Stephanie -- Gan, Olga I -- Wilson, Gavin -- Kaufmann, Kerstin B -- McLeod, Jessica -- Laurenti, Elisa -- Dunant, Cyrille F -- McPherson, John D -- Stein, Lincoln D -- Dror, Yigal -- Dick, John E -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):aab2116. doi: 10.1126/science.aab2116. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK. ; Ecole Polytechnique Federale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland. ; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; The Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. jdick@uhnres.utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541609" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antigens, CD34/analysis ; Cell Lineage/genetics/*physiology ; Cell Separation ; Cells, Cultured ; Erythroid Cells/*cytology ; Fetal Blood/cytology ; Gene Expression Profiling ; Hematopoiesis/genetics/*physiology ; Humans ; Liver/cytology/embryology ; Megakaryocyte Progenitor Cells/*cytology ; Megakaryocytes/*cytology ; Multipotent Stem Cells/cytology ; Myeloid Cells/*cytology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-06-05
    Description: Stem cells of the gastrointestinal tract, pancreas, liver and other columnar epithelia collectively resist cloning in their elemental states. Here we demonstrate the cloning and propagation of highly clonogenic, 'ground state' stem cells of the human intestine and colon. We show that derived stem-cell pedigrees sustain limited copy number and sequence variation despite extensive serial passaging and display exquisitely precise, cell-autonomous commitment to epithelial differentiation consistent with their origins along the intestinal tract. This developmentally patterned and epigenetically maintained commitment of stem cells is likely to enforce the functional specificity of the adult intestinal tract. Using clonally derived colonic epithelia, we show that toxins A or B of the enteric pathogen Clostridium difficile recapitulate the salient features of pseudomembranous colitis. The stability of the epigenetic commitment programs of these stem cells, coupled with their unlimited replicative expansion and maintained clonogenicity, suggests certain advantages for their use in disease modelling and regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xia -- Yamamoto, Yusuke -- Wilson, Lane H -- Zhang, Ting -- Howitt, Brooke E -- Farrow, Melissa A -- Kern, Florian -- Ning, Gang -- Hong, Yue -- Khor, Chiea Chuen -- Chevalier, Benoit -- Bertrand, Denis -- Wu, Lingyan -- Nagarajan, Niranjan -- Sylvester, Francisco A -- Hyams, Jeffrey S -- Devers, Thomas -- Bronson, Roderick -- Lacy, D Borden -- Ho, Khek Yu -- Crum, Christopher P -- McKeon, Frank -- Xian, Wa -- AI09575504/AI/NIAID NIH HHS/ -- R01 AI095755/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Jun 11;522(7555):173-8. doi: 10.1038/nature14484. Epub 2015 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA. ; 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA. ; Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore. ; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA. ; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. ; 1] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [2] Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore. ; Department of Pediatrics, Division of Gastroenterology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, Connecticut 06106, USA. ; Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Medicine, National University of Singapore, 119228 Singapore. ; 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Genome Institute of Singapore, Agency for Science, Technology and Research, 138672 Singapore [3] Department of Medicine, National University of Singapore, 119228 Singapore [4] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA. ; 1] The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032, USA [2] Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02118, USA [4] Department of Medicine, National University of Singapore, 119228 Singapore [5] Multiclonal Therapeutics, Inc., Farmington, Connecticut 06032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26040716" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Toxins/pharmacology ; Cell Differentiation/drug effects ; Cell Lineage ; Cells, Cultured ; Clone Cells/cytology/metabolism ; Clostridium difficile/physiology ; Colon/cytology/drug effects ; Enterocolitis, Pseudomembranous/microbiology/pathology ; Epigenesis, Genetic/genetics ; Epithelium/drug effects/metabolism ; Fetus/cytology ; Genomic Instability/genetics ; Humans ; Intestine, Small/cytology ; Intestines/*cytology/drug effects ; Organoids/cytology/growth & development ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-12-25
    Description: Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavahan, William A -- Drier, Yotam -- Liau, Brian B -- Gillespie, Shawn M -- Venteicher, Andrew S -- Stemmer-Rachamimov, Anat O -- Suva, Mario L -- Bernstein, Bradley E -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700815" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; CRISPR-Cas Systems/genetics ; Cell Cycle Proteins/metabolism ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Chromatin/drug effects/genetics/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; CpG Islands/genetics ; DNA Methylation/drug effects/genetics ; Down-Regulation/drug effects ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/drug effects ; *Gene Expression Regulation, Neoplastic/drug effects ; Glioma/drug therapy/*enzymology/*genetics/pathology ; Glutarates/metabolism ; Humans ; Insulator Elements/drug effects/*genetics ; Isocitrate Dehydrogenase/chemistry/*genetics/metabolism ; Mutation/*genetics ; Oncogenes/*genetics ; Phenotype ; Protein Binding ; Receptor, Platelet-Derived Growth Factor alpha/genetics ; Repressor Proteins/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-12-01
    Description: Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue F508 CFTR cellular processing defects and function. A favourable change of F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pankow, Sandra -- Bamberger, Casimir -- Calzolari, Diego -- Martinez-Bartolome, Salvador -- Lavallee-Adam, Mathieu -- Balch, William E -- Yates, John R 3rd -- 5R01HL079442-08/HL/NHLBI NIH HHS/ -- HHSN268201000035C/PHS HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P01AG031097/AG/NIA NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 HL079442/HL/NHLBI NIH HHS/ -- R01DK051870/DK/NIDDK NIH HHS/ -- R01HL095524/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):510-6. doi: 10.1038/nature15729. Epub 2015 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26618866" target="_blank"〉PubMed〈/a〉
    Keywords: Bronchi/cytology ; Cells, Cultured ; Cystic Fibrosis/genetics/*metabolism/*therapy ; Cystic Fibrosis Transmembrane Conductance ; Regulator/biosynthesis/*genetics/*metabolism ; Epithelial Cells/chemistry/metabolism ; Gene Knockdown Techniques ; Glycosylation ; Histone Deacetylase Inhibitors/pharmacology ; Histone Deacetylases/deficiency/metabolism ; Humans ; Mutant Proteins/genetics/metabolism ; Protein Folding ; Protein Interaction Mapping ; *Protein Interaction Maps ; Proteomics ; RNA Interference ; RNAi Therapeutics ; Sequence Deletion/*genetics ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-12-04
    Description: Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice. DNA barcoding of the initial cells revealed a dramatic change in the numbers and sizes of clones generated from them within 2 weeks, and the first appearance of many 'new' clones in tumours passaged into secondary recipients. Both primary and secondary tumours were phenotypically heterogeneous and primary tumours were categorized transcriptionally as 'normal-like'. This system challenges previous concepts that carcinogenesis in normal human epithelia is necessarily a slow process requiring the acquisition of multiple driver mutations. It also presents the first description of initial events that accompany the genesis and evolution of malignant human mammary cell populations, thereby contributing new understanding of the rapidity with which heterogeneity in their properties can develop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nguyen, Long V -- Pellacani, Davide -- Lefort, Sylvain -- Kannan, Nagarajan -- Osako, Tomo -- Makarem, Maisam -- Cox, Claire L -- Kennedy, William -- Beer, Philip -- Carles, Annaick -- Moksa, Michelle -- Bilenky, Misha -- Balani, Sneha -- Babovic, Sonja -- Sun, Ivan -- Rosin, Miriam -- Aparicio, Samuel -- Hirst, Martin -- Eaves, Connie J -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2015 Dec 10;528(7581):267-71. doi: 10.1038/nature15742. Epub 2015 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Department of Medical Genetics, University of British Columbia, Vancouver, British ColumbiaV6T 2B5, Canada. ; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada. ; Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Centre for High-Throughput Biology, Department of Microbiology &Immunology, University of British Columbia, 2125 East Mall, Vancouver, British Columbia V6T 1Z4, Canada. ; Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada. ; Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada. ; Cancer Control Unit, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26633636" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/genetics/*physiopathology ; Carcinoma, Ductal, Breast/genetics/*physiopathology ; Cell Lineage/genetics ; *Cell Transformation, Neoplastic ; Cells, Cultured ; DNA Barcoding, Taxonomic ; Female ; Gene Expression Profiling ; Heterografts ; Humans ; Lentivirus/genetics ; Mammary Glands, Human/cytology/*physiopathology ; Mice ; Mice, Inbred Strains ; Mice, SCID ; Proto-Oncogene Proteins/genetics ; Time Factors ; Transduction, Genetic ; ras Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-09-17
    Description: Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canver, Matthew C -- Smith, Elenoe C -- Sher, Falak -- Pinello, Luca -- Sanjana, Neville E -- Shalem, Ophir -- Chen, Diane D -- Schupp, Patrick G -- Vinjamur, Divya S -- Garcia, Sara P -- Luc, Sidinh -- Kurita, Ryo -- Nakamura, Yukio -- Fujiwara, Yuko -- Maeda, Takahiro -- Yuan, Guo-Cheng -- Zhang, Feng -- Orkin, Stuart H -- Bauer, Daniel E -- 5DP1-MH100706/DP/NCCDPHP CDC HHS/ -- 5R01-DK097768/DK/NIDDK NIH HHS/ -- F30DK103359-01A1/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- K99 HG008171/HG/NHGRI NIH HHS/ -- K99-HG008171/HG/NHGRI NIH HHS/ -- K99HG008399/HG/NHGRI NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 A1084905/PHS HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HG005085/HG/NHGRI NIH HHS/ -- R01HL119099/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):192-7. doi: 10.1038/nature15521. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan. ; Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan. ; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA. ; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Associated Proteins/*metabolism ; CRISPR-Cas Systems/genetics ; Carrier Proteins/*genetics ; Cells, Cultured ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Enhancer Elements, Genetic/*genetics ; Erythroblasts/metabolism ; Fetal Hemoglobin/genetics ; *Genetic Engineering ; Genome/genetics ; Humans ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Nuclear Proteins/*genetics ; Organ Specificity ; RNA, Guide/genetics ; Reproducibility of Results ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-10-09
    Description: The neutralizing antibody response to influenza virus is dominated by antibodies that bind to the globular head of haemagglutinin, which undergoes a continuous antigenic drift, necessitating the re-formulation of influenza vaccines on an annual basis. Recently, several laboratories have described a new class of rare influenza-neutralizing antibodies that target a conserved site in the haemagglutinin stem. Most of these antibodies use the heavy-chain variable region VH1-69 gene, and structural data demonstrate that they bind to the haemagglutinin stem through conserved heavy-chain complementarity determining region (HCDR) residues. However, the VH1-69 antibodies are highly mutated and are produced by some but not all individuals, suggesting that several somatic mutations may be required for their development. To address this, here we characterize 197 anti-stem antibodies from a single donor, reconstruct the developmental pathways of several VH1-69 clones and identify two key elements that are required for the initial development of most VH1-69 antibodies: a polymorphic germline-encoded phenylalanine at position 54 and a conserved tyrosine at position 98 in HCDR3. Strikingly, in most cases a single proline to alanine mutation at position 52a in HCDR2 is sufficient to confer high affinity binding to the selecting H1 antigen, consistent with rapid affinity maturation. Surprisingly, additional favourable mutations continue to accumulate, increasing the breadth of reactivity and making both the initial mutations and phenylalanine at position 54 functionally redundant. These results define VH1-69 allele polymorphism, rearrangement of the VDJ gene segments and single somatic mutations as the three requirements for generating broadly neutralizing VH1-69 antibodies and reveal an unexpected redundancy in the affinity maturation process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappas, Leontios -- Foglierini, Mathilde -- Piccoli, Luca -- Kallewaard, Nicole L -- Turrini, Filippo -- Silacci, Chiara -- Fernandez-Rodriguez, Blanca -- Agatic, Gloria -- Giacchetto-Sasselli, Isabella -- Pellicciotta, Gabriele -- Sallusto, Federica -- Zhu, Qing -- Vicenzi, Elisa -- Corti, Davide -- Lanzavecchia, Antonio -- U19 AI-057266/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):418-22. doi: 10.1038/nature13764. Epub 2014 Oct 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland. ; Department of Infectious Diseases and Vaccines MedImmune LLC, One MedImmune Way, Gaithersburg, Maryland 20878, USA. ; Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland. ; Unit of Preventive Medicine, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Humabs BioMed SA, Via Mirasole 1, 6500 Bellinzona, Switzerland [3]. ; 1] Insitute for Research in Biomedicine, Universita della Svizzera Italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland [2] Insitute for Microbiology, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296253" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Neutralizing/*genetics ; Cells, Cultured ; Complementarity Determining Regions/chemistry/*genetics ; Female ; Hemagglutinin Glycoproteins, Influenza Virus/immunology ; Humans ; Immunoglobulin Heavy Chains/genetics ; Influenza, Human/*immunology/virology ; Male ; Middle Aged ; Models, Molecular ; Mutation/*genetics ; Orthomyxoviridae/*immunology/metabolism ; Polymorphism, Genetic ; Protein Binding/genetics ; Protein Structure, Tertiary ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-07-22
    Description: During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4134322/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schleich, Sibylle -- Strassburger, Katrin -- Janiesch, Philipp Christoph -- Koledachkina, Tatyana -- Miller, Katharine K -- Haneke, Katharina -- Cheng, Yong-Sheng -- Kuchler, Katrin -- Stoecklin, Georg -- Duncan, Kent E -- Teleman, Aurelio A -- 260602/European Research Council/International -- England -- Nature. 2014 Aug 14;512(7513):208-12. doi: 10.1038/nature13401. Epub 2014 Jul 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2]. ; 1] Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany [2]. ; Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany. ; 1] German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany [2] Zentrum fur Molekulare Biologie der Universitat Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany. ; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043021" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Proliferation ; Cells, Cultured ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/cytology/genetics/growth & development ; Eukaryotic Initiation Factors/genetics/*metabolism ; Gene Expression Regulation/*genetics ; Open Reading Frames ; Protein Biosynthesis/*genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-08-30
    Description: Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petrie, Ryan J -- Koo, Hyun -- Yamada, Kenneth M -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1062-5. doi: 10.1126/science.1256965.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. petrier@mail.nih.gov kyamada@mail.nih.gov. ; Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA. Center for Oral Biology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA. Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104-6030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170155" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/physiology ; Cell Movement/*physiology ; Cell Nucleus/*physiology ; Cells, Cultured ; Cytoplasm/physiology ; Extracellular Matrix/*physiology/ultrastructure ; Fibroblasts/*physiology ; Humans ; Hydrostatic Pressure ; Microfilament Proteins ; Pseudopodia/*physiology ; Vimentin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-02-07
    Description: Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Brownfield, Douglas G -- Krasnow, Mark A -- P30 CA124435/CA/NCI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):190-4. doi: 10.1038/nature12930. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA. ; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic/metabolism/pathology ; Cells, Cultured ; Cellular Reprogramming ; Clone Cells/cytology ; Female ; Lung/*cytology/embryology/*growth & development/pathology ; Lung Neoplasms/metabolism/*pathology ; Male ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Pulmonary Alveoli/*cytology ; Receptor, Epidermal Growth Factor/metabolism ; *Regeneration ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-08-15
    Description: The murine caspase-11 non-canonical inflammasome responds to various bacterial infections. Caspase-11 activation-induced pyroptosis, in response to cytoplasmic lipopolysaccharide (LPS), is critical for endotoxic shock in mice. The mechanism underlying cytosolic LPS sensing and the responsible pattern recognition receptor are unknown. Here we show that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS. LPS-induced cytotoxicity was mediated by human caspase-4 that could functionally complement murine caspase-11. Human caspase-4 and the mouse homologue caspase-11 (hereafter referred to as caspase-4/11) and also human caspase-5, directly bound to LPS and lipid A with high specificity and affinity. LPS associated with endogenous caspase-11 in pyroptotic cells. Insect-cell purified caspase-4/11 underwent oligomerization upon LPS binding, resulting in activation of the caspases. Underacylated lipid IVa and lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS) could bind to caspase-4/11 but failed to induce their oligomerization and activation. LPS binding was mediated by the CARD domain of the caspase. Binding-deficient CARD-domain point mutants did not respond to LPS with oligomerization or activation and failed to induce pyroptosis upon LPS electroporation or bacterial infections. The function of caspase-4/5/11 represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Jianjin -- Zhao, Yue -- Wang, Yupeng -- Gao, Wenqing -- Ding, Jingjin -- Li, Peng -- Hu, Liyan -- Shao, Feng -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):187-92. doi: 10.1038/nature13683. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3]. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2]. ; National Institute of Biological Sciences, Beijing 102206, China. ; 1] National Institute of Biological Sciences, Beijing 102206, China [2] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; 1] Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing 102206, China [2] National Institute of Biological Sciences, Beijing 102206, China [3] National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [4] National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119034" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/chemistry/genetics/immunology/*metabolism ; Caspases, Initiator/chemistry/genetics/immunology/*metabolism ; Cell Death/drug effects ; Cells, Cultured ; Enzyme Activation/drug effects/genetics ; Epithelial Cells/cytology/metabolism ; Genetic Complementation Test ; Humans ; *Immunity, Innate ; Inflammation/enzymology ; Keratinocytes/cytology/metabolism ; Lipid A/metabolism ; Lipopolysaccharides/immunology/*metabolism/pharmacology ; Macrophages/cytology/drug effects/metabolism ; Mice ; Mutant Proteins/chemistry/metabolism ; Necrosis/chemically induced ; Protein Binding ; Protein Multimerization/drug effects/genetics ; Rhodobacter sphaeroides/chemistry/immunology ; Substrate Specificity ; Surface Plasmon Resonance
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-10-14
    Description: The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Al Jord, Adel -- Lemaitre, Anne-Iris -- Delgehyr, Nathalie -- Faucourt, Marion -- Spassky, Nathalie -- Meunier, Alice -- England -- Nature. 2014 Dec 4;516(7529):104-7. doi: 10.1038/nature13770. Epub 2014 Oct 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, IBENS, F-75005 Paris, France [2] Inserm, U1024, F-75005 Paris, France [3] CNRS, UMR 8197, F-75005 Paris, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25307055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Centrioles/*physiology/ultrastructure ; Centrosome/*physiology/ultrastructure ; Cilia/*physiology/ultrastructure ; Mice ; Microscopy, Electron, Transmission
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-10-16
    Description: Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jichang -- Xie, Gangcai -- Singh, Manvendra -- Ghanbarian, Avazeh T -- Rasko, Tamas -- Szvetnik, Attila -- Cai, Huiqiang -- Besser, Daniel -- Prigione, Alessandro -- Fuchs, Nina V -- Schumann, Gerald G -- Chen, Wei -- Lorincz, Matthew C -- Ivics, Zoltan -- Hurst, Laurence D -- Izsvak, Zsuzsanna -- England -- Nature. 2014 Dec 18;516(7531):405-9. doi: 10.1038/nature13804. Epub 2014 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; 1] Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany [2] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yueyang Road, Shanghai 200031, China. ; University of Bath, Department of Biology and Biochemistry, Bath, Somerset BA2 7AY, UK. ; 1] Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany [2] Paul-Ehrlich-Institute, Division of Medical Biotechnology, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany. ; Paul-Ehrlich-Institute, Division of Medical Biotechnology, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany. ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25317556" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; DNA Transposable Elements ; Embryonic Stem Cells/*cytology/*metabolism ; Endogenous Retroviruses/genetics/*metabolism ; Gene Expression Profiling ; Genetic Markers ; Humans ; Induced Pluripotent Stem Cells/cytology/*physiology/virology ; RNA, Long Noncoding/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-11-11
    Description: Autophagy is an evolutionarily conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis. Its acute regulation by nutrient-sensing signalling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors peroxisome proliferator-activated receptor-alpha (PPARalpha) and farnesoid X receptor (FXR) are activated in the fasted and fed liver, respectively. Here we show that both PPARalpha and FXR regulate hepatic autophagy in mice. Pharmacological activation of PPARalpha reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARalpha knockout (Ppara(-/-), also known as Nr1c1(-/-)) mice, which are partially defective in the induction of autophagy by fasting. Pharmacological activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (Fxr(-/-), also known as Nr1h4(-/-)) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARalpha and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267857/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jae Man -- Wagner, Martin -- Xiao, Rui -- Kim, Kang Ho -- Feng, Dan -- Lazar, Mitchell A -- Moore, David D -- DK43806/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30DX56338-05A2/PHS HHS/ -- P39CA125123-04/CA/NCI NIH HHS/ -- R01 DK049780/DK/NIDDK NIH HHS/ -- R01 DK49780/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- S10RR027783-01A1/RR/NCRR NIH HHS/ -- U54HD-07495-39/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 4;516(7529):112-5. doi: 10.1038/nature13961. Epub 2014 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383539" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Cell Line ; Cells, Cultured ; Fasting/physiology ; Gene Expression Regulation ; Hepatocytes/metabolism ; Liver/cytology/*metabolism/ultrastructure ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microtubule-Associated Proteins/genetics/metabolism ; PPAR alpha ; Receptors, Cytoplasmic and Nuclear/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-01-07
    Description: Recombinant adeno-associated viral (rAAV) vectors have shown early promise in clinical trials. The therapeutic transgene cassette can be packaged in different AAV capsid pseudotypes, each having a unique transduction profile. At present, rAAV capsid serotype selection for a specific clinical trial is based on effectiveness in animal models. However, preclinical animal studies are not always predictive of human outcome. Here, in an attempt to further our understanding of these discrepancies, we used a chimaeric human-murine liver model to compare directly the relative efficiency of rAAV transduction in human versus mouse hepatocytes in vivo. As predicted from preclinical and clinical studies, rAAV2 vectors functionally transduced mouse and human hepatocytes at equivalent but relatively low levels. However, rAAV8 vectors, which are very effective in many animal models, transduced human hepatocytes rather poorly-approximately 20 times less efficiently than mouse hepatocytes. In light of the limitations of the rAAV vectors currently used in clinical studies, we used the same murine chimaeric liver model to perform serial selection using a human-specific replication-competent viral library composed of DNA-shuffled AAV capsids. One chimaeric capsid composed of five different parental AAV capsids was found to transduce human primary hepatocytes at high efficiency in vitro and in vivo, and provided species-selected transduction in primary liver, cultured cells and a hepatocellular carcinoma xenograft model. This vector is an ideal clinical candidate and a reagent for gene modification of human xenotransplants in mouse models of human diseases. More importantly, our results suggest that humanized murine models may represent a more precise approach for both selecting and evaluating clinically relevant rAAV serotypes for gene therapeutic applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939040/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939040/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lisowski, Leszek -- Dane, Allison P -- Chu, Kirk -- Zhang, Yue -- Cunningham, Sharon C -- Wilson, Elizabeth M -- Nygaard, Sean -- Grompe, Markus -- Alexander, Ian E -- Kay, Mark A -- DK048252/DK/NIDDK NIH HHS/ -- HL064274/HL/NHLBI NIH HHS/ -- HL092096/HL/NHLBI NIH HHS/ -- R01 DK048252/DK/NIDDK NIH HHS/ -- R01 HL064274/HL/NHLBI NIH HHS/ -- R01 HL092096/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Feb 20;506(7488):382-6. doi: 10.1038/nature12875. Epub 2013 Dec 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stanford University, School of Medicine, Departments of Pediatrics and Genetics, 269 Campus Drive, Stanford, California 94305, USA [2] Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, San Diego, California 92037, USA (L.L.); Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK (A.P.D.). ; 1] Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia [2] Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, San Diego, California 92037, USA (L.L.); Department of Haematology, University College London Cancer Institute, London WC1E 6BT, UK (A.P.D.). ; Stanford University, School of Medicine, Departments of Pediatrics and Genetics, 269 Campus Drive, Stanford, California 94305, USA. ; Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia. ; Yecuris Corporation, Portland, Oregon 97062, USA. ; Oregon Stem Cell Center, Oregon Health and Science University, Portland, Oregon 97239, USA. ; 1] Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead, 2145 New South Wales, Australia [2] Discipline of Paediatrics and Child Health, The University of Sydney, 2145 New South Wales, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24390344" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Capsid/metabolism ; Capsid Proteins/genetics/metabolism ; Carcinoma, Hepatocellular/genetics/pathology ; Cell Line, Tumor ; Cells, Cultured ; Chimera/genetics/metabolism ; Clinical Trials as Topic ; Dependovirus/*genetics/isolation & purification ; Disease Models, Animal ; Female ; Genetic Therapy/*methods ; Genetic Vectors/*genetics ; Hepatocytes/cytology/metabolism/pathology/transplantation ; Heterografts/*metabolism ; Humans ; Liver/cytology/*metabolism/pathology ; Male ; Mice ; Species Specificity ; Transduction, Genetic/*methods ; Transgenes/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-03-29
    Description: Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Robin -- Gebhard, Claudia -- Miguel-Escalada, Irene -- Hoof, Ilka -- Bornholdt, Jette -- Boyd, Mette -- Chen, Yun -- Zhao, Xiaobei -- Schmidl, Christian -- Suzuki, Takahiro -- Ntini, Evgenia -- Arner, Erik -- Valen, Eivind -- Li, Kang -- Schwarzfischer, Lucia -- Glatz, Dagmar -- Raithel, Johanna -- Lilje, Berit -- Rapin, Nicolas -- Bagger, Frederik Otzen -- Jorgensen, Mette -- Andersen, Peter Refsing -- Bertin, Nicolas -- Rackham, Owen -- Burroughs, A Maxwell -- Baillie, J Kenneth -- Ishizu, Yuri -- Shimizu, Yuri -- Furuhata, Erina -- Maeda, Shiori -- Negishi, Yutaka -- Mungall, Christopher J -- Meehan, Terrence F -- Lassmann, Timo -- Itoh, Masayoshi -- Kawaji, Hideya -- Kondo, Naoto -- Kawai, Jun -- Lennartsson, Andreas -- Daub, Carsten O -- Heutink, Peter -- Hume, David A -- Jensen, Torben Heick -- Suzuki, Harukazu -- Hayashizaki, Yoshihide -- Muller, Ferenc -- FANTOM Consortium -- Forrest, Alistair R R -- Carninci, Piero -- Rehli, Michael -- Sandelin, Albin -- MC_PC_U127597124/Medical Research Council/United Kingdom -- MC_UP_1102/1/Medical Research Council/United Kingdom -- R01 DE022969/DE/NIDCR NIH HHS/ -- England -- Nature. 2014 Mar 27;507(7493):455-61. doi: 10.1038/nature12787.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark [2]. ; 1] Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany [2] Regensburg Centre for Interventional Immunology (RCI), D-93042 Regensburg, Germany [3]. ; School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK. ; The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark. ; 1] The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark [2] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA. ; Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany. ; 1] RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [2] RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan. ; Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, C.F. Mollers Alle 3, Building 1130, DK-8000 Aarhus, Denmark. ; 1] The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark [2] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark [2] The Finsen Laboratory, Rigshospitalet and Danish Stem Cell Centre (DanStem), University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Denmark. ; Roslin Institute, Edinburgh University, Easter Bush, Midlothian, Edinburgh EH25 9RG, UK. ; Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 64-121, Berkeley, California 94720, USA. ; EMBL Outstation - Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; 1] RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [2] RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [3] RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan. ; 1] RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [2] RIKEN Preventive Medicine and Diagnosis Innovation Program, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan. ; Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7, SE-4183 Huddinge, Stockholm, Sweden. ; 1] RIKEN OMICS Science Centre, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [2] RIKEN Center for Life Science Technologies (Division of Genomic Technologies), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan [3] Department of Biosciences and Nutrition, Karolinska Institutet, Halsovagen 7, SE-4183 Huddinge, Stockholm, Sweden. ; Department of Clinical Genetics, VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands. ; 1] Department of Internal Medicine III, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany [2] Regensburg Centre for Interventional Immunology (RCI), D-93042 Regensburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670763" target="_blank"〉PubMed〈/a〉
    Keywords: *Atlases as Topic ; Cell Line ; Cells, Cultured ; Cluster Analysis ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; Genetic Predisposition to Disease/genetics ; HeLa Cells ; Humans ; *Molecular Sequence Annotation ; *Organ Specificity ; Polymorphism, Single Nucleotide/genetics ; Promoter Regions, Genetic/genetics ; RNA, Messenger/biosynthesis/genetics ; Transcription Initiation Site ; Transcription Initiation, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-02-14
    Description: Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sousa-Victor, Pedro -- Gutarra, Susana -- Garcia-Prat, Laura -- Rodriguez-Ubreva, Javier -- Ortet, Laura -- Ruiz-Bonilla, Vanessa -- Jardi, Merce -- Ballestar, Esteban -- Gonzalez, Susana -- Serrano, Antonio L -- Perdiguero, Eusebio -- Munoz-Canoves, Pura -- England -- Nature. 2014 Feb 20;506(7488):316-21. doi: 10.1038/nature13013. Epub 2014 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Buck Institute for Research on Aging, Novato, California 94945, USA. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2]. ; Chromatin and Disease Group, Cancer Epigenetics and Biology Programme, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain. ; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain. ; Stem Cell Aging Group, Centro Nacional de Investigaciones Cardiovasculares, E-28029 Madrid, Spain. ; 1] Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University, CIBER on Neurodegenerative diseases, E-08003 Barcelona, Spain [2] Institucio Catalana de Recerca i Estudis Avancats, E-08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24522534" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aging/*metabolism ; Animals ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/deficiency/genetics/*metabolism ; E2F1 Transcription Factor/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Progeria/metabolism/pathology ; Regeneration ; Rejuvenation ; Retinoblastoma Protein/metabolism ; Satellite Cells, Skeletal Muscle/*cytology/*metabolism ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-02-21
    Description: Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murthy, Aditya -- Li, Yun -- Peng, Ivan -- Reichelt, Mike -- Katakam, Anand Kumar -- Noubade, Rajkumar -- Roose-Girma, Merone -- DeVoss, Jason -- Diehl, Lauri -- Graham, Robert R -- van Lookeren Campagne, Menno -- England -- Nature. 2014 Feb 27;506(7489):456-62. doi: 10.1038/nature13044. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; ITGR Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553140" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Autophagy/genetics ; Carrier Proteins/chemistry/*genetics/*metabolism ; Caspase 3/deficiency/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Crohn Disease/*genetics/pathology ; Cytokines/immunology ; Enzyme Activation ; Female ; Food Deprivation ; Humans ; Macrophages/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Polymorphism, Single Nucleotide/*genetics ; *Proteolysis ; Stress, Physiological ; Yersinia enterocolitica/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-10-23
    Description: Chromosomal rearrangements have a central role in the pathogenesis of human cancers and often result in the expression of therapeutically actionable gene fusions. A recently discovered example is a fusion between the genes echinoderm microtubule-associated protein like 4 (EML4) and anaplastic lymphoma kinase (ALK), generated by an inversion on the short arm of chromosome 2: inv(2)(p21p23). The EML4-ALK oncogene is detected in a subset of human non-small cell lung cancers (NSCLC) and is clinically relevant because it confers sensitivity to ALK inhibitors. Despite their importance, modelling such genetic events in mice has proven challenging and requires complex manipulation of the germ line. Here we describe an efficient method to induce specific chromosomal rearrangements in vivo using viral-mediated delivery of the CRISPR/Cas9 system to somatic cells of adult animals. We apply it to generate a mouse model of Eml4-Alk-driven lung cancer. The resulting tumours invariably harbour the Eml4-Alk inversion, express the Eml4-Alk fusion gene, display histopathological and molecular features typical of ALK(+) human NSCLCs, and respond to treatment with ALK inhibitors. The general strategy described here substantially expands our ability to model human cancers in mice and potentially in other organisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270925/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270925/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maddalo, Danilo -- Manchado, Eusebio -- Concepcion, Carla P -- Bonetti, Ciro -- Vidigal, Joana A -- Han, Yoon-Chi -- Ogrodowski, Paul -- Crippa, Alessandra -- Rekhtman, Natasha -- de Stanchina, Elisa -- Lowe, Scott W -- Ventura, Andrea -- P01 CA013106/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 18;516(7531):423-7. doi: 10.1038/nature13902. Epub 2014 Oct 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, New York 10065, USA. ; 1] Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, New York 10065, USA [2] Weill Cornell Graduate School of Medical Sciences of Cornell University, 1300 York Avenue, New York, New York 10065, USA. ; Milano-Bicocca University, Department of Medical Oncology, San Gerardo Hospital, 20052, Via G B Pergolesi 33, Monza, Italy. ; Memorial Sloan Kettering Cancer Center, Thoracic Pathology and Cytopathology, 1275 York Avenue, New York, New York 10065, USA. ; Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, 1275 York Avenue, New York, New York 10065, USA. ; 1] Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1275 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25337876" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents/therapeutic use ; *Caspase 9 ; Cells, Cultured ; Chromosome Inversion/genetics ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Disease Models, Animal ; Genetic Engineering/*methods ; Lung Neoplasms/drug therapy/enzymology/pathology ; Mice ; NIH 3T3 Cells ; Protein Kinase Inhibitors/therapeutic use ; Pyrazoles/therapeutic use ; Pyridines/therapeutic use ; Receptor Protein-Tyrosine Kinases/metabolism ; Translocation, Genetic/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-05-30
    Description: The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Min-Sik -- Pinto, Sneha M -- Getnet, Derese -- Nirujogi, Raja Sekhar -- Manda, Srikanth S -- Chaerkady, Raghothama -- Madugundu, Anil K -- Kelkar, Dhanashree S -- Isserlin, Ruth -- Jain, Shobhit -- Thomas, Joji K -- Muthusamy, Babylakshmi -- Leal-Rojas, Pamela -- Kumar, Praveen -- Sahasrabuddhe, Nandini A -- Balakrishnan, Lavanya -- Advani, Jayshree -- George, Bijesh -- Renuse, Santosh -- Selvan, Lakshmi Dhevi N -- Patil, Arun H -- Nanjappa, Vishalakshi -- Radhakrishnan, Aneesha -- Prasad, Samarjeet -- Subbannayya, Tejaswini -- Raju, Rajesh -- Kumar, Manish -- Sreenivasamurthy, Sreelakshmi K -- Marimuthu, Arivusudar -- Sathe, Gajanan J -- Chavan, Sandip -- Datta, Keshava K -- Subbannayya, Yashwanth -- Sahu, Apeksha -- Yelamanchi, Soujanya D -- Jayaram, Savita -- Rajagopalan, Pavithra -- Sharma, Jyoti -- Murthy, Krishna R -- Syed, Nazia -- Goel, Renu -- Khan, Aafaque A -- Ahmad, Sartaj -- Dey, Gourav -- Mudgal, Keshav -- Chatterjee, Aditi -- Huang, Tai-Chung -- Zhong, Jun -- Wu, Xinyan -- Shaw, Patrick G -- Freed, Donald -- Zahari, Muhammad S -- Mukherjee, Kanchan K -- Shankar, Subramanian -- Mahadevan, Anita -- Lam, Henry -- Mitchell, Christopher J -- Shankar, Susarla Krishna -- Satishchandra, Parthasarathy -- Schroeder, John T -- Sirdeshmukh, Ravi -- Maitra, Anirban -- Leach, Steven D -- Drake, Charles G -- Halushka, Marc K -- Prasad, T S Keshava -- Hruban, Ralph H -- Kerr, Candace L -- Bader, Gary D -- Iacobuzio-Donahue, Christine A -- Gowda, Harsha -- Pandey, Akhilesh -- HHSN268201000032C/HL/NHLBI NIH HHS/ -- HHSN268201000032C/PHS HHS/ -- P41 GM103504/GM/NIGMS NIH HHS/ -- P41GM103504/GM/NIGMS NIH HHS/ -- T32 GM007814/GM/NIGMS NIH HHS/ -- U24 CA160036/CA/NCI NIH HHS/ -- U24CA160036/CA/NCI NIH HHS/ -- U54 GM103520/GM/NIGMS NIH HHS/ -- U54GM103520/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 May 29;509(7502):575-81. doi: 10.1038/nature13302.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Institute of Bioinformatics, International Tech Park, Bangalore 560066, India. ; 1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130, USA. ; The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada. ; 1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Pathology, Universidad de La Frontera, Center of Genetic and Immunological Studies-Scientific and Technological Bioresource Nucleus, Temuco 4811230, Chile. ; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; School of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. ; Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Department of Neurosurgery, Postgraduate Institute of Medical Education & Research, Chandigarh 160012, India. ; Department of Internal Medicine Armed Forces Medical College, Pune 411040, India. ; 1] Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India [2] Human Brain Tissue Repository, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore 560029, India. ; Department of Chemical and Biomolecular Engineering and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong. ; Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India. ; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA. ; 1] The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [2] Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [2] Departments of Immunology and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] Department of Obstetrics and Gynecology, Johns Hopkins University School of Medicine Baltimore, Maryland 21205, USA [2] Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. ; 1] The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [2] Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [3] Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; 1] McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] Institute of Bioinformatics, International Tech Park, Bangalore 560066, India [4] Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130, USA [5] The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [6] Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA [7] Diana Helis Henry Medical Research Foundation, New Orleans, Louisiana 70130, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870542" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Cells, Cultured ; Databases, Protein ; Fetus/metabolism ; Fourier Analysis ; Gene Expression Profiling ; Genome, Human/genetics ; Hematopoietic Stem Cells/cytology/metabolism ; Humans ; Internet ; Mass Spectrometry ; Molecular Sequence Annotation ; Open Reading Frames/genetics ; Organ Specificity ; Protein Biosynthesis ; Protein Isoforms/analysis/genetics/metabolism ; Protein Sorting Signals ; Protein Transport ; Proteome/analysis/chemistry/genetics/*metabolism ; *Proteomics ; Pseudogenes/genetics ; RNA, Untranslated/genetics ; Reproducibility of Results ; Untranslated Regions/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-05-30
    Description: Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1alpha and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1alpha. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1alpha acetylation. Insulin/GSK-3beta (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1alpha activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076706/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Yoonjin -- Dominy, John E -- Choi, Yoon Jong -- Jurczak, Michael -- Tolliday, Nicola -- Camporez, Joao Paulo -- Chim, Helen -- Lim, Ji-Hong -- Ruan, Hai-Bin -- Yang, Xiaoyong -- Vazquez, Francisca -- Sicinski, Piotr -- Shulman, Gerald I -- Puigserver, Pere -- DK059635/DK/NIDDK NIH HHS/ -- F32 DK083871/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- R01 CA083688/CA/NCI NIH HHS/ -- R01 CA108420/CA/NCI NIH HHS/ -- R01 DK069966/DK/NIDDK NIH HHS/ -- R01 DK089098/DK/NIDDK NIH HHS/ -- R01069966/PHS HHS/ -- R03 DA032468/DA/NIDA NIH HHS/ -- R03 MH092174/MH/NIMH NIH HHS/ -- R24 DK080261/DK/NIDDK NIH HHS/ -- R24DK080261-06/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- England -- Nature. 2014 Jun 26;510(7506):547-51. doi: 10.1038/nature13267. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [3] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale's Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Chemical Biology Platform, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870244" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acids/pharmacology ; Animals ; *Cell Cycle ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cells, Cultured ; Cyclin D1/deficiency/genetics/*metabolism ; Cyclin-Dependent Kinase 4/antagonists & inhibitors/*metabolism ; Diabetes Mellitus/metabolism ; Enzyme Activation ; Fasting ; Gene Deletion ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hepatocytes/cytology/drug effects/metabolism ; Histone Acetyltransferases/metabolism ; Homeostasis ; Humans ; Hyperglycemia/metabolism ; Hyperinsulinism/metabolism ; Insulin/*metabolism ; Male ; Mice ; Phosphorylation ; RNA, Messenger/analysis/genetics ; *Signal Transduction ; Transcription Factors/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-06-05
    Description: Cells maintain healthy mitochondria by degrading damaged mitochondria through mitophagy; defective mitophagy is linked to Parkinson's disease. Here we report that USP30, a deubiquitinase localized to mitochondria, antagonizes mitophagy driven by the ubiquitin ligase parkin (also known as PARK2) and protein kinase PINK1, which are encoded by two genes associated with Parkinson's disease. Parkin ubiquitinates and tags damaged mitochondria for clearance. Overexpression of USP30 removes ubiquitin attached by parkin onto damaged mitochondria and blocks parkin's ability to drive mitophagy, whereas reducing USP30 activity enhances mitochondrial degradation in neurons. Global ubiquitination site profiling identified multiple mitochondrial substrates oppositely regulated by parkin and USP30. Knockdown of USP30 rescues the defective mitophagy caused by pathogenic mutations in parkin and improves mitochondrial integrity in parkin- or PINK1-deficient flies. Knockdown of USP30 in dopaminergic neurons protects flies against paraquat toxicity in vivo, ameliorating defects in dopamine levels, motor function and organismal survival. Thus USP30 inhibition is potentially beneficial for Parkinson's disease by promoting mitochondrial clearance and quality control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bingol, Baris -- Tea, Joy S -- Phu, Lilian -- Reichelt, Mike -- Bakalarski, Corey E -- Song, Qinghua -- Foreman, Oded -- Kirkpatrick, Donald S -- Sheng, Morgan -- England -- Nature. 2014 Jun 19;510(7505):370-5. doi: 10.1038/nature13418. Epub 2014 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080, USA [2]. ; Department of Protein Chemistry, Genentech, Inc., South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., South San Francisco, California 94080, USA. ; Department of Bioinformatics & Computational Biology, Genentech, Inc., South San Francisco, California 94080, USA. ; Department of Non-Clinical Biostatistics, Genentech, Inc., South San Francisco, California 94080, USA. ; Department of Neuroscience, Genentech, Inc., South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24896179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Drosophila melanogaster/genetics/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; HeLa Cells ; Humans ; Male ; Mitochondrial Degradation/*physiology ; Mitochondrial Proteins/genetics/*metabolism ; Neurons/metabolism ; Parkinson Disease/physiopathology ; Protein Kinases/metabolism ; Rats ; Thiolester Hydrolases/genetics/*metabolism ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitin-Specific Proteases/genetics/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-10-16
    Description: Brown adipose tissue (BAT) is specialized in energy expenditure, making it a potential target for anti-obesity therapies. Following exposure to cold, BAT is activated by the sympathetic nervous system with concomitant release of catecholamines and activation of beta-adrenergic receptors. Because BAT therapies based on cold exposure or beta-adrenergic agonists are clinically not feasible, alternative strategies must be explored. Purinergic co-transmission might be involved in sympathetic control of BAT and previous studies reported inhibitory effects of the purinergic transmitter adenosine in BAT from hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A receptor is the most abundant adenosine receptor in human and murine BAT. Pharmacological blockade or genetic loss of A2A receptors in mice causes a decrease in BAT-dependent thermogenesis, whereas treatment with A2A agonists significantly increases energy expenditure. Moreover, pharmacological stimulation of A2A receptors or injection of lentiviral vectors expressing the A2A receptor into white fat induces brown-like cells-so-called beige adipocytes. Importantly, mice fed a high-fat diet and treated with an A2A agonist are leaner with improved glucose tolerance. Taken together, our results demonstrate that adenosine-A2A signalling plays an unexpected physiological role in sympathetic BAT activation and protects mice from diet-induced obesity. Those findings reveal new possibilities for developing novel obesity therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gnad, Thorsten -- Scheibler, Saskia -- von Kugelgen, Ivar -- Scheele, Camilla -- Kilic, Ana -- Glode, Anja -- Hoffmann, Linda S -- Reverte-Salisa, Laia -- Horn, Philipp -- Mutlu, Samet -- El-Tayeb, Ali -- Kranz, Mathias -- Deuther-Conrad, Winnie -- Brust, Peter -- Lidell, Martin E -- Betz, Matthias J -- Enerback, Sven -- Schrader, Jurgen -- Yegutkin, Gennady G -- Muller, Christa E -- Pfeifer, Alexander -- England -- Nature. 2014 Dec 18;516(7531):395-9. doi: 10.1038/nature13816. Epub 2014 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany. ; 1] Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany [2] Research Training Group 1873, University of Bonn, 53127 Bonn, Germany. ; The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark. ; Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, 53121 Bonn, Germany. ; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, 04318 Leipzig, Germany. ; Department of Medical and Clinical Genetics, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden. ; Department for Molecular Cardiology, University of Dusseldorf, 40225 Dusseldorf, Germany. ; Medicity Research Laboratory, University of Turku, 20520 Turku, Finland. ; 1] Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, 53121 Bonn, Germany [2] Pharma Center, University of Bonn, 53127 Bonn, Germany. ; 1] Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany [2] Pharma Center, University of Bonn, 53127 Bonn, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25317558" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/analogs & derivatives/*metabolism/pharmacology ; Adenosine A2 Receptor Agonists/pharmacology ; Adipocytes/*metabolism ; Adipose Tissue, Brown/drug effects/*metabolism ; Animals ; Cells, Cultured ; Cricetinae ; Diet ; Humans ; Male ; Mesocricetus ; Mice ; Mice, Inbred C57BL ; Phenethylamines/pharmacology ; Receptor, Adenosine A2A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-08-15
    Description: Homeodomain proteins, described 30 years ago, exert essential roles in development as regulators of target gene expression; however, the molecular mechanisms underlying transcriptional activity of homeodomain factors remain poorly understood. Here investigation of a developmentally required POU-homeodomain transcription factor, Pit1 (also known as Pou1f1), has revealed that, unexpectedly, binding of Pit1-occupied enhancers to a nuclear matrin-3-rich network/architecture is a key event in effective activation of the Pit1-regulated enhancer/coding gene transcriptional program. Pit1 association with Satb1 (ref. 8) and beta-catenin is required for this tethering event. A naturally occurring, dominant negative, point mutation in human PIT1(R271W), causing combined pituitary hormone deficiency, results in loss of Pit1 association with beta-catenin and Satb1 and therefore the matrin-3-rich network, blocking Pit1-dependent enhancer/coding target gene activation. This defective activation can be rescued by artificial tethering of the mutant R271W Pit1 protein to the matrin-3 network, bypassing the pre-requisite association with beta-catenin and Satb1 otherwise required. The matrin-3 network-tethered R271W Pit1 mutant, but not the untethered protein, restores Pit1-dependent activation of the enhancers and recruitment of co-activators, exemplified by p300, causing both enhancer RNA transcription and target gene activation. These studies have thus revealed an unanticipated homeodomain factor/beta-catenin/Satb1-dependent localization of target gene regulatory enhancer regions to a subnuclear architectural structure that serves as an underlying mechanism by which an enhancer-bound homeodomain factor effectively activates developmental gene transcriptional programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358797/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358797/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Skowronska-Krawczyk, Dorota -- Ma, Qi -- Schwartz, Michal -- Scully, Kathleen -- Li, Wenbo -- Liu, Zhijie -- Taylor, Havilah -- Tollkuhn, Jessica -- Ohgi, Kenneth A -- Notani, Dimple -- Kohwi, Yoshinori -- Kohwi-Shigematsu, Terumi -- Rosenfeld, Michael G -- CA173903/CA/NCI NIH HHS/ -- DK018477/DK/NIDDK NIH HHS/ -- DK039949/DK/NIDDK NIH HHS/ -- HL065445/HL/NHLBI NIH HHS/ -- NS034934/NS/NINDS NIH HHS/ -- P01 DK074868/DK/NIDDK NIH HHS/ -- P30 NS047101/NS/NINDS NIH HHS/ -- R01 CA173903/CA/NCI NIH HHS/ -- R01 DK018477/DK/NIDDK NIH HHS/ -- R01 HL065445/HL/NHLBI NIH HHS/ -- R01 NS034934/NS/NINDS NIH HHS/ -- R01 NS048243/NS/NINDS NIH HHS/ -- R37 CA039681/CA/NCI NIH HHS/ -- R37 DK039949/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Oct 9;514(7521):257-61. doi: 10.1038/nature13573. Epub 2014 Aug 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA. ; 1] Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA [2] The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel. ; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119036" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Enhancer Elements, Genetic/*genetics ; *Gene Expression Regulation, Developmental ; Homeodomain Proteins/genetics/*metabolism ; Humans ; Matrix Attachment Region Binding Proteins/metabolism ; Mice ; Nuclear Matrix-Associated Proteins/*metabolism ; Pituitary Gland/embryology/metabolism ; Protein Binding ; RNA-Binding Proteins/*metabolism ; Transcription Factor Pit-1/genetics/metabolism ; *Transcription, Genetic/genetics ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-04-18
    Description: Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Letourneau, Audrey -- Santoni, Federico A -- Bonilla, Ximena -- Sailani, M Reza -- Gonzalez, David -- Kind, Jop -- Chevalier, Claire -- Thurman, Robert -- Sandstrom, Richard S -- Hibaoui, Youssef -- Garieri, Marco -- Popadin, Konstantin -- Falconnet, Emilie -- Gagnebin, Maryline -- Gehrig, Corinne -- Vannier, Anne -- Guipponi, Michel -- Farinelli, Laurent -- Robyr, Daniel -- Migliavacca, Eugenia -- Borel, Christelle -- Deutsch, Samuel -- Feki, Anis -- Stamatoyannopoulos, John A -- Herault, Yann -- van Steensel, Bas -- Guigo, Roderic -- Antonarakis, Stylianos E -- U54HG007010/HG/NHGRI NIH HHS/ -- England -- Nature. 2014 Apr 17;508(7496):345-50. doi: 10.1038/nature13200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Genetic Medicine and Development, University of Geneva Medical School, University Hospitals of Geneva, 1211 Geneva, Switzerland [2]. ; Department of Genetic Medicine and Development, University of Geneva Medical School, University Hospitals of Geneva, 1211 Geneva, Switzerland. ; Center for Genomic Regulation, University Pompeu Fabra, 08003 Barcelona, Spain. ; Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands. ; AneuPath 21, Institut de Genetique Biologie Moleculaire et Cellulaire, Translational medicine and Neuroscience program, IGBMC, ICS, PHENOMIN, CNRS, INSERM, Universite de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Stem Cell Research Laboratory, Department of Obstetrics and Gynecology, Geneva University Hospitals, 1211 Geneva, Switzerland. ; FASTERIS SA, 1228 Plan-les-Ouates, Switzerland. ; 1] Department of Genetic Medicine and Development, University of Geneva Medical School, University Hospitals of Geneva, 1211 Geneva, Switzerland [2] Swiss Institute of Bioinfomatics, 1211 Geneva, Switzerland. ; DOE Joint Genome Institute, Walnut Creek, California 94598, USA. ; 1] Department of Genetic Medicine and Development, University of Geneva Medical School, University Hospitals of Geneva, 1211 Geneva, Switzerland [2] iGE3 Institute of Genetics and Genomics of Geneva, 1211 Geneva, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24740065" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Chromatin/chemistry/metabolism ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Mammalian/genetics ; DNA Replication Timing ; Down Syndrome/*genetics/pathology ; Female ; Fetus/cytology ; Fibroblasts ; Gene Expression Regulation/*genetics ; Genome/*genetics ; Histones/chemistry/metabolism ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Lysine/metabolism ; Male ; Methylation ; Mice ; Transcriptome/*genetics ; Twins, Monozygotic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-03-29
    Description: Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly 'housekeeping', whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529748/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529748/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉FANTOM Consortium and the RIKEN PMI and CLST (DGT) -- Forrest, Alistair R R -- Kawaji, Hideya -- Rehli, Michael -- Baillie, J Kenneth -- de Hoon, Michiel J L -- Haberle, Vanja -- Lassmann, Timo -- Kulakovskiy, Ivan V -- Lizio, Marina -- Itoh, Masayoshi -- Andersson, Robin -- Mungall, Christopher J -- Meehan, Terrence F -- Schmeier, Sebastian -- Bertin, Nicolas -- Jorgensen, Mette -- Dimont, Emmanuel -- Arner, Erik -- Schmidl, Christian -- Schaefer, Ulf -- Medvedeva, Yulia A -- Plessy, Charles -- Vitezic, Morana -- Severin, Jessica -- Semple, Colin A -- Ishizu, Yuri -- Young, Robert S -- Francescatto, Margherita -- Alam, Intikhab -- Albanese, Davide -- Altschuler, Gabriel M -- Arakawa, Takahiro -- Archer, John A C -- Arner, Peter -- Babina, Magda -- Rennie, Sarah -- Balwierz, Piotr J -- Beckhouse, Anthony G -- Pradhan-Bhatt, Swati -- Blake, Judith A -- Blumenthal, Antje -- Bodega, Beatrice -- Bonetti, Alessandro -- Briggs, James -- Brombacher, Frank -- Burroughs, A Maxwell -- Califano, Andrea -- Cannistraci, Carlo V -- Carbajo, Daniel -- Chen, Yun -- Chierici, Marco -- Ciani, Yari -- Clevers, Hans C -- Dalla, Emiliano -- Davis, Carrie A -- Detmar, Michael -- Diehl, Alexander D -- Dohi, Taeko -- Drablos, Finn -- Edge, Albert S B -- Edinger, Matthias -- Ekwall, Karl -- Endoh, Mitsuhiro -- Enomoto, Hideki -- Fagiolini, Michela -- Fairbairn, Lynsey -- Fang, Hai -- Farach-Carson, Mary C -- Faulkner, Geoffrey J -- Favorov, Alexander V -- Fisher, Malcolm E -- Frith, Martin C -- Fujita, Rie -- Fukuda, Shiro -- Furlanello, Cesare -- Furino, Masaaki -- Furusawa, Jun-ichi -- Geijtenbeek, Teunis B -- Gibson, Andrew P -- Gingeras, Thomas -- Goldowitz, Daniel -- Gough, Julian -- Guhl, Sven -- Guler, Reto -- Gustincich, Stefano -- Ha, Thomas J -- Hamaguchi, Masahide -- Hara, Mitsuko -- Harbers, Matthias -- Harshbarger, Jayson -- Hasegawa, Akira -- Hasegawa, Yuki -- Hashimoto, Takehiro -- Herlyn, Meenhard -- Hitchens, Kelly J -- Ho Sui, Shannan J -- Hofmann, Oliver M -- Hoof, Ilka -- Hori, Furni -- Huminiecki, Lukasz -- Iida, Kei -- Ikawa, Tomokatsu -- Jankovic, Boris R -- Jia, Hui -- Joshi, Anagha -- Jurman, Giuseppe -- Kaczkowski, Bogumil -- Kai, Chieko -- Kaida, Kaoru -- Kaiho, Ai -- Kajiyama, Kazuhiro -- Kanamori-Katayama, Mutsumi -- Kasianov, Artem S -- Kasukawa, Takeya -- Katayama, Shintaro -- Kato, Sachi -- Kawaguchi, Shuji -- Kawamoto, Hiroshi -- Kawamura, Yuki I -- Kawashima, Tsugumi -- Kempfle, Judith S -- Kenna, Tony J -- Kere, Juha -- Khachigian, Levon M -- Kitamura, Toshio -- Klinken, S Peter -- Knox, Alan J -- Kojima, Miki -- Kojima, Soichi -- Kondo, Naoto -- Koseki, Haruhiko -- Koyasu, Shigeo -- Krampitz, Sarah -- Kubosaki, Atsutaka -- Kwon, Andrew T -- Laros, Jeroen F J -- Lee, Weonju -- Lennartsson, Andreas -- Li, Kang -- Lilje, Berit -- Lipovich, Leonard -- Mackay-Sim, Alan -- Manabe, Ri-ichiroh -- Mar, Jessica C -- Marchand, Benoit -- Mathelier, Anthony -- Mejhert, Niklas -- Meynert, Alison -- Mizuno, Yosuke -- de Lima Morais, David A -- Morikawa, Hiromasa -- Morimoto, Mitsuru -- Moro, Kazuyo -- Motakis, Efthymios -- Motohashi, Hozumi -- Mummery, Christine L -- Murata, Mitsuyoshi -- Nagao-Sato, Sayaka -- Nakachi, Yutaka -- Nakahara, Fumio -- Nakamura, Toshiyuki -- Nakamura, Yukio -- Nakazato, Kenichi -- van Nimwegen, Erik -- Ninomiya, Noriko -- Nishiyori, Hiromi -- Noma, Shohei -- Noazaki, Tadasuke -- Ogishima, Soichi -- Ohkura, Naganari -- Ohimiya, Hiroko -- Ohno, Hiroshi -- Ohshima, Mitsuhiro -- Okada-Hatakeyama, Mariko -- Okazaki, Yasushi -- Orlando, Valerio -- Ovchinnikov, Dmitry A -- Pain, Arnab -- Passier, Robert -- Patrikakis, Margaret -- Persson, Helena -- Piazza, Silvano -- Prendergast, James G D -- Rackham, Owen J L -- Ramilowski, Jordan A -- Rashid, Mamoon -- Ravasi, Timothy -- Rizzu, Patrizia -- Roncador, Marco -- Roy, Sugata -- Rye, Morten B -- Saijyo, Eri -- Sajantila, Antti -- Saka, Akiko -- Sakaguchi, Shimon -- Sakai, Mizuho -- Sato, Hiroki -- Savvi, Suzana -- Saxena, Alka -- Schneider, Claudio -- Schultes, Erik A -- Schulze-Tanzil, Gundula G -- Schwegmann, Anita -- Sengstag, Thierry -- Sheng, Guojun -- Shimoji, Hisashi -- Shimoni, Yishai -- Shin, Jay W -- Simon, Christophe -- Sugiyama, Daisuke -- Sugiyama, Takaai -- Suzuki, Masanori -- Suzuki, Naoko -- Swoboda, Rolf K -- 't Hoen, Peter A C -- Tagami, Michihira -- Takahashi, Naoko -- Takai, Jun -- Tanaka, Hiroshi -- Tatsukawa, Hideki -- Tatum, Zuotian -- Thompson, Mark -- Toyodo, Hiroo -- Toyoda, Tetsuro -- Valen, Elvind -- van de Wetering, Marc -- van den Berg, Linda M -- Verado, Roberto -- Vijayan, Dipti -- Vorontsov, Ilya E -- Wasserman, Wyeth W -- Watanabe, Shoko -- Wells, Christine A -- Winteringham, Louise N -- Wolvetang, Ernst -- Wood, Emily J -- Yamaguchi, Yoko -- Yamamoto, Masayuki -- Yoneda, Misako -- Yonekura, Yohei -- Yoshida, Shigehiro -- Zabierowski, Susan E -- Zhang, Peter G -- Zhao, Xiaobei -- Zucchelli, Silvia -- Summers, Kim M -- Suzuki, Harukazu -- Daub, Carsten O -- Kawai, Jun -- Heutink, Peter -- Hide, Winston -- Freeman, Tom C -- Lenhard, Boris -- Bajic, Vladimir B -- Taylor, Martin S -- Makeev, Vsevolod J -- Sandelin, Albin -- Hume, David A -- Carninci, Piero -- Hayashizaki, Yoshihide -- BB/F003722/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G022771/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I001107/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- MC_PC_U127597124/Medical Research Council/United Kingdom -- MC_UP_1102/1/Medical Research Council/United Kingdom -- R01 DE022969/DE/NIDCR NIH HHS/ -- R01 GM084875/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Mar 27;507(7493):462-70. doi: 10.1038/nature13182.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24670764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Atlases as Topic ; Cell Line ; Cells, Cultured ; Cluster Analysis ; Conserved Sequence/genetics ; Gene Expression Regulation/genetics ; Gene Regulatory Networks/genetics ; Genes, Essential/genetics ; Genome/genetics ; Humans ; Mice ; *Molecular Sequence Annotation ; Open Reading Frames/genetics ; Organ Specificity ; Promoter Regions, Genetic/*genetics ; RNA, Messenger/analysis/genetics ; Transcription Factors/metabolism ; Transcription Initiation Site ; Transcription, Genetic/genetics ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-05-30
    Description: A unique property of many adult stem cells is their ability to exist in a non-cycling, quiescent state. Although quiescence serves an essential role in preserving stem cell function until the stem cell is needed in tissue homeostasis or repair, defects in quiescence can lead to an impairment in tissue function. The extent to which stem cells can regulate quiescence is unknown. Here we show that the stem cell quiescent state is composed of two distinct functional phases, G0 and an 'alert' phase we term G(Alert). Stem cells actively and reversibly transition between these phases in response to injury-induced systemic signals. Using genetic mouse models specific to muscle stem cells (or satellite cells), we show that mTORC1 activity is necessary and sufficient for the transition of satellite cells from G0 into G(Alert) and that signalling through the HGF receptor cMet is also necessary. We also identify G0-to-G(Alert) transitions in several populations of quiescent stem cells. Quiescent stem cells that transition into G(Alert) possess enhanced tissue regenerative function. We propose that the transition of quiescent stem cells into G(Alert) functions as an 'alerting' mechanism, an adaptive response that positions stem cells to respond rapidly under conditions of injury and stress, priming them for cell cycle entry.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065227/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065227/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rodgers, Joseph T -- King, Katherine Y -- Brett, Jamie O -- Cromie, Melinda J -- Charville, Gregory W -- Maguire, Katie K -- Brunson, Christopher -- Mastey, Namrata -- Liu, Ling -- Tsai, Chang-Ru -- Goodell, Margaret A -- Rando, Thomas A -- F30 AG035521/AG/NIA NIH HHS/ -- I01 BX002324/BX/BLRD VA/ -- K08 HL098898/HL/NHLBI NIH HHS/ -- P01 AG036695/AG/NIA NIH HHS/ -- R01 AG023806/AG/NIA NIH HHS/ -- R01 AG047820/AG/NIA NIH HHS/ -- R01 AG23806/AG/NIA NIH HHS/ -- R01 AR062185/AR/NIAMS NIH HHS/ -- R01 DK092883/DK/NIDDK NIH HHS/ -- R37 AG023806/AG/NIA NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):393-6. doi: 10.1038/nature13255. Epub 2014 May 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA. ; Department of Pediatrics and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA [2] Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA [3] Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24870234" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/genetics/*physiology ; Cells, Cultured ; G0 Phase/genetics/*physiology ; Gene Expression Profiling ; Gene Expression Regulation ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/genetics/*metabolism ; Muscle, Skeletal/*cytology/injuries/metabolism ; Regeneration/physiology ; Satellite Cells, Skeletal Muscle/*cytology/metabolism ; TOR Serine-Threonine Kinases/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-08-27
    Description: beta-Thalassaemia major (beta-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of beta-globin chains of haemoglobin, leading to the accumulation of free alpha-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing beta-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human beta-TM erythroblasts, HSP70 interacts directly with free alpha-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of beta-TM erythroblasts, which may provide a rationale for new targeted therapies of beta-TM.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arlet, Jean-Benoit -- Ribeil, Jean-Antoine -- Guillem, Flavia -- Negre, Olivier -- Hazoume, Adonis -- Marcion, Guillaume -- Beuzard, Yves -- Dussiot, Michael -- Moura, Ivan Cruz -- Demarest, Samuel -- de Beauchene, Isaure Chauvot -- Belaid-Choucair, Zakia -- Sevin, Margaux -- Maciel, Thiago Trovati -- Auclair, Christian -- Leboulch, Philippe -- Chretien, Stany -- Tchertanov, Luba -- Baudin-Creuza, Veronique -- Seigneuric, Renaud -- Fontenay, Michaela -- Garrido, Carmen -- Hermine, Olivier -- Courtois, Genevieve -- England -- Nature. 2014 Oct 9;514(7521):242-6. doi: 10.1038/nature13614. Epub 2014 Aug 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Service de Medecine Interne, Faculte de medecine Paris Descartes, Sorbonne Paris-Cite et Assistance publique - Hopitaux de Paris, Hopital Europeen Georges Pompidou, 15 rue Leblanc 75908 Paris, France [3] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [4] Laboratory of Excellence GR-Ex, 75015 Paris, France [5]. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Departement de Biotherapie, Faculte de medecine Paris Descartes, Sorbonne Paris-Cite et Assistance publique - Hopitaux de Paris, Hopital Necker, 149 rue de Sevres 75015 Paris, France [5]. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France. ; Commissariat a l'energie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France. ; 1] INSERM, unite mixte de recherche 866, Equipe labellisee Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoproteines et sante (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unite mixte de recherche 699, Hopital Bichat, 46 rue Henri Huchard, 75018 Paris, France. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unite mixte de recherche 699, Hopital Bichat, 46 rue Henri Huchard, 75018 Paris, France [5] Faculte de medecine and Universite Denis Diderot Paris VII, 5 Rue Thomas Mann, 75013 Paris, France. ; Centre national de la recherche scientifique (CNRS), unite mixte de recherche 8113, Ecole Normale Superieure de Cachan, 61 avenue du president Wilson, 94230 Cachan, France. ; 1] Centre national de la recherche scientifique (CNRS), unite mixte de recherche 8113, Ecole Normale Superieure de Cachan, 61 avenue du president Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Medicament et l'Innovation Therapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clement 92296 Chatenay-Malabry, France. ; 1] Commissariat a l'energie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France [2] Women's Hospital and Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA. ; INSERM, unite mixte de recherche 779, Universite Paris XI, Le Kremlin-Bicetre, France. ; University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France. ; 1] Laboratory of Excellence GR-Ex, 75015 Paris, France [2] Institut Cochin, INSERM, unite mixte de recherche 1016, centre national de la recherche scientifique (CNRS), unite mixte de recherche 8104, Universite Paris Descartes, and Assistance publique - Hopitaux de Paris, Hopitaux Universitaires Paris Centre, Hopital Cochin, Service d'hematologie biologique, 27 rue du Faubourg Saitn-Jacques, 75014 Paris, France. ; 1] INSERM, unite mixte de recherche 866, Equipe labellisee Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoproteines et sante (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France [3] Centre anticancereux George Francois Leclerc, 1 rue professeur Marion, 21079 Dijon, France [4]. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Service d'hematologie, Faculte de medecine Paris Descartes, Sorbonne Paris-Cite et Assistance publique - Hopitaux de Paris Hopital Necker, 149 rue de Sevres, 75015 Paris, France [5]. ; 1] Laboratoire INSERM, unite mixte de recherche 1163, centre national de la recherche scientifique (CNRS) equipe de recherche labellisee 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cite University, Imagine Institute, Assistance publique - Hopitaux de Paris, Hopital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25156257" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; Bone Marrow/metabolism ; Caspase 3/metabolism ; Cell Nucleus/metabolism ; Cell Survival/genetics ; Cells, Cultured ; Cytoplasm/metabolism ; Enzyme Activation ; Erythroblasts/cytology/*metabolism/pathology ; *Erythropoiesis/genetics ; GATA1 Transcription Factor/genetics/metabolism ; Gene Expression Regulation ; HSP70 Heat-Shock Proteins/genetics/*metabolism ; Humans ; Kinetics ; Molecular Targeted Therapy ; Protein Binding ; Protein Refolding ; alpha-Globins/*metabolism ; beta-Thalassemia/*blood/*metabolism/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-11-20
    Description: Obesity-linked insulin resistance is a major precursor to the development of type 2 diabetes. Previous work has shown that phosphorylation of PPARgamma (peroxisome proliferator-activated receptor gamma) at serine 273 by cyclin-dependent kinase 5 (Cdk5) stimulates diabetogenic gene expression in adipose tissues. Inhibition of this modification is a key therapeutic mechanism for anti-diabetic drugs that bind PPARgamma, such as the thiazolidinediones and PPARgamma partial agonists or non-agonists. For a better understanding of the importance of this obesity-linked PPARgamma phosphorylation, we created mice that ablated Cdk5 specifically in adipose tissues. These mice have both a paradoxical increase in PPARgamma phosphorylation at serine 273 and worsened insulin resistance. Unbiased proteomic studies show that extracellular signal-regulated kinase (ERK) kinases are activated in these knockout animals. Here we show that ERK directly phosphorylates serine 273 of PPARgamma in a robust manner and that Cdk5 suppresses ERKs through direct action on a novel site in MAP kinase/ERK kinase (MEK). Importantly, pharmacological inhibition of MEK and ERK markedly improves insulin resistance in both obese wild-type and ob/ob mice, and also completely reverses the deleterious effects of the Cdk5 ablation. These data show that an ERK/Cdk5 axis controls PPARgamma function and suggest that MEK/ERK inhibitors may hold promise for the treatment of type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297557/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banks, Alexander S -- McAllister, Fiona E -- Camporez, Joao Paulo G -- Zushin, Peter-James H -- Jurczak, Michael J -- Laznik-Bogoslavski, Dina -- Shulman, Gerald I -- Gygi, Steven P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- DK93638/DK/NIDDK NIH HHS/ -- K01 DK093638/DK/NIDDK NIH HHS/ -- R01 DK031405/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):391-5. doi: 10.1038/nature13887. Epub 2014 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Yale Mouse Metabolic Phenotyping Center and Departments of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409143" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/enzymology/metabolism ; Adipose Tissue/cytology/enzymology/metabolism ; Animals ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase 5/deficiency/*metabolism ; Diabetes Mellitus/*metabolism ; Diet, High-Fat ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; Insulin Resistance ; MAP Kinase Kinase 2/antagonists & inhibitors/metabolism ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; PPAR gamma/chemistry/*metabolism ; Phosphorylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2014-07-22
    Description: The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behjati, Sam -- Huch, Meritxell -- van Boxtel, Ruben -- Karthaus, Wouter -- Wedge, David C -- Tamuri, Asif U -- Martincorena, Inigo -- Petljak, Mia -- Alexandrov, Ludmil B -- Gundem, Gunes -- Tarpey, Patrick S -- Roerink, Sophie -- Blokker, Joyce -- Maddison, Mark -- Mudie, Laura -- Robinson, Ben -- Nik-Zainal, Serena -- Campbell, Peter -- Goldman, Nick -- van de Wetering, Marc -- Cuppen, Edwin -- Clevers, Hans -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 104151/Wellcome Trust/United Kingdom -- WT100183MA/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Sep 18;513(7518):422-5. doi: 10.1038/nature13448. Epub 2014 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK [2] Department of Paediatrics, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands [2] [3] Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands [2]. ; Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands. ; 1] Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK [2] East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/genetics ; Cell Division ; Cell Lineage/*genetics ; Cells, Cultured ; Clone Cells/*cytology/*metabolism ; Embryo, Mammalian/cytology ; Genome/*genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mutagenesis/*genetics ; Mutation/*genetics ; Mutation Rate ; Organoids/cytology/metabolism ; Phylogeny ; Sequence Analysis, DNA ; Tail/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-05-23
    Description: Metformin is considered to be one of the most effective therapeutics for treating type 2 diabetes because it specifically reduces hepatic gluconeogenesis without increasing insulin secretion, inducing weight gain or posing a risk of hypoglycaemia. For over half a century, this agent has been prescribed to patients with type 2 diabetes worldwide, yet the underlying mechanism by which metformin inhibits hepatic gluconeogenesis remains unknown. Here we show that metformin non-competitively inhibits the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase, resulting in an altered hepatocellular redox state, reduced conversion of lactate and glycerol to glucose, and decreased hepatic gluconeogenesis. Acute and chronic low-dose metformin treatment effectively reduced endogenous glucose production, while increasing cytosolic redox and decreasing mitochondrial redox states. Antisense oligonucleotide knockdown of hepatic mitochondrial glycerophosphate dehydrogenase in rats resulted in a phenotype akin to chronic metformin treatment, and abrogated metformin-mediated increases in cytosolic redox state, decreases in plasma glucose concentrations, and inhibition of endogenous glucose production. These findings were replicated in whole-body mitochondrial glycerophosphate dehydrogenase knockout mice. These results have significant implications for understanding the mechanism of metformin's blood glucose lowering effects and provide a new therapeutic target for type 2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074244/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Madiraju, Anila K -- Erion, Derek M -- Rahimi, Yasmeen -- Zhang, Xian-Man -- Braddock, Demetrios T -- Albright, Ronald A -- Prigaro, Brett J -- Wood, John L -- Bhanot, Sanjay -- MacDonald, Michael J -- Jurczak, Michael J -- Camporez, Joao-Paulo -- Lee, Hui-Young -- Cline, Gary W -- Samuel, Varman T -- Kibbey, Richard G -- Shulman, Gerald I -- K01 DK-099402/DK/NIDDK NIH HHS/ -- P30 DK-034989/DK/NIDDK NIH HHS/ -- P30 DK-45735/DK/NIDDK NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- R01 DK-092606/DK/NIDDK NIH HHS/ -- R01 DK-28348/DK/NIDDK NIH HHS/ -- R01 DK-40936/DK/NIDDK NIH HHS/ -- R01 DK028348/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK092606/DK/NIDDK NIH HHS/ -- R24 DK-085638/DK/NIDDK NIH HHS/ -- R24 DK085638/DK/NIDDK NIH HHS/ -- U24 DK-059635/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jun 26;510(7506):542-6. doi: 10.1038/nature13270. Epub 2014 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. ; Cancer Prevention Research Institute of Texas Scholar, Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, USA. ; Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA. ; University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA, 53706. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA [2] Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA [3] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA [4] Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, DK-2200.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24847880" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/analysis/biosynthesis ; Cells, Cultured ; Diabetes Mellitus, Type 2/drug therapy/enzymology/metabolism ; Gluconeogenesis/*drug effects ; Glycerolphosphate Dehydrogenase/*antagonists & ; inhibitors/deficiency/genetics/metabolism ; Humans ; Hypoglycemic Agents/pharmacology ; Insulin/secretion ; Lactic Acid/metabolism ; Liver/drug effects/metabolism ; Male ; Metformin/*pharmacology ; Mice, Knockout ; Mitochondria/*enzymology ; Oxidation-Reduction/drug effects ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-03-01
    Description: Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Je Hyuk -- Daugharthy, Evan R -- Scheiman, Jonathan -- Kalhor, Reza -- Yang, Joyce L -- Ferrante, Thomas C -- Terry, Richard -- Jeanty, Sauveur S F -- Li, Chao -- Amamoto, Ryoji -- Peters, Derek T -- Turczyk, Brian M -- Marblestone, Adam H -- Inverso, Samuel A -- Bernard, Amy -- Mali, Prashant -- Rios, Xavier -- Aach, John -- Church, George M -- GM080177/GM/NIGMS NIH HHS/ -- MH098977/MH/NIMH NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2HL102815/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 MH098977/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cells, Cultured ; DNA, Complementary ; Fluorescence ; Gene Expression Profiling/*methods ; Humans ; Induced Pluripotent Stem Cells ; RNA, Messenger/genetics/metabolism ; Sequence Analysis, RNA/*methods ; Single-Cell Analysis ; Transcription Initiation Site ; *Transcriptome ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-01-25
    Description: The physical manifestation of learning and memory formation in the brain can be expressed by strengthening or weakening of synaptic connections through morphological changes. Local actin remodeling underlies some forms of plasticity and may be facilitated by local beta-actin synthesis, but dynamic information is lacking. In this work, we use single-molecule in situ hybridization to demonstrate that dendritic beta-actin messenger RNA (mRNA) and ribosomes are in a masked, neuron-specific form. Chemically induced long-term potentiation prompts transient mRNA unmasking, which depends on factors active during synaptic activity. Ribosomes and single beta-actin mRNA motility increase after stimulation, indicative of release from complexes. Hence, the single-molecule assays we developed allow for the quantification of activity-induced unmasking and availability for active translation. Further, our work demonstrates that beta-actin mRNA and ribosomes are in a masked state that is alleviated by stimulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121734/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4121734/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buxbaum, Adina R -- Wu, Bin -- Singer, Robert H -- GM84364/GM/NIGMS NIH HHS/ -- NS083085-19/NS/NINDS NIH HHS/ -- R01 NS083085/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):419-22. doi: 10.1126/science.1242939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458642" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*biosynthesis/genetics ; Animals ; Cells, Cultured ; Dendrites/metabolism ; In Situ Hybridization, Fluorescence/methods ; Long-Term Potentiation/drug effects/*physiology ; Memory/physiology ; Mice ; Mice, Transgenic ; Neuronal Plasticity/drug effects/physiology ; Neurons/*metabolism ; *Protein Biosynthesis ; RNA, Messenger/analysis/*biosynthesis ; RNA, Ribosomal/metabolism ; Ribosomes/*metabolism ; Synapses/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-08-12
    Description: Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Delta7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naryshkin, Nikolai A -- Weetall, Marla -- Dakka, Amal -- Narasimhan, Jana -- Zhao, Xin -- Feng, Zhihua -- Ling, Karen K Y -- Karp, Gary M -- Qi, Hongyan -- Woll, Matthew G -- Chen, Guangming -- Zhang, Nanjing -- Gabbeta, Vijayalakshmi -- Vazirani, Priya -- Bhattacharyya, Anuradha -- Furia, Bansri -- Risher, Nicole -- Sheedy, Josephine -- Kong, Ronald -- Ma, Jiyuan -- Turpoff, Anthony -- Lee, Chang-Sun -- Zhang, Xiaoyan -- Moon, Young-Choon -- Trifillis, Panayiota -- Welch, Ellen M -- Colacino, Joseph M -- Babiak, John -- Almstead, Neil G -- Peltz, Stuart W -- Eng, Loren A -- Chen, Karen S -- Mull, Jesse L -- Lynes, Maureen S -- Rubin, Lee L -- Fontoura, Paulo -- Santarelli, Luca -- Haehnke, Daniel -- McCarthy, Kathleen D -- Schmucki, Roland -- Ebeling, Martin -- Sivaramakrishnan, Manaswini -- Ko, Chien-Ping -- Paushkin, Sergey V -- Ratni, Hasane -- Gerlach, Irene -- Ghosh, Anirvan -- Metzger, Friedrich -- New York, N.Y. -- Science. 2014 Aug 8;345(6197):688-93. doi: 10.1126/science.1250127.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA. ; Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. ; PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ 07080, USA. friedrich.metzger@roche.com speltz@ptcbio.com. ; SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA. ; Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA. ; Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland. ; Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland. friedrich.metzger@roche.com speltz@ptcbio.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25104390" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Alternative Splicing/*drug effects ; Animals ; Cells, Cultured ; Coumarins/*administration & dosage/chemistry ; Disease Models, Animal ; Drug Evaluation, Preclinical ; Humans ; Isocoumarins/*administration & dosage/chemistry ; Longevity/*drug effects ; Mice ; Muscular Atrophy, Spinal/*drug therapy/genetics/metabolism ; Pyrimidinones/*administration & dosage/chemistry ; RNA, Messenger/genetics ; Sequence Deletion ; Small Molecule Libraries/*administration & dosage/chemistry ; Survival of Motor Neuron 2 Protein/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-04-05
    Description: Adrenal Cushing's syndrome is caused by excess production of glucocorticoid from adrenocortical tumors and hyperplasias, which leads to metabolic disorders. We performed whole-exome sequencing of 49 blood-tumor pairs and RNA sequencing of 44 tumors from cortisol-producing adrenocortical adenomas (ACAs), adrenocorticotropic hormone-independent macronodular adrenocortical hyperplasias (AIMAHs), and adrenocortical oncocytomas (ADOs). We identified a hotspot in the PRKACA gene with a L205R mutation in 69.2% (27 out of 39) of ACAs and validated in 65.5% of a total of 87 ACAs. Our data revealed that the activating L205R mutation, which locates in the P+1 loop of the protein kinase A (PKA) catalytic subunit, promoted PKA substrate phosphorylation and target gene expression. Moreover, we discovered the recurrently mutated gene DOT1L in AIMAHs and CLASP2 in ADOs. Collectively, these data highlight potentially functional mutated genes in adrenal Cushing's syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cao, Yanan -- He, Minghui -- Gao, Zhibo -- Peng, Ying -- Li, Yanli -- Li, Lin -- Zhou, Weiwei -- Li, Xiangchun -- Zhong, Xu -- Lei, Yiming -- Su, Tingwei -- Wang, Hang -- Jiang, Yiran -- Yang, Lin -- Wei, Wei -- Yang, Xu -- Jiang, Xiuli -- Liu, Li -- He, Juan -- Ye, Junna -- Wei, Qing -- Li, Yingrui -- Wang, Weiqing -- Wang, Jun -- Ning, Guang -- New York, N.Y. -- Science. 2014 May 23;344(6186):913-7. doi: 10.1126/science.1249480. Epub 2014 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. ; BGI-Shanghai, BGI-Shenzhen, Shenzhen, China. ; Department of Pathology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. ; Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. guangning@medmail.com.cn wangj@genomics.org.cn wqingw@hotmail.com. ; BGI-Shanghai, BGI-Shenzhen, Shenzhen, China. Department of Biology, University of Copenhagen, Copenhagen, Denmark. King Abdulaziz University, Jeddah, Saudi Arabia. Macau University of Science and Technology, Macau, China. Department of Medicine, University of Hong Kong, Hong Kong. guangning@medmail.com.cn wangj@genomics.org.cn wqingw@hotmail.com. ; Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China. Laboratory of Endocrinology and Metabolism, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), and Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China. guangning@medmail.com.cn wangj@genomics.org.cn wqingw@hotmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700472" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics/*metabolism ; Adrenocortical Adenoma/*genetics/*metabolism ; Amino Acid Substitution ; Arginine/genetics ; Catalytic Domain/genetics ; Cells, Cultured ; Cushing Syndrome/*genetics ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/chemistry/*genetics ; Glucocorticoids/metabolism ; Humans ; Hydrocortisone/*metabolism ; Leucine/genetics ; Methyltransferases/genetics ; Microtubule-Associated Proteins/genetics ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-08-02
    Description: Many RNA regulatory proteins controlling pre-messenger RNA splicing contain serine:arginine (SR) repeats. Here, we found that these SR domains bound hydrogel droplets composed of fibrous polymers of the low-complexity domain of heterogeneous ribonucleoprotein A2 (hnRNPA2). Hydrogel binding was reversed upon phosphorylation of the SR domain by CDC2-like kinases 1 and 2 (CLK1/2). Mutated variants of the SR domains changing serine to glycine (SR-to-GR variants) also bound to hnRNPA2 hydrogels but were not affected by CLK1/2. When expressed in mammalian cells, these variants bound nucleoli. The translation products of the sense and antisense transcripts of the expansion repeats associated with the C9orf72 gene altered in neurodegenerative disease encode GRn and PRn repeat polypeptides. Both peptides bound to hnRNPA2 hydrogels independent of CLK1/2 activity. When applied to cultured cells, both peptides entered cells, migrated to the nucleus, bound nucleoli, and poisoned RNA biogenesis, which caused cell death.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kwon, Ilmin -- Xiang, Siheng -- Kato, Masato -- Wu, Leeju -- Theodoropoulos, Pano -- Wang, Tao -- Kim, Jiwoong -- Yun, Jonghyun -- Xie, Yang -- McKnight, Steven L -- U01 GM107623/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 5;345(6201):1139-45. doi: 10.1126/science.1254917. Epub 2014 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Quantitative Biomedical Research Center, Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. ; Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9152, USA. steven.mcknight@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25081482" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amyotrophic Lateral Sclerosis/genetics/*metabolism/pathology ; Astrocytes/*metabolism/pathology ; Cell Death ; Cell Nucleolus/*metabolism ; Cells, Cultured ; Dipeptides/genetics/*metabolism/pharmacology ; Frontotemporal Dementia/genetics/*metabolism/pathology ; Glutamate Plasma Membrane Transport Proteins/genetics ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/*metabolism ; Humans ; Hydrogel ; Phosphorylation ; Protein Biosynthesis ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Protein-Tyrosine Kinases/metabolism ; Proteins/*genetics ; RNA, Antisense/antagonists & inhibitors/biosynthesis ; RNA, Messenger/antagonists & inhibitors/biosynthesis ; RNA, Ribosomal/antagonists & inhibitors/biosynthesis ; Repetitive Sequences, Amino Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-01-25
    Description: The transcription and transport of messenger RNA (mRNA) are critical steps in regulating the spatial and temporal components of gene expression, but it has not been possible to observe the dynamics of endogenous mRNA in primary mammalian tissues. We have developed a transgenic mouse in which all beta-actin mRNA is fluorescently labeled. We found that beta-actin mRNA in primary fibroblasts localizes predominantly by diffusion and trapping as single mRNAs. In cultured neurons and acute brain slices, we found that multiple beta-actin mRNAs can assemble together, travel by active transport, and disassemble upon depolarization by potassium chloride. Imaging of brain slices revealed immediate early induction of beta-actin transcription after depolarization. Studying endogenous mRNA in live mouse tissues provides insight into its dynamic regulation within the context of the cellular and tissue microenvironment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111226/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111226/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Hye Yoon -- Lim, Hyungsik -- Yoon, Young J -- Follenzi, Antonia -- Nwokafor, Chiso -- Lopez-Jones, Melissa -- Meng, Xiuhua -- Singer, Robert H -- EB13571/EB/NIBIB NIH HHS/ -- F32-GM87122/GM/NIGMS NIH HHS/ -- GM84364/GM/NIGMS NIH HHS/ -- NS083085-19/NS/NINDS NIH HHS/ -- R01 EB013571/EB/NIBIB NIH HHS/ -- R01 NS083085/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):422-4. doi: 10.1126/science.1239200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458643" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*biosynthesis/genetics ; Animals ; Brain/cytology/metabolism ; Cells, Cultured ; Fibroblasts/metabolism ; Fluorescent Dyes/chemistry ; Mice ; Mice, Transgenic ; Neuroimaging/*methods ; Neurons/metabolism ; Protein Biosynthesis ; RNA, Messenger/analysis/biosynthesis/*metabolism ; Staining and Labeling
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-11-29
    Description: Norovirus gastroenteritis is a major public health burden worldwide. Although fecal shedding is important for transmission of enteric viruses, little is known about the immune factors that restrict persistent enteric infection. We report here that although the cytokines interferon-alpha (IFN-alpha) and IFN-beta prevented the systemic spread of murine norovirus (MNoV), only IFN-lambda controlled persistent enteric infection. Infection-dependent induction of IFN-lambda was governed by the MNoV capsid protein and correlated with diminished enteric persistence. Treatment of established infection with IFN-lambda cured mice in a manner requiring nonhematopoietic cell expression of the IFN-lambda receptor, Ifnlr1, and independent of adaptive immunity. These results suggest the therapeutic potential of IFN-lambda for curing virus infections in the gastrointestinal tract.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nice, Timothy J -- Baldridge, Megan T -- McCune, Broc T -- Norman, Jason M -- Lazear, Helen M -- Artyomov, Maxim -- Diamond, Michael S -- Virgin, Herbert W -- 5T32A100716334/PHS HHS/ -- 5T32AI007163/AI/NIAID NIH HHS/ -- 5T32CA009547/CA/NCI NIH HHS/ -- F31 CA177194/CA/NCI NIH HHS/ -- F31CA177194-01/CA/NCI NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- T32 AI007163/AI/NIAID NIH HHS/ -- T32 CA009547/CA/NCI NIH HHS/ -- U19 AI083019/AI/NIAID NIH HHS/ -- U19 AI106772/AI/NIAID NIH HHS/ -- U19 AI109725/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 16;347(6219):269-73. doi: 10.1126/science.1258100. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25431489" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity ; Animals ; Caliciviridae Infections/*drug therapy/*immunology/virology ; Capsid Proteins/immunology/metabolism ; Cells, Cultured ; Cytokines/biosynthesis/*immunology/*therapeutic use ; Feces/virology ; Gastroenteritis/drug therapy/*immunology/virology ; Immunity, Innate ; Interferon-alpha/biosynthesis/immunology ; Interferon-beta/biosynthesis/immunology ; Mice ; Mice, Inbred C57BL ; Norovirus/*immunology/*physiology ; Virus Replication ; Virus Shedding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-12-06
    Description: Distinct types of CD4(+) T cells protect the host against different classes of pathogens. However, it is unclear whether a given pathogen induces a single type of polarized T cell. By combining antigenic stimulation and T cell receptor deep sequencing, we found that human pathogen- and vaccine-specific T helper 1 (T(H)1), T(H)2, and T(H)17 memory cells have different frequencies but comparable diversity and comprise not only clones polarized toward a single fate, but also clones whose progeny have acquired multiple fates. Single naive T cells primed by a pathogen in vitro could also give rise to multiple fates. Our results unravel an unexpected degree of interclonal and intraclonal functional heterogeneity of the human T cell response and suggest that polarized responses result from preferential expansion rather than priming.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becattini, Simone -- Latorre, Daniela -- Mele, Federico -- Foglierini, Mathilde -- De Gregorio, Corinne -- Cassotta, Antonino -- Fernandez, Blanca -- Kelderman, Sander -- Schumacher, Ton N -- Corti, Davide -- Lanzavecchia, Antonio -- Sallusto, Federica -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):400-6. doi: 10.1126/science.1260668. Epub 2014 Dec 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. Institute of Microbiology, ETH Zurich, Zurich, Switzerland. ; Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. ; Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands. ; Institute for Research in Biomedicine, Bellinzona, Universita della Svizzera Italiana, Lugano, Switzerland. federica.sallusto@irb.usi.ch.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477212" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; CD4-Positive T-Lymphocytes/*immunology ; Candida albicans/*immunology ; Cells, Cultured ; Clone Cells ; High-Throughput Nucleotide Sequencing ; Host-Pathogen Interactions/*immunology ; Humans ; *Immunologic Memory ; Lymphocyte Activation ; Molecular Sequence Data ; Mycobacterium tuberculosis/*immunology ; Receptors, Antigen, T-Cell/genetics ; T-Lymphocyte Subsets/*immunology ; Th1 Cells/immunology ; Th17 Cells/immunology ; Th2 Cells/immunology ; Vaccines/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-12-04
    Description: Angelman syndrome is a single-gene disorder characterized by intellectual disability, developmental delay, behavioural uniqueness, speech impairment, seizures and ataxia. It is caused by maternal deficiency of the imprinted gene UBE3A, encoding an E3 ubiquitin ligase. All patients carry at least one copy of paternal UBE3A, which is intact but silenced by a nuclear-localized long non-coding RNA, UBE3A antisense transcript (UBE3A-ATS). Murine Ube3a-ATS reduction by either transcription termination or topoisomerase I inhibition has been shown to increase paternal Ube3a expression. Despite a clear understanding of the disease-causing event in Angelman syndrome and the potential to harness the intact paternal allele to correct the disease, no gene-specific treatment exists for patients. Here we developed a potential therapeutic intervention for Angelman syndrome by reducing Ube3a-ATS with antisense oligonucleotides (ASOs). ASO treatment achieved specific reduction of Ube3a-ATS and sustained unsilencing of paternal Ube3a in neurons in vitro and in vivo. Partial restoration of UBE3A protein in an Angelman syndrome mouse model ameliorated some cognitive deficits associated with the disease. Although additional studies of phenotypic correction are needed, we have developed a sequence-specific and clinically feasible method to activate expression of the paternal Ube3a allele.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meng, Linyan -- Ward, Amanda J -- Chun, Seung -- Bennett, C Frank -- Beaudet, Arthur L -- Rigo, Frank -- P30HD024064/HD/NICHD NIH HHS/ -- R01 HD037283/HD/NICHD NIH HHS/ -- U54 HD083092/HD/NICHD NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):409-12. doi: 10.1038/nature13975. Epub 2014 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, and Texas Children's Hospital, Houston, Texas 77030, USA. ; Department of Core Antisense Research, Isis Pharmaceuticals, Carlsbad, California 92010, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25470045" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Angelman Syndrome/complications/*genetics/*therapy ; Animals ; Brain/drug effects/metabolism ; Cells, Cultured ; Disease Models, Animal ; Fathers ; Female ; Gene Silencing/drug effects ; Genomic Imprinting/genetics ; Male ; Memory Disorders/complications/genetics/therapy ; Mice ; Mice, Inbred C57BL ; Neurons/drug effects/metabolism ; Obesity/complications/genetics/therapy ; Oligonucleotides, Antisense/*genetics/pharmacology/*therapeutic use ; Phenotype ; RNA, Antisense/antagonists & inhibitors/deficiency/genetics ; RNA, Long Noncoding/*antagonists & inhibitors/*genetics ; Time Factors ; Ubiquitin-Protein Ligases/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-12-07
    Description: The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/beta-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081860/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Xinhong -- Tan, Si Hui -- Koh, Winston Lian Chye -- Chau, Rosanna Man Wah -- Yan, Kelley S -- Kuo, Calvin J -- van Amerongen, Renee -- Klein, Allon Moshe -- Nusse, Roel -- 1R01DK085720/DK/NIDDK NIH HHS/ -- 1U01DK085527/DK/NIDDK NIH HHS/ -- 5K08DK096048/DK/NIDDK NIH HHS/ -- K08 DK096048/DK/NIDDK NIH HHS/ -- P30 DK026743/DK/NIDDK NIH HHS/ -- R01 DK085720/DK/NIDDK NIH HHS/ -- U01 DK085527/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Dec 6;342(6163):1226-30. doi: 10.1126/science.1239730.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Howard Hughes Medical Institute (HHMI), Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24311688" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autocrine Communication ; Axin Protein/genetics/metabolism ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cells, Cultured ; Epidermis/*cytology/injuries/metabolism ; Epithelial Cells/cytology/metabolism ; Gene Expression ; Homeostasis ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Keratinocytes/cytology/metabolism ; Mice ; Regeneration ; Skin/injuries ; Stem Cell Niche ; Stem Cells/cytology/*physiology ; Wnt Proteins/metabolism ; *Wnt Signaling Pathway ; Wound Healing ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-05-21
    Description: The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear. Using fluid and flexible membrane substrates to mimic antigen-presenting cells, we showed that B cells acquire antigen by dynamic myosin IIa-mediated contractions that pull out and invaginate the presenting membranes. The forces generated by myosin IIa contractions ruptured most individual BCR-antigen bonds and promoted internalization of only high-affinity, multivalent BCR microclusters. Thus, B cell contractility contributes to affinity discrimination by mechanically testing the strength of antigen binding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713314/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Natkanski, Elizabeth -- Lee, Wing-Yiu -- Mistry, Bhakti -- Casal, Antonio -- Molloy, Justin E -- Tolar, Pavel -- MC_U117570592/Medical Research Council/United Kingdom -- MC_U117597138/Medical Research Council/United Kingdom -- U117570592/Medical Research Council/United Kingdom -- U117597138/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1587-90. doi: 10.1126/science.1237572. Epub 2013 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23686338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antibody Affinity ; *Antigen Presentation ; Antigens/*immunology ; B-Lymphocytes/*immunology ; Cells, Cultured ; Mechanical Processes ; Mice ; Mice, Inbred C57BL ; Microscopy, Atomic Force ; Nonmuscle Myosin Type IIA/*physiology ; Receptors, Antigen, B-Cell/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-04-06
    Description: A number of human cancers harbor somatic point mutations in the genes encoding isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2). These mutations alter residues in the enzyme active sites and confer a gain-of-function in cancer cells, resulting in the accumulation and secretion of the oncometabolite (R)-2-hydroxyglutarate (2HG). We developed a small molecule, AGI-6780, that potently and selectively inhibits the tumor-associated mutant IDH2/R140Q. A crystal structure of AGI-6780 complexed with IDH2/R140Q revealed that the inhibitor binds in an allosteric manner at the dimer interface. The results of steady-state enzymology analysis were consistent with allostery and slow-tight binding by AGI-6780. Treatment with AGI-6780 induced differentiation of TF-1 erythroleukemia and primary human acute myelogenous leukemia cells in vitro. These data provide proof-of-concept that inhibitors targeting mutant IDH2/R140Q could have potential applications as a differentiation therapy for cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Fang -- Travins, Jeremy -- DeLaBarre, Byron -- Penard-Lacronique, Virginie -- Schalm, Stefanie -- Hansen, Erica -- Straley, Kimberly -- Kernytsky, Andrew -- Liu, Wei -- Gliser, Camelia -- Yang, Hua -- Gross, Stefan -- Artin, Erin -- Saada, Veronique -- Mylonas, Elena -- Quivoron, Cyril -- Popovici-Muller, Janeta -- Saunders, Jeffrey O -- Salituro, Francesco G -- Yan, Shunqi -- Murray, Stuart -- Wei, Wentao -- Gao, Yi -- Dang, Lenny -- Dorsch, Marion -- Agresta, Sam -- Schenkein, David P -- Biller, Scott A -- Su, Shinsan M -- de Botton, Stephane -- Yen, Katharine E -- New York, N.Y. -- Science. 2013 May 3;340(6132):622-6. doi: 10.1126/science.1234769. Epub 2013 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, MA 02139-4169, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23558173" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Antineoplastic Agents/chemistry/metabolism/pharmacology ; Catalytic Domain ; Cell Line, Tumor ; Cell Proliferation ; Cells, Cultured ; Crystallography, X-Ray ; Enzyme Inhibitors/chemistry/metabolism/*pharmacology ; Erythropoiesis/drug effects ; Gene Expression Regulation, Leukemic ; Glutarates/metabolism ; Hematopoiesis/*drug effects ; Humans ; Isocitrate Dehydrogenase/*antagonists & inhibitors/chemistry/*genetics/metabolism ; Leukemia, Erythroblastic, Acute ; Leukemia, Myeloid, Acute/drug therapy/*enzymology/genetics/pathology ; Molecular Targeted Therapy ; Mutant Proteins/antagonists & inhibitors/chemistry/metabolism ; Phenylurea Compounds/chemistry/metabolism/*pharmacology ; Point Mutation ; Protein Multimerization ; Protein Structure, Secondary ; Small Molecule Libraries ; Sulfonamides/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-12-18
    Description: Erythropoietin is a signaling glycoprotein that controls the fundamental process of erythropoiesis, orchestrating the production and maintenance of red blood cells. As administrated clinically, erythropoietin has a polypeptide backbone with complex dishomogeneity in its carbohydrate domains. Here we describe the total synthesis of homogeneous erythropoietin with consensus carbohydrate domains incorporated at all of the native glycosylation sites. The oligosaccharide sectors were built by total synthesis and attached stereospecifically to peptidyl fragments of the wild-type primary sequence, themselves obtained by solid-phase peptide synthesis. The glycopeptidyl constructs were joined by chemical ligation, followed by metal-free dethiylation, and subsequently folded. This homogeneous erythropoietin glycosylated at the three wild-type aspartates with N-linked high-mannose sialic acid-containing oligosaccharides and O-linked glycophorin exhibits Procrit-level in vivo activity in mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4080428/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Ping -- Dong, Suwei -- Shieh, Jae-Hung -- Peguero, Elizabeth -- Hendrickson, Ronald -- Moore, Malcolm A S -- Danishefsky, Samuel J -- HL025848/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 GM109760/GM/NIGMS NIH HHS/ -- R01 HL025848/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1357-60. doi: 10.1126/science.1245095.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337294" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Cells, Cultured ; Consensus Sequence ; Dose-Response Relationship, Drug ; Erythrocyte Count ; Erythropoietin/*administration & dosage/*chemical synthesis/chemistry ; Glycophorin/chemistry ; Glycosylation ; Injections, Subcutaneous ; Mannose/chemistry ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; N-Acetylneuraminic Acid/chemistry ; Oligosaccharides/chemistry ; Reticulocytes/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-10-12
    Description: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the beta-hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, Daniel E -- Kamran, Sophia C -- Lessard, Samuel -- Xu, Jian -- Fujiwara, Yuko -- Lin, Carrie -- Shao, Zhen -- Canver, Matthew C -- Smith, Elenoe C -- Pinello, Luca -- Sabo, Peter J -- Vierstra, Jeff -- Voit, Richard A -- Yuan, Guo-Cheng -- Porteus, Matthew H -- Stamatoyannopoulos, John A -- Lettre, Guillaume -- Orkin, Stuart H -- 123382/Canadian Institutes of Health Research/Canada -- K08 DK093705/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30 DK049216/DK/NIDDK NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 HG005085/HG/NHGRI NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HL032259/HL/NHLBI NIH HHS/ -- U54HG004594/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Erythroid Cells/*metabolism ; Fetal Hemoglobin/*biosynthesis/genetics ; *Gene Expression Regulation ; Gene Targeting ; Genetic Engineering ; Genetic Variation ; Genome-Wide Association Study ; Hemoglobinopathies/*genetics/therapy ; Humans ; Mice ; Nuclear Proteins/*genetics ; Precursor Cells, B-Lymphoid/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-10-05
    Description: Jet-lag symptoms arise from temporal misalignment between the internal circadian clock and external solar time. We found that circadian rhythms of behavior (locomotor activity), clock gene expression, and body temperature immediately reentrained to phase-shifted light-dark cycles in mice lacking vasopressin receptors V1a and V1b (V1a(-/-)V1b(-/-)). Nevertheless, the behavior of V1a(-/-)V1b(-/-) mice was still coupled to the internal clock, which oscillated normally under standard conditions. Experiments with suprachiasmatic nucleus (SCN) slices in culture suggested that interneuronal communication mediated by V1a and V1b confers on the SCN an intrinsic resistance to external perturbation. Pharmacological blockade of V1a and V1b in the SCN of wild-type mice resulted in accelerated recovery from jet lag, which highlights the potential of vasopressin signaling as a therapeutic target for management of circadian rhythm misalignment, such as jet lag and shift work.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yamaguchi, Yoshiaki -- Suzuki, Toru -- Mizoro, Yasutaka -- Kori, Hiroshi -- Okada, Kazuki -- Chen, Yulin -- Fustin, Jean-Michel -- Yamazaki, Fumiyoshi -- Mizuguchi, Naoki -- Zhang, Jing -- Dong, Xin -- Tsujimoto, Gozoh -- Okuno, Yasushi -- Doi, Masao -- Okamura, Hitoshi -- New York, N.Y. -- Science. 2013 Oct 4;342(6154):85-90. doi: 10.1126/science.1238599.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24092737" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antidiuretic Hormone Receptor Antagonists ; Body Temperature/genetics ; CLOCK Proteins/genetics ; Cell Communication/drug effects/genetics ; Cells, Cultured ; Circadian Rhythm/genetics ; Gene Expression Regulation ; Jet Lag Syndrome/*genetics/physiopathology ; Mice ; Mice, Knockout ; Motor Activity/genetics ; Receptors, Vasopressin/*genetics ; Suprachiasmatic Nucleus/physiopathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-01-12
    Description: The choice between double-strand break (DSB) repair by either homology-directed repair (HDR) or nonhomologous end joining (NHEJ) is tightly regulated. Defects in this regulation can induce genome instability and cancer. 53BP1 is critical for the control of DSB repair, promoting NHEJ, and inhibiting the 5' end resection needed for HDR. Using dysfunctional telomeres and genome-wide DSBs, we identify Rif1 as the main factor used by 53BP1 to impair 5' end resection. Rif1 inhibits resection involving CtIP, BLM, and Exo1; limits accumulation of BRCA1/BARD1 complexes at sites of DNA damage; and defines one of the mechanisms by which 53BP1 causes chromosomal abnormalities in Brca1-deficient cells. These data establish Rif1 as an important contributor to the control of DSB repair by 53BP1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664841/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Michal -- Lottersberger, Francisca -- Buonomo, Sara B -- Sfeir, Agnel -- de Lange, Titia -- R37 GM049046/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):700-4. doi: 10.1126/science.1231573. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/chemistry/genetics/*metabolism ; DNA/metabolism ; *DNA Breaks, Double-Stranded ; DNA End-Joining Repair ; *DNA Repair ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Mice ; Replication Protein A/metabolism ; Telomere/*metabolism ; Telomere-Binding Proteins/*metabolism ; Telomeric Repeat Binding Protein 2/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-01-12
    Description: DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Virgilio, Michela -- Callen, Elsa -- Yamane, Arito -- Zhang, Wenzhu -- Jankovic, Mila -- Gitlin, Alexander D -- Feldhahn, Niklas -- Resch, Wolfgang -- Oliveira, Thiago Y -- Chait, Brian T -- Nussenzweig, Andre -- Casellas, Rafael -- Robbiani, Davide F -- Nussenzweig, Michel C -- AI037526/AI/NIAID NIH HHS/ -- GM007739/GM/NIGMS NIH HHS/ -- GM103314/GM/NIGMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):711-5. doi: 10.1126/science.1230624. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/immunology/metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; G1 Phase ; G2 Phase ; Genomic Instability ; *Immunoglobulin Class Switching ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; S Phase ; Telomere-Binding Proteins/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-03-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsieh, Jenny -- Schneider, Jay W -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1534-5. doi: 10.1126/science.1237576.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. jenny.hsieh@utsouthwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539589" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/*physiology ; Calcium Channels/physiology ; Cells, Cultured ; Humans ; Neural Stem Cells/*physiology ; *Neurogenesis ; Receptors, N-Methyl-D-Aspartate/physiology ; *Synaptic Transmission ; gamma-Aminobutyric Acid/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-03-09
    Description: A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1alpha and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hubbard, Basil P -- Gomes, Ana P -- Dai, Han -- Li, Jun -- Case, April W -- Considine, Thomas -- Riera, Thomas V -- Lee, Jessica E -- E, Sook Yen -- Lamming, Dudley W -- Pentelute, Bradley L -- Schuman, Eli R -- Stevens, Linda A -- Ling, Alvin J Y -- Armour, Sean M -- Michan, Shaday -- Zhao, Huizhen -- Jiang, Yong -- Sweitzer, Sharon M -- Blum, Charles A -- Disch, Jeremy S -- Ng, Pui Yee -- Howitz, Konrad T -- Rolo, Anabela P -- Hamuro, Yoshitomo -- Moss, Joel -- Perni, Robert B -- Ellis, James L -- Vlasuk, George P -- Sinclair, David A -- P01 AG027916/AG/NIA NIH HHS/ -- R01 AG019719/AG/NIA NIH HHS/ -- R01 AG028730/AG/NIA NIH HHS/ -- R37 AG028730/AG/NIA NIH HHS/ -- ZIA HL000659-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 8;339(6124):1216-9. doi: 10.1126/science.1231097.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23471411" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Motifs ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cells, Cultured ; Enzyme Activation ; Forkhead Transcription Factors/chemistry/genetics ; Glutamic Acid/chemistry/genetics ; Heterocyclic Compounds with 4 or More Rings/chemistry/pharmacology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mice ; Molecular Sequence Data ; Myoblasts/drug effects/enzymology ; Protein Structure, Tertiary ; Sirtuin 1/*chemistry/genetics/*metabolism ; Stilbenes/chemistry/*pharmacology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-11-16
    Description: Bacterial invasion of host tissues triggers polymorphonuclear leukocytes to release DNA [neutrophil extracellular traps (NETs)], thereby immobilizing microbes for subsequent clearance by innate defenses including macrophage phagocytosis. We report here that Staphylococcus aureus escapes these defenses by converting NETs to deoxyadenosine, which triggers the caspase-3-mediated death of immune cells. Conversion of NETs to deoxyadenosine requires two enzymes, nuclease and adenosine synthase, that are secreted by S. aureus and are necessary for the exclusion of macrophages from staphylococcal abscesses. Thus, the pathogenesis of S. aureus infections has evolved to anticipate host defenses and to repurpose them for the destruction of the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026193/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4026193/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thammavongsa, Vilasack -- Missiakas, Dominique M -- Schneewind, Olaf -- AI038897/AI/NIAID NIH HHS/ -- AI052474/AI/NIAID NIH HHS/ -- AI057153/AI/NIAID NIH HHS/ -- R01 AI038897/AI/NIAID NIH HHS/ -- R01 AI052474/AI/NIAID NIH HHS/ -- T32 AI007090/AI/NIAID NIH HHS/ -- U54 AI057153/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 15;342(6160):863-6. doi: 10.1126/science.1242255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24233725" target="_blank"〉PubMed〈/a〉
    Keywords: Abscess/immunology/microbiology ; Animals ; Apoptosis/*immunology ; Cells, Cultured ; Cytotoxicity, Immunologic ; Deoxyadenosines/*metabolism ; Deoxyribonucleases/metabolism ; Host-Pathogen Interactions/*immunology ; Humans ; Macrophages/immunology/microbiology ; Mice, Inbred BALB C ; Neutrophils/*immunology/*microbiology ; Staphylococcal Infections/*immunology ; Staphylococcus aureus/enzymology/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-07-23
    Description: Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913367/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kueh, Hao Yuan -- Champhekar, Ameya -- Nutt, Stephen L -- Elowitz, Michael B -- Rothenberg, Ellen V -- R01 AI083514/AI/NIAID NIH HHS/ -- R01 CA090233/CA/NCI NIH HHS/ -- R01 CA90233/CA/NCI NIH HHS/ -- R33 HL089123/HL/NHLBI NIH HHS/ -- RC2 CA148278/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):670-3. doi: 10.1126/science.1240831. Epub 2013 Jul 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA, USA. kueh@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868921" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle/*genetics ; Cell Differentiation/*genetics ; Cells, Cultured ; Feedback, Physiological ; *Gene Expression Regulation ; *Gene Regulatory Networks ; Macrophages/cytology ; Mice ; Mice, Inbred Strains ; Myeloid Cells/*cytology ; Precursor Cells, B-Lymphoid/*cytology ; Proto-Oncogene Proteins/genetics/*physiology ; Trans-Activators/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-09-13
    Description: Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abad, Maria -- Mosteiro, Lluc -- Pantoja, Cristina -- Canamero, Marta -- Rayon, Teresa -- Ors, Inmaculada -- Grana, Osvaldo -- Megias, Diego -- Dominguez, Orlando -- Martinez, Dolores -- Manzanares, Miguel -- Ortega, Sagrario -- Serrano, Manuel -- England -- Nature. 2013 Oct 17;502(7471):340-5. doi: 10.1038/nature12586. Epub 2013 Sep 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tumour Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24025773" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Cells/cytology/metabolism ; Cell Dedifferentiation ; Cell Separation ; Cells, Cultured ; *Cellular Reprogramming/genetics ; Ectoderm/cytology ; Embryoid Bodies/cytology/metabolism ; Embryonic Stem Cells/cytology/metabolism ; Female ; Fibroblasts/cytology ; Gene Expression Profiling ; Induced Pluripotent Stem Cells/*cytology/metabolism ; Intestines/cytology ; Kidney/cytology ; Kruppel-Like Transcription Factors/genetics/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Octamer Transcription Factor-3/genetics/metabolism ; Organ Specificity ; Pancreas/cytology ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; Stomach/cytology ; Teratoma/genetics/*metabolism/pathology ; Totipotent Stem Cells/*cytology/metabolism ; Transcriptome/genetics ; Trophoblasts/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-21
    Description: Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rais, Yoach -- Zviran, Asaf -- Geula, Shay -- Gafni, Ohad -- Chomsky, Elad -- Viukov, Sergey -- Mansour, Abed AlFatah -- Caspi, Inbal -- Krupalnik, Vladislav -- Zerbib, Mirie -- Maza, Itay -- Mor, Nofar -- Baran, Dror -- Weinberger, Leehee -- Jaitin, Diego A -- Lara-Astiaso, David -- Blecher-Gonen, Ronnie -- Shipony, Zohar -- Mukamel, Zohar -- Hagai, Tzachi -- Gilad, Shlomit -- Amann-Zalcenstein, Daniela -- Tanay, Amos -- Amit, Ido -- Novershtern, Noa -- Hanna, Jacob H -- England -- Nature. 2013 Oct 3;502(7469):65-70. doi: 10.1038/nature12587. Epub 2013 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24048479" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; DNA-Binding Proteins/genetics ; Embryonic Stem Cells ; Female ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Male ; Mice ; *Models, Biological ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-06-19
    Description: Rett syndrome (RTT) is an X-linked human neurodevelopmental disorder with features of autism and severe neurological dysfunction in females. RTT is caused by mutations in methyl-CpG-binding protein 2 (MeCP2), a nuclear protein that, in neurons, regulates transcription, is expressed at high levels similar to that of histones, and binds to methylated cytosines broadly across the genome. By phosphotryptic mapping, we identify three sites (S86, S274 and T308) of activity-dependent MeCP2 phosphorylation. Phosphorylation of these sites is differentially induced by neuronal activity, brain-derived neurotrophic factor, or agents that elevate the intracellular level of 3',5'-cyclic AMP (cAMP), indicating that MeCP2 may function as an epigenetic regulator of gene expression that integrates diverse signals from the environment. Here we show that the phosphorylation of T308 blocks the interaction of the repressor domain of MeCP2 with the nuclear receptor co-repressor (NCoR) complex and suppresses the ability of MeCP2 to repress transcription. In knock-in mice bearing the common human RTT missense mutation R306C, neuronal activity fails to induce MeCP2 T308 phosphorylation, suggesting that the loss of T308 phosphorylation might contribute to RTT. Consistent with this possibility, the mutation of MeCP2 T308A in mice leads to a decrease in the induction of a subset of activity-regulated genes and to RTT-like symptoms. These findings indicate that the activity-dependent phosphorylation of MeCP2 at T308 regulates the interaction of MeCP2 with the NCoR complex, and that RTT in humans may be due, in part, to the loss of activity-dependent MeCP2 T308 phosphorylation and a disruption of the phosphorylation-regulated interaction of MeCP2 with the NCoR complex.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ebert, Daniel H -- Gabel, Harrison W -- Robinson, Nathaniel D -- Kastan, Nathaniel R -- Hu, Linda S -- Cohen, Sonia -- Navarro, Adrija J -- Lyst, Matthew J -- Ekiert, Robert -- Bird, Adrian P -- Greenberg, Michael E -- 092076/Wellcome Trust/United Kingdom -- K08 MH090306/MH/NIMH NIH HHS/ -- K08MH90306/MH/NIMH NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- R01 NS048276/NS/NINDS NIH HHS/ -- R01NS048276/NS/NINDS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Jul 18;499(7458):341-5. doi: 10.1038/nature12348.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23770587" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Co-Repressor Proteins/*metabolism ; Humans ; Methyl-CpG-Binding Protein 2/chemistry/genetics/*metabolism ; Mice ; Mutation ; Neurons/metabolism ; Phosphorylation ; Rett Syndrome/genetics ; Threonine/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-03-15
    Description: To maintain lifelong production of blood cells, haematopoietic stem cells (HSCs) are tightly regulated by inherent programs and extrinsic regulatory signals received from their microenvironmental niche. Long-term repopulating HSCs reside in several, perhaps overlapping, niches that produce regulatory molecules and signals necessary for homeostasis and for increased output after stress or injury. Despite considerable advances in the specific cellular or molecular mechanisms governing HSC-niche interactions, little is known about the regulatory function in the intact mammalian haematopoietic niche. Recently, we and others described a positive regulatory role for prostaglandin E2 (PGE2) on HSC function ex vivo. Here we show that inhibition of endogenous PGE2 by non-steroidal anti-inflammatory drug (NSAID) treatment in mice results in modest HSC egress from the bone marrow. Surprisingly, this was independent of the SDF-1-CXCR4 axis implicated in stem-cell migration. Stem and progenitor cells were found to have differing mechanisms of egress, with HSC transit to the periphery dependent on niche attenuation and reduction in the retentive molecule osteopontin. Haematopoietic grafts mobilized with NSAIDs had superior repopulating ability and long-term engraftment. Treatment of non-human primates and healthy human volunteers confirmed NSAID-mediated egress in other species. PGE2 receptor knockout mice demonstrated that progenitor expansion and stem/progenitor egress resulted from reduced E-prostanoid 4 (EP4) receptor signalling. These results not only uncover unique regulatory roles for EP4 signalling in HSC retention in the niche, but also define a rapidly translatable strategy to enhance transplantation therapeutically.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606692/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoggatt, Jonathan -- Mohammad, Khalid S -- Singh, Pratibha -- Hoggatt, Amber F -- Chitteti, Brahmananda R -- Speth, Jennifer M -- Hu, Peirong -- Poteat, Bradley A -- Stilger, Kayla N -- Ferraro, Francesca -- Silberstein, Lev -- Wong, Frankie K -- Farag, Sherif S -- Czader, Magdalena -- Milne, Ginger L -- Breyer, Richard M -- Serezani, Carlos H -- Scadden, David T -- Guise, Theresa A -- Srour, Edward F -- Pelus, Louis M -- CA069158/CA/NCI NIH HHS/ -- CA143057/CA/NCI NIH HHS/ -- DK07519/DK/NIDDK NIH HHS/ -- DK37097/DK/NIDDK NIH HHS/ -- HL07910/HL/NHLBI NIH HHS/ -- HL087735/HL/NHLBI NIH HHS/ -- HL096305/HL/NHLBI NIH HHS/ -- HL100402/HL/NHLBI NIH HHS/ -- P01 DK090948/DK/NIDDK NIH HHS/ -- P30 CA082709/CA/NCI NIH HHS/ -- R01 HL044851/HL/NHLBI NIH HHS/ -- R01 HL096305/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Mar 21;495(7441):365-9. doi: 10.1038/nature11929. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology ; Cell Count ; Cell Movement/physiology ; Cells, Cultured ; Dinoprostone/*metabolism ; Hematopoietic Stem Cell Mobilization ; Hematopoietic Stem Cells/*cytology/drug effects ; Heterocyclic Compounds/pharmacology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Osteopontin/genetics ; Papio ; Receptors, Prostaglandin E, EP4 Subtype/genetics/metabolism ; Stem Cells/*cytology/drug effects ; Thiazines/pharmacology ; Thiazoles/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-06-25
    Description: Transcription of the mammalian genome is pervasive, but productive transcription outside of protein-coding genes is limited by unknown mechanisms. In particular, although RNA polymerase II (RNAPII) initiates divergently from most active gene promoters, productive elongation occurs primarily in the sense-coding direction. Here we show in mouse embryonic stem cells that asymmetric sequence determinants flanking gene transcription start sites control promoter directionality by regulating promoter-proximal cleavage and polyadenylation. We find that upstream antisense RNAs are cleaved and polyadenylated at poly(A) sites (PASs) shortly after initiation. De novo motif analysis shows PAS signals and U1 small nuclear ribonucleoprotein (snRNP) recognition sites to be the most depleted and enriched sequences, respectively, in the sense direction relative to the upstream antisense direction. These U1 snRNP sites and PAS sites are progressively gained and lost, respectively, at the 5' end of coding genes during vertebrate evolution. Functional disruption of U1 snRNP activity results in a dramatic increase in promoter-proximal cleavage events in the sense direction with slight increases in the antisense direction. These data suggest that a U1-PAS axis characterized by low U1 snRNP recognition and a high density of PASs in the upstream antisense region reinforces promoter directionality by promoting early termination in upstream antisense regions, whereas proximal sense PAS signals are suppressed by U1 snRNP. We propose that the U1-PAS axis limits pervasive transcription throughout the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720719/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720719/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Almada, Albert E -- Wu, Xuebing -- Kriz, Andrea J -- Burge, Christopher B -- Sharp, Phillip A -- GM-085319/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R01 CA133404/CA/NCI NIH HHS/ -- R01 GM034277/GM/NIGMS NIH HHS/ -- R01 HG002439/HG/NHGRI NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-GM34277/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 18;499(7458):360-3. doi: 10.1038/nature12349. Epub 2013 Jun 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23792564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Evolution, Molecular ; Mice ; *Polyadenylation ; *Promoter Regions, Genetic ; RNA Cleavage ; RNA, Antisense/metabolism ; Ribonucleoprotein, U1 Small Nuclear/*metabolism ; *Transcription Elongation, Genetic ; Transcription Termination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-03-01
    Description: Growth of basal cell carcinomas (BCCs) requires high levels of hedgehog (HH) signalling through the transcription factor GLI. Although inhibitors of membrane protein smoothened (SMO) effectively suppress HH signalling, early tumour resistance illustrates the need for additional downstream targets for therapy. Here we identify atypical protein kinase C iota/lambda (aPKC-iota/lambda) as a novel GLI regulator in mammals. aPKC-iota/lambda and its polarity signalling partners co-localize at the centrosome and form a complex with missing-in-metastasis (MIM), a scaffolding protein that potentiates HH signalling. Genetic or pharmacological loss of aPKC-iota/lambda function blocks HH signalling and proliferation of BCC cells. Prkci is a HH target gene that forms a positive feedback loop with GLI and exists at increased levels in BCCs. Genome-wide transcriptional profiling shows that aPKC-iota/lambda and SMO control the expression of similar genes in tumour cells. aPKC-iota/lambda functions downstream of SMO to phosphorylate and activate GLI1, resulting in maximal DNA binding and transcriptional activation. Activated aPKC-iota/lambda is upregulated in SMO-inhibitor-resistant tumours and targeting aPKC-iota/lambda suppresses signalling and growth of resistant BCC cell lines. These results demonstrate that aPKC-iota/lambda is critical for HH-dependent processes and implicates aPKC-iota/lambda as a new, tumour-selective therapeutic target for the treatment of SMO-inhibitor-resistant cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761364/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3761364/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Atwood, Scott X -- Li, Mischa -- Lee, Alex -- Tang, Jean Y -- Oro, Anthony E -- 1F32CA14208701/CA/NCI NIH HHS/ -- AR046786/AR/NIAMS NIH HHS/ -- AR052785/AR/NIAMS NIH HHS/ -- R01 AR046786/AR/NIAMS NIH HHS/ -- R01 AR052785/AR/NIAMS NIH HHS/ -- R01 AR054780/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 Feb 28;494(7438):484-8. doi: 10.1038/nature11889.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23446420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma, Basal Cell/drug therapy/enzymology/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cells, Cultured ; Centrosome/metabolism ; Drug Resistance, Neoplasm ; Feedback, Physiological ; Hedgehog Proteins/metabolism ; Humans ; Isoenzymes/antagonists & inhibitors/genetics/*metabolism ; Keratinocytes/metabolism ; Kruppel-Like Transcription Factors/genetics/*metabolism ; Mice ; Phosphorylation ; Protein Kinase C/antagonists & inhibitors/genetics/*metabolism ; Receptors, G-Protein-Coupled/antagonists & inhibitors/metabolism ; Signal Transduction/drug effects ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-05-07
    Description: Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuda, Toru -- Takeda, Shu -- Xu, Ren -- Ochi, Hiroki -- Sunamura, Satoko -- Sato, Tsuyoshi -- Shibata, Shinsuke -- Yoshida, Yutaka -- Gu, Zirong -- Kimura, Ayako -- Ma, Chengshan -- Xu, Cheng -- Bando, Waka -- Fujita, Koji -- Shinomiya, Kenichi -- Hirai, Takashi -- Asou, Yoshinori -- Enomoto, Mitsuhiro -- Okano, Hideyuki -- Okawa, Atsushi -- Itoh, Hiroshi -- NS065048/NS/NINDS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):490-3. doi: 10.1038/nature12115. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi 35, Shinjyuku-ku, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Remodeling ; Bone and Bones/anatomy & histology/*innervation/*metabolism ; Cell Differentiation ; Cells, Cultured ; Female ; Male ; Mice ; Organ Size ; Osteoblasts/cytology/metabolism ; Semaphorin-3A/deficiency/genetics/*metabolism ; Sensory Receptor Cells/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-03-15
    Description: The wide diversity of skeletal proportions in mammals is evident upon a survey of any natural history museum's collections and allows us to distinguish between species even when reduced to their calcified components. Similarly, each individual is comprised of a variety of bones of differing lengths. The largest contribution to the lengthening of a skeletal element, and to the differential elongation of elements, comes from a dramatic increase in the volume of hypertrophic chondrocytes in the growth plate as they undergo terminal differentiation. However, the mechanisms of chondrocyte volume enlargement have remained a mystery. Here we use quantitative phase microscopy to show that mammalian chondrocytes undergo three distinct phases of volume increase, including a phase of massive cell swelling in which the cellular dry mass is significantly diluted. In light of the tight fluid regulatory mechanisms known to control volume in many cell types, this is a remarkable mechanism for increasing cell size and regulating growth rate. It is, however, the duration of the final phase of volume enlargement by proportional dry mass increase at low density that varies most between rapidly and slowly elongating growth plates. Moreover, we find that this third phase is locally regulated through a mechanism dependent on insulin-like growth factor. This study provides a framework for understanding how skeletal size is regulated and for exploring how cells sense, modify and establish a volume set point.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Kimberly L -- Oh, Seungeun -- Sung, Yongjin -- Dasari, Ramachandra R -- Kirschner, Marc W -- Tabin, Clifford J -- P01 DK056246/DK/NIDDK NIH HHS/ -- P01DK056246/DK/NIDDK NIH HHS/ -- P41 EB015871/EB/NIBIB NIH HHS/ -- P41RR02594/RR/NCRR NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01GM026875/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Mar 21;495(7441):375-8. doi: 10.1038/nature11940. Epub 2013 Mar 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. kcooper@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23485973" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bone and Bones/*cytology ; Cell Size ; Cells, Cultured ; Chondrocytes/*cytology ; Growth Plate/*cytology/*growth & development ; Insulin-Like Growth Factor I/metabolism ; Metatarsal Bones/cytology ; Mice ; Tibia/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-01-08
    Description: The initiation of gene transcription by RNA polymerase II is regulated by a plethora of proteins in human cells. The first general transcription factor to bind gene promoters is transcription factor IID (TFIID). TFIID triggers pre-initiation complex formation, functions as a coactivator by interacting with transcriptional activators and reads epigenetic marks. TFIID is a megadalton-sized multiprotein complex composed of TATA-box-binding protein (TBP) and 13 TBP-associated factors (TAFs). Despite its crucial role, the detailed architecture and assembly mechanism of TFIID remain elusive. Histone fold domains are prevalent in TAFs, and histone-like tetramer and octamer structures have been proposed in TFIID. A functional core-TFIID subcomplex was revealed in Drosophila nuclei, consisting of a subset of TAFs (TAF4, TAF5, TAF6, TAF9 and TAF12). These core subunits are thought to be present in two copies in holo-TFIID, in contrast to TBP and other TAFs that are present in a single copy, conveying a transition from symmetry to asymmetry in the TFIID assembly pathway. Here we present the structure of human core-TFIID determined by cryo-electron microscopy at 11.6 A resolution. Our structure reveals a two-fold symmetric, interlaced architecture, with pronounced protrusions, that accommodates all conserved structural features of the TAFs including the histone folds. We further demonstrate that binding of one TAF8-TAF10 complex breaks the original symmetry of core-TFIID. We propose that the resulting asymmetric structure serves as a functional scaffold to nucleate holo-TFIID assembly, by accreting one copy each of the remaining TAFs and TBP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bieniossek, Christoph -- Papai, Gabor -- Schaffitzel, Christiane -- Garzoni, Frederic -- Chaillet, Maxime -- Scheer, Elisabeth -- Papadopoulos, Petros -- Tora, Laszlo -- Schultz, Patrick -- Berger, Imre -- England -- Nature. 2013 Jan 31;493(7434):699-702. doi: 10.1038/nature11791. Epub 2013 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉European Molecular Biology Laboratory Grenoble Outstation, Unit of Virus Host Cell Interactions UVHCI, UJF-CNRS-EMBL Unite Mixte International UMI 3265, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23292512" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; Cryoelectron Microscopy ; HeLa Cells ; Humans ; *Models, Molecular ; Protein Binding ; Protein Structure, Tertiary ; Transcription Factor TFIID/*chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-07-12
    Description: Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Tokiko -- Kiso, Maki -- Fukuyama, Satoshi -- Nakajima, Noriko -- Imai, Masaki -- Yamada, Shinya -- Murakami, Shin -- Yamayoshi, Seiya -- Iwatsuki-Horimoto, Kiyoko -- Sakoda, Yoshihiro -- Takashita, Emi -- McBride, Ryan -- Noda, Takeshi -- Hatta, Masato -- Imai, Hirotaka -- Zhao, Dongming -- Kishida, Noriko -- Shirakura, Masayuki -- de Vries, Robert P -- Shichinohe, Shintaro -- Okamatsu, Masatoshi -- Tamura, Tomokazu -- Tomita, Yuriko -- Fujimoto, Naomi -- Goto, Kazue -- Katsura, Hiroaki -- Kawakami, Eiryo -- Ishikawa, Izumi -- Watanabe, Shinji -- Ito, Mutsumi -- Sakai-Tagawa, Yuko -- Sugita, Yukihiko -- Uraki, Ryuta -- Yamaji, Reina -- Eisfeld, Amie J -- Zhong, Gongxun -- Fan, Shufang -- Ping, Jihui -- Maher, Eileen A -- Hanson, Anthony -- Uchida, Yuko -- Saito, Takehiko -- Ozawa, Makoto -- Neumann, Gabriele -- Kida, Hiroshi -- Odagiri, Takato -- Paulson, James C -- Hasegawa, Hideki -- Tashiro, Masato -- Kawaoka, Yoshihiro -- AI058113/AI/NIAID NIH HHS/ -- AI099274/AI/NIAID NIH HHS/ -- HHSN266200700010C/AI/NIAID NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- T32 AI078985/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):551-5. doi: 10.1038/nature12392. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama 332-0012, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842494" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antiviral Agents/pharmacology ; Cells, Cultured ; Chickens/virology ; DNA-Directed RNA Polymerases/antagonists & inhibitors ; Dogs ; Enzyme Inhibitors/pharmacology ; Female ; Ferrets/virology ; Humans ; Influenza A Virus, H1N1 Subtype/drug effects/enzymology ; *Influenza A virus/chemistry/drug effects/isolation & purification/pathogenicity ; Influenza, Human/drug therapy/*virology ; Macaca fascicularis/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Monkey Diseases/pathology/virology ; Neuraminidase/antagonists & inhibitors ; Orthomyxoviridae Infections/pathology/transmission/*virology ; Quail/virology ; Swine/virology ; Swine, Miniature/virology ; *Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-12-18
    Description: CCAAT/enhancer binding protein-alpha (C/EBPalpha) induces transdifferentiation of B cells into macrophages at high efficiencies and enhances reprogramming into induced pluripotent stem (iPS) cells when co-expressed with the transcription factors Oct4 (Pou5f1), Sox2, Klf4 and Myc (hereafter called OSKM). However, how C/EBPalpha accomplishes these effects is unclear. Here we find that in mouse primary B cells transient C/EBPalpha expression followed by OSKM activation induces a 100-fold increase in iPS cell reprogramming efficiency, involving 95% of the population. During this conversion, pluripotency and epithelial-mesenchymal transition genes become markedly upregulated, and 60% of the cells express Oct4 within 2 days. C/EBPalpha acts as a 'path-breaker' as it transiently makes the chromatin of pluripotency genes more accessible to DNase I. C/EBPalpha also induces the expression of the dioxygenase Tet2 and promotes its translocation to the nucleus where it binds to regulatory regions of pluripotency genes that become demethylated after OSKM induction. In line with these findings, overexpression of Tet2 enhances OSKM-induced B-cell reprogramming. Because the enzyme is also required for efficient C/EBPalpha-induced immune cell conversion, our data indicate that Tet2 provides a mechanistic link between iPS cell reprogramming and B-cell transdifferentiation. The rapid iPS reprogramming approach described here should help to fully elucidate the process and has potential clinical applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Stefano, Bruno -- Sardina, Jose Luis -- van Oevelen, Chris -- Collombet, Samuel -- Kallin, Eric M -- Vicent, Guillermo P -- Lu, Jun -- Thieffry, Denis -- Beato, Miguel -- Graf, Thomas -- England -- Nature. 2014 Feb 13;506(7487):235-9. doi: 10.1038/nature12885. Epub 2013 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain. ; 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain [3]. ; 1] Ecole Normale Superieure, Institut de Biologie de l'ENS, 45 Rue d'Ulm, Paris F-75005, France [2] Inserm, U1024, Paris F-75005, France [3] CNRS, UMR 8197, Paris F-75005, France. ; 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain [3] Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York 10065, USA. ; Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA. ; 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg Lluis Companys 23, 08010 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336202" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology/*metabolism ; CCAAT-Enhancer-Binding Protein-alpha/genetics/*metabolism ; *Cell Transdifferentiation ; Cells, Cultured ; *Cellular Reprogramming/genetics ; Chromatin/genetics/metabolism ; Cytosine/metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/metabolism ; Deoxyribonuclease I/metabolism ; Epithelial-Mesenchymal Transition/genetics ; Induced Pluripotent Stem Cells/*cytology/*metabolism ; Kruppel-Like Transcription Factors/genetics/metabolism ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-01-08
    Description: Glucose production by the liver is essential for providing a substrate for the brain during fasting. The inability of insulin to suppress hepatic glucose output is a major aetiological factor in the hyperglycaemia of type-2 diabetes mellitus and other diseases of insulin resistance. For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes. Nonetheless, the mechanism of action of biguanides remains imperfectly understood. The suggestion a decade ago that metformin reduces glucose synthesis through activation of the enzyme AMP-activated protein kinase (AMPK) has recently been challenged by genetic loss-of-function experiments. Here we provide a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. In mouse hepatocytes, metformin leads to the accumulation of AMP and related nucleotides, which inhibit adenylate cyclase, reduce levels of cyclic AMP and protein kinase A (PKA) activity, abrogate phosphorylation of critical protein targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These data support a mechanism of action for metformin involving antagonism of glucagon, and suggest an approach for the development of antidiabetic drugs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Russell A -- Chu, Qingwei -- Xie, Jianxin -- Foretz, Marc -- Viollet, Benoit -- Birnbaum, Morris J -- F32 DK079572/DK/NIDDK NIH HHS/ -- P01 DK049210/DK/NIDDK NIH HHS/ -- P01 DK49210/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R01 DK056886/DK/NIDDK NIH HHS/ -- R01 DK56886/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Feb 14;494(7436):256-60. doi: 10.1038/nature11808. Epub 2013 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23292513" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/metabolism ; Adenylyl Cyclases/metabolism ; Animals ; Biguanides/*pharmacology ; Cells, Cultured ; Cyclic AMP/biosynthesis/*metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Diabetes Mellitus, Type 2/drug therapy ; Enzyme Activation/drug effects ; Glucagon/*antagonists & inhibitors/*metabolism ; Glucose/metabolism ; Hepatocytes/*drug effects/*metabolism ; Hypoglycemic Agents ; Liver/cytology/drug effects/metabolism ; Metformin/pharmacology/therapeutic use ; Mice ; Phenformin/pharmacology ; Phosphorylation ; Signal Transduction/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-12-18
    Description: Primary cilia are solitary, non-motile extensions of the centriole found on nearly all nucleated eukaryotic cells between cell divisions. Only approximately 200-300 nm in diameter and a few micrometres long, they are separated from the cytoplasm by the ciliary neck and basal body. Often called sensory cilia, they are thought to receive chemical and mechanical stimuli and initiate specific cellular signal transduction pathways. When activated by a ligand, hedgehog pathway proteins, such as GLI2 and smoothened (SMO), translocate from the cell into the cilium. Mutations in primary ciliary proteins are associated with severe developmental defects. The ionic conditions, permeability of the primary cilia membrane, and effectiveness of the diffusion barriers between the cilia and cell body are unknown. Here we show that cilia are a unique calcium compartment regulated by a heteromeric TRP channel, PKD1L1-PKD2L1, in mice and humans. In contrast to the hypothesis that polycystin (PKD) channels initiate changes in ciliary calcium that are conducted into the cytoplasm, we show that changes in ciliary calcium concentration occur without substantially altering global cytoplasmic calcium. PKD1L1-PKD2L1 acts as a ciliary calcium channel controlling ciliary calcium concentration and thereby modifying SMO-activated GLI2 translocation and GLI1 expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112737/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delling, Markus -- DeCaen, Paul G -- Doerner, Julia F -- Febvay, Sebastien -- Clapham, David E -- P01 NS072040/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30-HD 18655/HD/NICHD NIH HHS/ -- T32-HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 12;504(7479):311-4. doi: 10.1038/nature12833.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA. ; 1] Howard Hughes Medical Institute, Department of Cardiology, Boston Children's Hospital, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336288" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/metabolism ; Calcium Channels/chemistry/*metabolism ; *Calcium Signaling ; Cells, Cultured ; Cilia/*metabolism ; Cytoplasm/metabolism ; Female ; Hedgehog Proteins/deficiency/genetics/*metabolism ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Male ; Membrane Proteins/chemistry/deficiency/metabolism ; Mice ; Nuclear Proteins/metabolism ; Organelles/*metabolism ; Receptors, Cell Surface/chemistry/metabolism ; Receptors, G-Protein-Coupled/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-06-14
    Description: The tips of mammalian digits can regenerate after amputation, like those of amphibians. It is unknown why this capacity is limited to the area associated with the nail. Here we show that nail stem cells (NSCs) reside in the proximal nail matrix and that the mechanisms governing NSC differentiation are coupled directly with their ability to orchestrate digit regeneration. Early nail progenitors undergo Wnt-dependent differentiation into the nail. After amputation, this Wnt activation is required for nail regeneration and also for attracting nerves that promote mesenchymal blastema growth, leading to the regeneration of the digit. Amputations proximal to the Wnt-active nail progenitors result in failure to regenerate the nail or digit. Nevertheless, beta-catenin stabilization in the NSC region induced their regeneration. These results establish a link between NSC differentiation and digit regeneration, and suggest that NSCs may have the potential to contribute to the development of novel treatments for amputees.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Takeo, Makoto -- Chou, Wei Chin -- Sun, Qi -- Lee, Wendy -- Rabbani, Piul -- Loomis, Cynthia -- Taketo, M Mark -- Ito, Mayumi -- 1R01AR059768-01A1/AR/NIAMS NIH HHS/ -- 5P30CA0016087-32/CA/NCI NIH HHS/ -- P30 CA016087-30/CA/NCI NIH HHS/ -- R01 AR059768/AR/NIAMS NIH HHS/ -- S10 RR023704-01A1/RR/NCRR NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):228-32. doi: 10.1038/nature12214. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760480" target="_blank"〉PubMed〈/a〉
    Keywords: Amputation ; Animals ; Bone and Bones/cytology/metabolism ; Cell Differentiation ; Cells, Cultured ; Epithelium/metabolism ; Extremities/growth & development/innervation/*physiology ; Hoof and Claw/cytology/*growth & development/metabolism ; Mesoderm/cytology/metabolism ; Mice ; Regeneration/*physiology ; Stem Cells/cytology/metabolism ; Wnt Proteins/*metabolism ; Wnt Signaling Pathway ; beta Catenin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-11-08
    Description: Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states, notably cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035230/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4035230/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tata, Purushothama Rao -- Mou, Hongmei -- Pardo-Saganta, Ana -- Zhao, Rui -- Prabhu, Mythili -- Law, Brandon M -- Vinarsky, Vladimir -- Cho, Josalyn L -- Breton, Sylvie -- Sahay, Amar -- Medoff, Benjamin D -- Rajagopal, Jayaraj -- 5P30HL101287-02/HL/NHLBI NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- P30 HL101287/HL/NHLBI NIH HHS/ -- R00 MH086615/MH/NIMH NIH HHS/ -- R01 HL118185/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):218-23. doi: 10.1038/nature12777. Epub 2013 Nov 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA [2] Departments of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [3] Department of Internal Medicine, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [4] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24196716" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Agents, Hormonal/pharmacology ; *Cell Dedifferentiation ; Cell Proliferation/drug effects ; Cell Survival ; Cells, Cultured ; Doxycycline/pharmacology ; Epithelial Cells/*cytology/drug effects ; Female ; Male ; Mice, Transgenic ; Stem Cells/*cytology/drug effects ; Tamoxifen/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-04-05
    Description: Current human immunodeficiency virus-1 (HIV-1) vaccines elicit strain-specific neutralizing antibodies. However, cross-reactive neutralizing antibodies arise in approximately 20% of HIV-1-infected individuals, and details of their generation could provide a blueprint for effective vaccination. Here we report the isolation, evolution and structure of a broadly neutralizing antibody from an African donor followed from the time of infection. The mature antibody, CH103, neutralized approximately 55% of HIV-1 isolates, and its co-crystal structure with the HIV-1 envelope protein gp120 revealed a new loop-based mechanism of CD4-binding-site recognition. Virus and antibody gene sequencing revealed concomitant virus evolution and antibody maturation. Notably, the unmutated common ancestor of the CH103 lineage avidly bound the transmitted/founder HIV-1 envelope glycoprotein, and evolution of antibody neutralization breadth was preceded by extensive viral diversification in and near the CH103 epitope. These data determine the viral and antibody evolution leading to induction of a lineage of HIV-1 broadly neutralizing antibodies, and provide insights into strategies to elicit similar antibodies by vaccination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liao, Hua-Xin -- Lynch, Rebecca -- Zhou, Tongqing -- Gao, Feng -- Alam, S Munir -- Boyd, Scott D -- Fire, Andrew Z -- Roskin, Krishna M -- Schramm, Chaim A -- Zhang, Zhenhai -- Zhu, Jiang -- Shapiro, Lawrence -- NISC Comparative Sequencing Program -- Mullikin, James C -- Gnanakaran, S -- Hraber, Peter -- Wiehe, Kevin -- Kelsoe, Garnett -- Yang, Guang -- Xia, Shi-Mao -- Montefiori, David C -- Parks, Robert -- Lloyd, Krissey E -- Scearce, Richard M -- Soderberg, Kelly A -- Cohen, Myron -- Kamanga, Gift -- Louder, Mark K -- Tran, Lillian M -- Chen, Yue -- Cai, Fangping -- Chen, Sheri -- Moquin, Stephanie -- Du, Xiulian -- Joyce, M Gordon -- Srivatsan, Sanjay -- Zhang, Baoshan -- Zheng, Anqi -- Shaw, George M -- Hahn, Beatrice H -- Kepler, Thomas B -- Korber, Bette T M -- Kwong, Peter D -- Mascola, John R -- Haynes, Barton F -- AI067854/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Apr 25;496(7446):469-76. doi: 10.1038/nature12053. Epub 2013 Apr 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke University Human Vaccine Institute, Departments of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina 27710, USA. hliao@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552890" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/immunology ; Africa ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/genetics/immunology ; Antibodies, Neutralizing/*chemistry/genetics/*immunology ; Antigens, CD4/chemistry/immunology ; Cell Lineage ; Cells, Cultured ; Clone Cells/cytology ; Cross Reactions/immunology ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; *Evolution, Molecular ; HIV Antibodies/*chemistry/genetics/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/immunology/metabolism ; HIV-1/*chemistry/classification/*immunology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Neutralization Tests ; Phylogeny ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-09-17
    Description: Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins mediate eosinophil development and survival, and tissue recruitment, respectively, the processes underlying the basal regulation of these signals remain unknown. Here we show that serum IL-5 levels are maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 cells secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, ILC2 cells co-express IL-5 and IL-13; this co-expression is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide also stimulates ILC2 cells through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 cells regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795960/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795960/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nussbaum, Jesse C -- Van Dyken, Steven J -- von Moltke, Jakob -- Cheng, Laurence E -- Mohapatra, Alexander -- Molofsky, Ari B -- Thornton, Emily E -- Krummel, Matthew F -- Chawla, Ajay -- Liang, Hong-Erh -- Locksley, Richard M -- AI007334/AI/NIAID NIH HHS/ -- AI007641/AI/NIAID NIH HHS/ -- AI026918/AI/NIAID NIH HHS/ -- AI030663/AI/NIAID NIH HHS/ -- AI078869/AI/NIAID NIH HHS/ -- DK063720/DK/NIDDK NIH HHS/ -- DP1 AR064158/AR/NIAMS NIH HHS/ -- HL107202/HL/NHLBI NIH HHS/ -- P01 HL024136/HL/NHLBI NIH HHS/ -- P01 HL107202/HL/NHLBI NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 AI030663/AI/NIAID NIH HHS/ -- R37 AI026918/AI/NIAID NIH HHS/ -- T32 AI007641/AI/NIAID NIH HHS/ -- T32 GM007618/GM/NIGMS NIH HHS/ -- T32 HD044331/HD/NICHD NIH HHS/ -- U19 AI077439/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Oct 10;502(7470):245-8. doi: 10.1038/nature12526. Epub 2013 Sep 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California San Francisco, San Francisco, California 94143-0795, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24037376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Circadian Rhythm ; Collagen/metabolism ; Eosinophils/immunology/*metabolism/parasitology ; Female ; Gene Expression Regulation ; *Homeostasis ; Interleukin-13/genetics/metabolism ; Interleukin-5/blood/genetics/metabolism ; Lung/immunology/metabolism/parasitology ; Lymphocytes/immunology/*metabolism/parasitology ; Male ; Mice ; Mice, Inbred C57BL ; Nippostrongylus/physiology ; Strongylida Infections/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...