ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-12
    Description: DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815530/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Virgilio, Michela -- Callen, Elsa -- Yamane, Arito -- Zhang, Wenzhu -- Jankovic, Mila -- Gitlin, Alexander D -- Feldhahn, Niklas -- Resch, Wolfgang -- Oliveira, Thiago Y -- Chait, Brian T -- Nussenzweig, Andre -- Casellas, Rafael -- Robbiani, Davide F -- Nussenzweig, Michel C -- AI037526/AI/NIAID NIH HHS/ -- GM007739/GM/NIGMS NIH HHS/ -- GM103314/GM/NIGMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- RR00862/RR/NCRR NIH HHS/ -- RR022220/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 8;339(6120):711-5. doi: 10.1126/science.1230624. Epub 2013 Jan 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23306439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; B-Lymphocytes/immunology/metabolism ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cells, Cultured ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; DNA-Binding Proteins/antagonists & inhibitors/*metabolism ; G1 Phase ; G2 Phase ; Genomic Instability ; *Immunoglobulin Class Switching ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; S Phase ; Telomere-Binding Proteins/*metabolism ; Tumor Suppressor Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-09
    Description: During immune responses, B lymphocytes clonally expand and undergo secondary diversification of their immunoglobulin genes in germinal centres (GCs). High-affinity B cells are expanded through iterative interzonal cycles of division and hypermutation in the GC dark zone followed by migration to the GC light zone, where they are selected on the basis of affinity to return to the dark zone. Here we combine a transgenic strategy to measure cell division and a photoactivatable fluorescent reporter to examine whether the extent of clonal expansion and hypermutation are regulated during interzonal GC cycles. We find that both cell division and hypermutation are directly proportional to the amount of antigen captured and presented by GC B cells to follicular helper T cells in the light zone. Our data explain how GC B cells with the highest affinity for antigen are selectively expanded and diversified.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271732/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4271732/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitlin, Alexander D -- Shulman, Ziv -- Nussenzweig, Michel C -- 1UM1 AI100663-01/AI/NIAID NIH HHS/ -- AI037526-19/AI/NIAID NIH HHS/ -- AI072529-06/AI/NIAID NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- R01 AI072529/AI/NIAID NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 29;509(7502):637-40. doi: 10.1038/nature13300. Epub 2014 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805232" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity/immunology ; Antigen Presentation/immunology ; Antigens/immunology ; B-Lymphocytes/*cytology/immunology/*metabolism ; Cell Movement ; Cell Proliferation ; *Clonal Selection, Antigen-Mediated/immunology ; Clone Cells/cytology/immunology/metabolism ; Genes, Reporter/genetics ; Germinal Center/*cytology/*immunology ; Male ; Mice ; S Phase ; Somatic Hypermutation, Immunoglobulin/*genetics ; T-Lymphocytes, Helper-Inducer/cytology/immunology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-28
    Description: T follicular helper (T(FH)) cells are a specialized subset of effector T cells that provide help to and thereby select high-affinity B cells in germinal centers (GCs). To examine the dynamic behavior of T(FH) cells in GCs in mice, we used two-photon microscopy in combination with a photoactivatable fluorescent reporter. Unlike GC B cells, which are clonally restricted, T(FH) cells distributed among all GCs in lymph nodes and continually emigrated into the follicle and neighboring GCs. Moreover, newly activated T(FH) cells invaded preexisting GCs, where they contributed to B cell selection and plasmablast differentiation. Our data suggest that the dynamic exchange of T(FH) cells between GCs ensures maximal diversification of T cell help and that their ability to enter ongoing GCs accommodates antigenic variation during the immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941467/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941467/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shulman, Ziv -- Gitlin, Alexander D -- Targ, Sasha -- Jankovic, Mila -- Pasqual, Giulia -- Nussenzweig, Michel C -- Victora, Gabriel D -- 5DP5OD012146-02/OD/NIH HHS/ -- AI037526-19/AI/NIAID NIH HHS/ -- AI072529-06/AI/NIAID NIH HHS/ -- AI100663-01/AI/NIAID NIH HHS/ -- DP5 OD012146/OD/NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- R01 AI072529/AI/NIAID NIH HHS/ -- R37 AI037526/AI/NIAID NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):673-7. doi: 10.1126/science.1241680. Epub 2013 Jul 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23887872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigenic Variation ; B-Lymphocytes/cytology/*immunology ; Clone Cells ; Germinal Center/cytology/*immunology ; Mice ; T-Lymphocytes, Helper-Inducer/cytology/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-30
    Description: T follicular helper (T(FH)) cells select high-affinity, antibody-producing B cells for clonal expansion in germinal centers (GCs), but the nature of their interaction is not well defined. Using intravital imaging, we found that selection is mediated by large but transient contacts between T(FH) and GC B cells presenting the highest levels of cognate peptide bound to major histocompatibility complex II. These interactions elicited transient and sustained increases in T(FH) intracellular free calcium (Ca(2+)) that were associated with T(FH) cell coexpression of the cytokines interleukin-4 and -21. However, increased intracellular Ca(2+) did not arrest TFH cell migration. Instead, T(FH) cells remained motile and continually scanned the surface of many GC B cells, forming short-lived contacts that induced selection through further repeated transient elevations in intracellular Ca(2+).〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519234/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519234/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shulman, Ziv -- Gitlin, Alexander D -- Weinstein, Jason S -- Lainez, Begona -- Esplugues, Enric -- Flavell, Richard A -- Craft, Joseph E -- Nussenzweig, Michel C -- AI037526-19/AI/NIAID NIH HHS/ -- AI072529-06/AI/NIAID NIH HHS/ -- AI100663-02/AI/NIAID NIH HHS/ -- AR053495-08/AR/NIAMS NIH HHS/ -- AR40072-24/AR/NIAMS NIH HHS/ -- P30 AR053495/AR/NIAMS NIH HHS/ -- R01 AI037526/AI/NIAID NIH HHS/ -- R01 AI072529/AI/NIAID NIH HHS/ -- R01 AR040072/AR/NIAMS NIH HHS/ -- R21 AR063942/AR/NIAMS NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1058-62. doi: 10.1126/science.1257861.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Department of Internal Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT 06520, USA. ; Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA. ; Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA. Howard Hughes Medical Institute (HHMI). ; Department of Internal Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT 06520, USA. Department of Immunobiology, School of Medicine, Yale University New Haven, CT 06520, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI). nussen@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170154" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Calcium Signaling/*immunology ; Germinal Center/*immunology ; Green Fluorescent Proteins/metabolism ; Histocompatibility Antigens Class II/*immunology ; Interleukin-4/immunology ; Interleukins/immunology ; Mice ; Mice, Knockout ; Molecular Imaging ; T-Lymphocytes, Helper-Inducer/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-18
    Description: The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression, while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitlin, Alexander D -- Mayer, Christian T -- Oliveira, Thiago Y -- Shulman, Ziv -- Jones, Mathew J K -- Koren, Amnon -- Nussenzweig, Michel C -- 1F30AI109903-01/AI/NIAID NIH HHS/ -- 1UM1 AI100663-01/AI/NIAID NIH HHS/ -- AI037526-19/AI/NIAID NIH HHS/ -- AI072529-06/AI/NIAID NIH HHS/ -- T32GM07739/GM/NIGMS NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):643-6. doi: 10.1126/science.aac4919. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA. nussen@rockefeller.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26184917" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*cytology ; Cell Cycle/genetics/*immunology ; Cell Proliferation ; DNA Replication/genetics/*immunology ; Gene Expression Regulation ; Germinal Center/*cytology ; Immunity, Humoral/*genetics ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; S Phase/genetics/immunology ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-04
    Description: Under the instruction of cell-fate–determining, DNA-binding transcription factors, chromatin-modifying enzymes mediate and maintain cell states throughout development in multicellular organisms. Currently, small molecules modulating the activity of several classes of chromatin-modifying enzymes are available, including clinically approved histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors. We describe the genome-wide expression changes induced by 29 compounds targeting HDACs, DNMTs, histone lysine methyltransferases (HKMTs), and protein arginine methyltransferases (PRMTs) in pancreatic α- and β-cell lines. HDAC inhibitors regulate several hundred transcripts irrespective of the cell type, with distinct clusters of dissimilar activity for hydroxamic acids and orthoamino anilides. In contrast, compounds targeting histone methyltransferases modulate the expression of restricted gene sets in distinct cell types. For example, we find that G9a/GLP methyltransferase inhibitors selectively up-regulate the cholesterol biosynthetic pathway in pancreatic but not liver cells. These data suggest that, despite their conservation across the entire genome and in different cell types, chromatin pathways can be targeted to modulate the expression of selected transcripts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitlin, Alexander D -- Nussenzweig, Michel C -- England -- Nature. 2015 Jan 8;517(7533):139-41. doi: 10.1038/517139a.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional programme in New York City, New York, USA. ; Rockefeller University in New York, New York, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567266" target="_blank"〉PubMed〈/a〉
    Keywords: Allergy and Immunology/*history ; Animals ; Antibodies/chemistry/immunology/therapeutic use ; Antibodies, Monoclonal/history/immunology ; Antigens/immunology ; B-Lymphocytes/*immunology ; Bursa of Fabricius/immunology ; Chickens/immunology ; History, 20th Century ; Humans ; Hybridomas/immunology ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Models, Immunological ; Precursor Cell Lymphoblastic Leukemia-Lymphoma/classification/pathology/therapy ; T-Lymphocytes/immunology ; Thymectomy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2013-10-09
    Description: Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1–infected hu-mice with a combination...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...