ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-02-09
    Description: The protein-protein interaction between leukocyte functional antigen-1 (LFA-1) and intercellular adhesion molecule-1 (ICAM-1) is critical to lymphocyte and immune system function. Here, we report on the transfer of the contiguous, nonlinear epitope of ICAM-1, responsible for its association with LFA-1, to a small-molecule framework. These LFA-1 antagonists bound LFA-1, blocked binding of ICAM-1, and inhibited a mixed lymphocyte reaction (MLR) with potency significantly greater than that of cyclosporine A. Furthermore, in comparison to an antibody to LFA-1, they exhibited significant anti-inflammatory effects in vivo. These results demonstrate the utility of small-molecule mimics of nonlinear protein epitopes and the protein epitopes themselves as leads in the identification of novel pharmaceutical agents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gadek, T R -- Burdick, D J -- McDowell, R S -- Stanley, M S -- Marsters, J C Jr -- Paris, K J -- Oare, D A -- Reynolds, M E -- Ladner, C -- Zioncheck, K A -- Lee, W P -- Gribling, P -- Dennis, M S -- Skelton, N J -- Tumas, D B -- Clark, K R -- Keating, S M -- Beresini, M H -- Tilley, J W -- Presta, L G -- Bodary, S C -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1086-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioorganic Chemistry, Genentech, One DNA Way, South San Francisco, CA 94080, USA. trg@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834839" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Anti-Inflammatory Agents, Non-Steroidal/chemical ; synthesis/chemistry/metabolism/pharmacology ; Cyclosporine/pharmacology ; Dermatitis, Irritant/drug therapy ; Dinitrofluorobenzene ; Drug Design ; Enzyme-Linked Immunosorbent Assay ; Epitopes ; Female ; Humans ; Immunoglobulin Fab Fragments/immunology/pharmacology ; Immunosuppressive Agents/chemical synthesis/chemistry/metabolism/*pharmacology ; Intercellular Adhesion Molecule-1/chemistry/*immunology/*metabolism ; Lymphocyte Culture Test, Mixed ; Lymphocyte Function-Associated Antigen-1/immunology/*metabolism ; Mice ; Mice, Inbred BALB C ; Molecular Mimicry ; Mutagenesis ; Protein Structure, Secondary ; Structure-Activity Relationship ; Thiophenes/*chemical synthesis/chemistry/metabolism/*pharmacology ; beta-Alanine/analogs & derivatives/*chemical ; synthesis/chemistry/metabolism/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-17
    Description: Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1beta processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1beta maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1beta secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Stowe, Irma B -- Lee, Bettina L -- O'Rourke, Karen -- Anderson, Keith -- Warming, Soren -- Cuellar, Trinna -- Haley, Benjamin -- Roose-Girma, Merone -- Phung, Qui T -- Liu, Peter S -- Lill, Jennie R -- Li, Hong -- Wu, Jiansheng -- Kummerfeld, Sarah -- Zhang, Juan -- Lee, Wyne P -- Snipas, Scott J -- Salvesen, Guy S -- Morris, Lucy X -- Fitzgerald, Linda -- Zhang, Yafei -- Bertram, Edward M -- Goodnow, Christopher C -- Dixit, Vishva M -- England -- Nature. 2015 Oct 29;526(7575):666-71. doi: 10.1038/nature15541. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Protein Chemistry, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Bioinformatics, Genentech Inc., South San Francisco, California 94080, USA. ; Department of Immunology, Genentech Inc., South San Francisco, California 94080, USA. ; Program in Cell Death Signaling Networks, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, USA. ; The Australian Phenomics Facility, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia. ; St. Vincent's Clinical School, UNSW Australia, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375259" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-12-17
    Description: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Chia-Lin -- Lin, Weiyu -- Seshasayee, Dhaya -- Chen, Yung-Hsiang -- Ding, Xiao -- Lin, Zhonghua -- Suto, Eric -- Huang, Zhiyu -- Lee, Wyne P -- Park, Hyunjoo -- Xu, Min -- Sun, Mei -- Rangell, Linda -- Lutman, Jeff L -- Ulufatu, Sheila -- Stefanich, Eric -- Chalouni, Cecile -- Sagolla, Meredith -- Diehl, Lauri -- Fielder, Paul -- Dean, Brian -- Balazs, Mercedesz -- Martin, Flavius -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):89-92. doi: 10.1126/science.1213682. Epub 2011 Dec 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22174130" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/metabolism ; Animals ; Apoptosis ; Cell Count ; Cell Proliferation ; Cells, Cultured ; Histiocytosis/*physiopathology ; *Homeostasis ; Humans ; Hydrogen-Ion Concentration ; Listeriosis/immunology/microbiology ; Lysosomal Storage Diseases/physiopathology ; Lysosomes/*physiology/ultrastructure ; Macrophage Colony-Stimulating Factor/metabolism ; Macrophages/immunology/*physiology/ultrastructure ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Myelopoiesis ; Nucleoside Transport Proteins/genetics/*physiology ; Phagocytosis ; Receptor, Macrophage Colony-Stimulating Factor/metabolism ; Signal Transduction ; Thymocytes/immunology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-07-28
    Description: Gram-negative bacteria including Escherichia coli, Citrobacter rodentium, Salmonella typhimurium, and Shigella flexneri are sensed in an ill-defined manner by an intracellular inflammasome complex that activates caspase-11. We show that macrophages loaded with synthetic lipid A, E. coli lipopolysaccharide (LPS), or S. typhimurium LPS activate caspase-11 independently of the LPS receptor Toll-like receptor 4 (TLR4). Consistent with lipid A triggering the noncanonical inflammasome, LPS containing a divergent lipid A structure antagonized caspase-11 activation in response to E. coli LPS or Gram-negative bacteria. Moreover, LPS-mutant E. coli failed to activate caspase-11. Tlr4(-/-) mice primed with TLR3 agonist polyinosinic:polycytidylic acid [poly(I:C)] to induce pro-caspase-11 expression were as susceptible as wild-type mice were to sepsis induced by E. coli LPS. These data unveil a TLR4-independent mechanism for innate immune recognition of LPS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Wong, Michael T -- Stowe, Irma B -- Ramani, Sree Ranjani -- Gonzalez, Lino C -- Akashi-Takamura, Sachiko -- Miyake, Kensuke -- Zhang, Juan -- Lee, Wyne P -- Muszynski, Artur -- Forsberg, Lennart S -- Carlson, Russell W -- Dixit, Vishva M -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1246-9. doi: 10.1126/science.1240248. Epub 2013 Jul 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA. kayagaki@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23887873" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspases/biosynthesis ; Cholera Toxin/immunology ; Disease Models, Animal ; Escherichia coli/immunology ; Escherichia coli Infections/genetics/immunology ; *Immunity, Innate ; Inflammasomes/*immunology ; Lipid A/genetics/*immunology ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Mutation ; Salmonella Infections/immunology ; Salmonella typhimurium/immunology ; Sepsis/immunology ; Toll-Like Receptor 4/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-15
    Description: The connection between an altered gut microbiota and metabolic disorders such as obesity, diabetes, and cardiovascular disease is well established. Defects in preserving the integrity of the mucosal barriers can result in systemic endotoxaemia that contributes to chronic low-grade inflammation, which further promotes the development of metabolic syndrome. Interleukin (IL)-22 exerts essential roles in eliciting antimicrobial immunity and maintaining mucosal barrier integrity within the intestine. Here we investigate the connection between IL-22 and metabolic disorders. We find that the induction of IL-22 from innate lymphoid cells and CD4(+) T cells is impaired in obese mice under various immune challenges, especially in the colon during infection with Citrobacter rodentium. While innate lymphoid cell populations are largely intact in obese mice, the upregulation of IL-23, a cytokine upstream of IL-22, is compromised during the infection. Consequently, these mice are susceptible to C. rodentium infection, and both exogenous IL-22 and IL-23 are able to restore the mucosal host defence. Importantly, we further unveil unexpected functions of IL-22 in regulating metabolism. Mice deficient in IL-22 receptor and fed with high-fat diet are prone to developing metabolic disorders. Strikingly, administration of exogenous IL-22 in genetically obese leptin-receptor-deficient (db/db) mice and mice fed with high-fat diet reverses many of the metabolic symptoms, including hyperglycaemia and insulin resistance. IL-22 shows diverse metabolic benefits, as it improves insulin sensitivity, preserves gut mucosal barrier and endocrine functions, decreases endotoxaemia and chronic inflammation, and regulates lipid metabolism in liver and adipose tissues. In summary, we identify the IL-22 pathway as a novel target for therapeutic intervention in metabolic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Xiaoting -- Ota, Naruhisa -- Manzanillo, Paolo -- Kates, Lance -- Zavala-Solorio, Jose -- Eidenschenk, Celine -- Zhang, Juan -- Lesch, Justin -- Lee, Wyne P -- Ross, Jed -- Diehl, Lauri -- van Bruggen, Nicholas -- Kolumam, Ganesh -- Ouyang, Wenjun -- England -- Nature. 2014 Oct 9;514(7521):237-41. doi: 10.1038/nature13564. Epub 2014 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Immunology, Genentech, South San Francisco, California 94080, USA [2]. ; Department of Immunology, Genentech, South San Francisco, California 94080, USA. ; Department of Biomedical Imaging, Genentech, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, South San Francisco, California 94080, USA. ; 1] Department of Biomedical Imaging, Genentech, South San Francisco, California 94080, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119041" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, White/drug effects/metabolism ; Animals ; CD4-Positive T-Lymphocytes/immunology/secretion ; Chronic Disease ; Citrobacter rodentium/drug effects/immunology/physiology ; Colon/drug effects/immunology/microbiology ; Diabetes Mellitus/*immunology/*metabolism/pathology ; Diet, High-Fat ; Female ; Hyperglycemia/diet therapy/drug therapy/metabolism ; *Immunity, Mucosal/drug effects ; Inflammation/drug therapy/metabolism/pathology ; Insulin/metabolism ; Insulin Resistance ; Interleukin-23/immunology/metabolism/pharmacology ; Interleukins/*immunology/*metabolism/pharmacology/therapeutic use ; Lipid Metabolism/drug effects ; Liver/drug effects/metabolism ; Male ; Metabolic Diseases/diet therapy/drug therapy/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Obese ; Obesity/metabolism ; Receptors, Interleukin/deficiency/metabolism ; Receptors, Leptin/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-10
    Description: Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn's disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertz, Ingrid E -- Newton, Kim -- Seshasayee, Dhaya -- Kusam, Saritha -- Lam, Cynthia -- Zhang, Juan -- Popovych, Nataliya -- Helgason, Elizabeth -- Schoeffler, Allyn -- Jeet, Surinder -- Ramamoorthi, Nandhini -- Kategaya, Lorna -- Newman, Robert J -- Horikawa, Keisuke -- Dugger, Debra -- Sandoval, Wendy -- Mukund, Susmith -- Zindal, Anuradha -- Martin, Flavius -- Quan, Clifford -- Tom, Jeffrey -- Fairbrother, Wayne J -- Townsend, Michael -- Warming, Soren -- DeVoss, Jason -- Liu, Jinfeng -- Dueber, Erin -- Caplazi, Patrick -- Lee, Wyne P -- Goodnow, Christopher C -- Balazs, Mercedesz -- Yu, Kebing -- Kolumam, Ganesh -- Dixit, Vishva M -- England -- Nature. 2015 Dec 17;528(7582):370-5. doi: 10.1038/nature16165. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Discovery Oncology, Genentech, South San Francisco, California 94080, USA. ; Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA. ; Physiological Chemistry, Genentech, South San Francisco, California 94080, USA. ; Immunology, Genentech, South San Francisco, California 94080, USA. ; Molecular Biology, Genentech, South San Francisco, California 94080, USA. ; Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Protein Chemistry, Genentech, South San Francisco, California 94080, USA. ; Structural Biology, Genentech, South San Francisco, California 94080, USA. ; Bioinformatics, Genentech, South San Francisco, California 94080, USA. ; Pathology, Genentech, South San Francisco, California 94080, USA. ; Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Sydney, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649818" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Death ; Cysteine Endopeptidases/chemistry/genetics/*metabolism ; Female ; Inflammation/genetics/*metabolism/pathology ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Lysine/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mutation ; Phosphorylation ; Polyubiquitin/chemistry/metabolism ; Protein Binding ; Protein Kinases/metabolism ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism ; Ubiquitin/*chemistry/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-10-18
    Description: Caspase-1 activation by inflammasome scaffolds comprised of intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) and the adaptor ASC is believed to be essential for production of the pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 during the innate immune response. Here we show, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 (also known as caspase-4) is critical for caspase-1 activation and IL-1beta production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae. Strain 129 mice, like Casp11(-/-) mice, exhibited defects in IL-1beta production and harboured a mutation in the Casp11 locus that attenuated caspase-11 expression. This finding is important because published targeting of the Casp1 gene was done using strain 129 embryonic stem cells. Casp1 and Casp11 are too close in the genome to be segregated by recombination; consequently, the published Casp1(-/-) mice lack both caspase-11 and caspase-1. Interestingly, Casp11(-/-) macrophages secreted IL-1beta normally in response to ATP and monosodium urate, indicating that caspase-11 is engaged by a non-canonical inflammasome. Casp1(-/-)Casp11(129mt/129mt) macrophages expressing caspase-11 from a C57BL/6 bacterial artificial chromosome transgene failed to secrete IL-1beta regardless of stimulus, confirming an essential role for caspase-1 in IL-1beta production. Caspase-11 rather than caspase-1, however, was required for non-canonical inflammasome-triggered macrophage cell death, indicating that caspase-11 orchestrates both caspase-1-dependent and -independent outputs. Caspase-1 activation by non-canonical stimuli required NLRP3 and ASC, but caspase-11 processing and cell death did not, implying that there is a distinct activator of caspase-11. Lastly, loss of caspase-11 rather than caspase-1 protected mice from a lethal dose of lipopolysaccharide. These data highlight a unique pro-inflammatory role for caspase-11 in the innate immune response to clinically significant bacterial infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kayagaki, Nobuhiko -- Warming, Soren -- Lamkanfi, Mohamed -- Vande Walle, Lieselotte -- Louie, Salina -- Dong, Jennifer -- Newton, Kim -- Qu, Yan -- Liu, Jinfeng -- Heldens, Sherry -- Zhang, Juan -- Lee, Wyne P -- Roose-Girma, Merone -- Dixit, Vishva M -- England -- Nature. 2011 Oct 16;479(7371):117-21. doi: 10.1038/nature10558.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech Inc., South San Francisco, California 94080, USA. kayagaki@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22002608" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caspase 1/metabolism ; Caspases/genetics/*metabolism ; Citrobacter rodentium/immunology ; Enzyme Activation ; Escherichia coli/immunology ; Immunity, Innate/immunology ; Inflammasomes/*metabolism ; Interleukin-1beta/biosynthesis/secretion ; Lipopolysaccharides/adverse effects/immunology ; Macrophages/immunology/secretion ; Mice ; Mice, 129 Strain ; Mice, Inbred C57BL ; Vibrio cholerae/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-19
    Description: Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lafkas, Daniel -- Shelton, Amy -- Chiu, Cecilia -- de Leon Boenig, Gladys -- Chen, Yongmei -- Stawicki, Scott S -- Siltanen, Christian -- Reichelt, Mike -- Zhou, Meijuan -- Wu, Xiumin -- Eastham-Anderson, Jeffrey -- Moore, Heather -- Roose-Girma, Meron -- Chinn, Yvonne -- Hang, Julie Q -- Warming, Soren -- Egen, Jackson -- Lee, Wyne P -- Austin, Cary -- Wu, Yan -- Payandeh, Jian -- Lowe, John B -- Siebel, Christian W -- England -- Nature. 2015 Dec 3;528(7580):127-31. doi: 10.1038/nature15715. Epub 2015 Nov 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Discovery Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA. ; Departments of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26580007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/immunology/pharmacology/*therapeutic use ; Asthma/drug therapy/metabolism/pathology ; Calcium-Binding Proteins/antagonists & inhibitors/immunology/metabolism ; Cell Death/drug effects ; Cell Division/drug effects ; Cell Lineage/drug effects ; Cell Tracking ; *Cell Transdifferentiation/drug effects ; Cilia/metabolism ; Disease Models, Animal ; Female ; Goblet Cells/cytology/drug effects/pathology ; Homeostasis/drug effects ; Humans ; Intercellular Signaling Peptides and Proteins/immunology/metabolism ; Ligands ; Lung/*cytology/drug effects/*metabolism ; Male ; Membrane Proteins/antagonists & inhibitors/immunology/metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Receptors, Notch/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-01-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertz, Ingrid E -- Newton, Kim -- Seshasayee, Dhaya -- Kusam, Saritha -- Lam, Cynthia -- Zhang, Juan -- Popovych, Nataliya -- Helgason, Elizabeth -- Schoeffler, Allyn -- Jeet, Surinder -- Ramamoorthi, Nandhini -- Kategaya, Lorna -- Newman, Robert J -- Horikawa, Keisuke -- Dugger, Debra -- Sandoval, Wendy -- Mukund, Susmith -- Zindal, Anuradha -- Martin, Flavius -- Quan, Clifford -- Tom, Jeffrey -- Fairbrother, Wayne J -- Townsend, Michael -- Warming, Soren -- DeVoss, Jason -- Liu, Jinfeng -- Dueber, Erin -- Caplazi, Patrick -- Lee, Wyne P -- Goodnow, Christopher C -- Balazs, Mercedesz -- Yu, Kebing -- Kolumam, Ganesh -- Dixit, Vishva M -- England -- Nature. 2016 Apr 21;532(7599):402. doi: 10.1038/nature16541. Epub 2016 Jan 13.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26760210" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 65 (1993), S. 1954-1959 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...