ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-09-25
    Description: Preceding antibody constant regions are switch (S) regions varying in length and repeat density that are targets of activation-induced cytidine deaminase. We asked how participating S regions influence each other to orchestrate rearrangements at the IgH locus by engineering mice in which the weakest S region, Sε, is replaced with...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-17
    Description: Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1beta processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1beta maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1beta secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Stowe, Irma B -- Lee, Bettina L -- O'Rourke, Karen -- Anderson, Keith -- Warming, Soren -- Cuellar, Trinna -- Haley, Benjamin -- Roose-Girma, Merone -- Phung, Qui T -- Liu, Peter S -- Lill, Jennie R -- Li, Hong -- Wu, Jiansheng -- Kummerfeld, Sarah -- Zhang, Juan -- Lee, Wyne P -- Snipas, Scott J -- Salvesen, Guy S -- Morris, Lucy X -- Fitzgerald, Linda -- Zhang, Yafei -- Bertram, Edward M -- Goodnow, Christopher C -- Dixit, Vishva M -- England -- Nature. 2015 Oct 29;526(7575):666-71. doi: 10.1038/nature15541. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA. ; Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA. ; The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. ; St. Vincent's Clinical School, UNSW Australia, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375259" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-21
    Description: Crohn's disease is a debilitating inflammatory bowel disease (IBD) that can involve the entire digestive tract. A single-nucleotide polymorphism (SNP) encoding a missense variant in the autophagy gene ATG16L1 (rs2241880, Thr300Ala) is strongly associated with the incidence of Crohn's disease. Numerous studies have demonstrated the effect of ATG16L1 deletion or deficiency; however, the molecular consequences of the Thr300Ala (T300A) variant remains unknown. Here we show that amino acids 296-299 constitute a caspase cleavage motif in ATG16L1 and that the T300A variant (T316A in mice) significantly increases ATG16L1 sensitization to caspase-3-mediated processing. We observed that death-receptor activation or starvation-induced metabolic stress in human and murine macrophages increased degradation of the T300A or T316A variants of ATG16L1, respectively, resulting in diminished autophagy. Knock-in mice harbouring the T316A variant showed defective clearance of the ileal pathogen Yersinia enterocolitica and an elevated inflammatory cytokine response. In turn, deletion of the caspase-3-encoding gene, Casp3, or elimination of the caspase cleavage site by site-directed mutagenesis rescued starvation-induced autophagy and pathogen clearance, respectively. These findings demonstrate that caspase 3 activation in the presence of a common risk allele leads to accelerated degradation of ATG16L1, placing cellular stress, apoptotic stimuli and impaired autophagy in a unified pathway that predisposes to Crohn's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murthy, Aditya -- Li, Yun -- Peng, Ivan -- Reichelt, Mike -- Katakam, Anand Kumar -- Noubade, Rajkumar -- Roose-Girma, Merone -- DeVoss, Jason -- Diehl, Lauri -- Graham, Robert R -- van Lookeren Campagne, Menno -- England -- Nature. 2014 Feb 27;506(7489):456-62. doi: 10.1038/nature13044. Epub 2014 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; ITGR Human Genetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24553140" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Autophagy/genetics ; Carrier Proteins/chemistry/*genetics/*metabolism ; Caspase 3/deficiency/genetics/*metabolism ; Cell Line ; Cells, Cultured ; Crohn Disease/*genetics/pathology ; Cytokines/immunology ; Enzyme Activation ; Female ; Food Deprivation ; Humans ; Macrophages/immunology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutagenesis, Site-Directed ; Polymorphism, Single Nucleotide/*genetics ; *Proteolysis ; Stress, Physiological ; Yersinia enterocolitica/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-10-18
    Description: Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1beta production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1beta production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1beta normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1beta regardless of stimulus, confirming an essential role for caspase-1 in IL-1beta production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Warming, Soren -- Lamkanfi, Mohamed -- Vande Walle, Lieselotte -- Louie, Salina -- Dong, Jennifer -- Newton, Kim -- Qu, Yan -- Liu, Jinfeng -- Heldens, Sherry -- Zhang, Juan -- Lee, Wyne P -- Roose-Girma, Merone -- Dixit, Vishva M -- England -- Nature. 2011 Oct 16;479(7371):117-21. doi: 10.1038/nature10558.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA. kayagaki@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22002608" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 1/metabolism ; Caspases/genetics/*metabolism ; Citrobacter rodentium/immunology ; Enzyme Activation ; Escherichia coli/immunology ; Immunity, Innate/immunology ; Inflammasomes/*metabolism ; Interleukin-1beta/biosynthesis/secretion ; Lipopolysaccharides/adverse effects/immunology ; Macrophages/immunology/secretion ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Vibrio cholerae/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-18
    Description: Lipopolysaccharide from Gram-negative bacteria is sensed in the host cell cytoplasm by a non-canonical inflammasome pathway that ultimately results in caspase-11 activation and cell death. In mouse macrophages, activation of this pathway requires the production of type-I interferons, indicating that interferon-induced genes have a critical role in initiating this pathway. Here we report that a cluster of small interferon-inducible GTPases, the so-called guanylate-binding proteins, is required for the full activity of the non-canonical caspase-11 inflammasome during infections with vacuolar Gram-negative bacteria. We show that guanylate-binding proteins are recruited to intracellular bacterial pathogens and are necessary to induce the lysis of the pathogen-containing vacuole. Lysis of the vacuole releases bacteria into the cytosol, thus allowing the detection of their lipopolysaccharide by a yet unknown lipopolysaccharide sensor. Moreover, recognition of the lysed vacuole by the danger sensor galectin-8 initiates the uptake of bacteria into autophagosomes, which results in a reduction of caspase-11 activation. These results indicate that host-mediated lysis of pathogen-containing vacuoles is an essential immune function and is necessary for efficient recognition of pathogens by inflammasome complexes in the cytosol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meunier, Etienne -- Dick, Mathias S -- Dreier, Roland F -- Schurmann, Nura -- Kenzelmann Broz, Daniela -- Warming, Soren -- Roose-Girma, Merone -- Bumann, Dirk -- Kayagaki, Nobuhiko -- Takeda, Kiyoshi -- Yamamoto, Masahiro -- Broz, Petr -- England -- Nature. 2014 May 15;509(7500):366-70. doi: 10.1038/nature13157. Epub 2014 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland. ; 1] Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland [2]. ; Department Biomedicine, University of Basel, CH-4056 Basel, Switzerland. ; Genentech Inc., South San Francisco, California 94080, USA. ; Department of Microbiology and Immunology, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24739961" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/immunology ; Caspases/*metabolism ; Cytosol/microbiology ; Enzyme Activation ; GTP Phosphohydrolases/*metabolism ; Galectins/immunology ; Gram-Negative Bacteria/growth & development/*immunology/pathogenicity ; Immunity, Innate/immunology ; Inflammasomes/immunology/*metabolism ; Interferon Type I/*immunology ; Lipopolysaccharides/immunology ; Mice ; Phagosomes/immunology/microbiology ; Salmonella typhimurium/growth & development/immunology ; Vacuoles/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-22
    Description: Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 trigger pro-inflammatory cell death termed "necroptosis." Studies with RIPK3-deficient mice or the RIPK1 inhibitor necrostatin-1 suggest that necroptosis exacerbates pathology in many disease models. We engineered mice expressing catalytically inactive RIPK3 D161N or RIPK1 D138N to determine the need for the active kinase in the whole animal. Unexpectedly, RIPK3 D161N promoted lethal RIPK1- and caspase-8-dependent apoptosis. In contrast, mice expressing RIPK1 D138N were viable and, like RIPK3-deficient mice, resistant to tumor necrosis factor (TNF)-induced hypothermia. Cells expressing RIPK1 D138N were resistant to TNF-induced necroptosis, whereas TNF-induced signaling pathways promoting gene transcription were unperturbed. Our data indicate that the kinase activity of RIPK3 is essential for necroptosis but also governs whether a cell activates caspase-8 and dies by apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newton, Kim -- Dugger, Debra L -- Wickliffe, Katherine E -- Kapoor, Neeraj -- de Almagro, M Cristina -- Vucic, Domagoj -- Komuves, Laszlo -- Ferrando, Ronald E -- French, Dorothy M -- Webster, Joshua -- Roose-Girma, Merone -- Warming, Soren -- Dixit, Vishva M -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1357-60. doi: 10.1126/science.1249361. Epub 2014 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24557836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caspase 8/genetics/metabolism ; Cell Survival ; Embryo Loss ; Embryonic Development ; Enteritis/pathology ; Fas-Associated Death Domain Protein/metabolism ; Gene Knock-In Techniques ; Intestine, Large/pathology ; Intestine, Small/pathology ; Mice ; *Necrosis ; Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & ; inhibitors/genetics/*metabolism ; Tumor Necrosis Factor-alpha/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-19
    Description: Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lafkas, Daniel -- Shelton, Amy -- Chiu, Cecilia -- de Leon Boenig, Gladys -- Chen, Yongmei -- Stawicki, Scott S -- Siltanen, Christian -- Reichelt, Mike -- Zhou, Meijuan -- Wu, Xiumin -- Eastham-Anderson, Jeffrey -- Moore, Heather -- Roose-Girma, Meron -- Chinn, Yvonne -- Hang, Julie Q -- Warming, Soren -- Egen, Jackson -- Lee, Wyne P -- Austin, Cary -- Wu, Yan -- Payandeh, Jian -- Lowe, John B -- Siebel, Christian W -- England -- Nature. 2015 Dec 3;528(7580):127-31. doi: 10.1038/nature15715. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Discovery Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Departments of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology/*therapeutic use ; Asthma/drug therapy/metabolism/pathology ; Calcium-Binding Proteins/antagonists & inhibitors/immunology/metabolism ; Cell Death/drug effects ; Cell Division/drug effects ; Cell Lineage/drug effects ; Cell Tracking ; *Cell Transdifferentiation/drug effects ; Cilia/metabolism ; Disease Models, Animal ; Female ; Goblet Cells/cytology/drug effects/pathology ; Homeostasis/drug effects ; Humans ; Intercellular Signaling Peptides and Proteins/immunology/metabolism ; Ligands ; Lung/*cytology/drug effects/*metabolism ; Male ; Membrane Proteins/antagonists & inhibitors/immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Receptors, Notch/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-06-27
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...