ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-02
    Description: Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubio, Jose M C -- Li, Yilong -- Ju, Young Seok -- Martincorena, Inigo -- Cooke, Susanna L -- Tojo, Marta -- Gundem, Gunes -- Pipinikas, Christodoulos P -- Zamora, Jorge -- Raine, Keiran -- Menzies, Andrew -- Roman-Garcia, Pablo -- Fullam, Anthony -- Gerstung, Moritz -- Shlien, Adam -- Tarpey, Patrick S -- Papaemmanuil, Elli -- Knappskog, Stian -- Van Loo, Peter -- Ramakrishna, Manasa -- Davies, Helen R -- Marshall, John -- Wedge, David C -- Teague, Jon W -- Butler, Adam P -- Nik-Zainal, Serena -- Alexandrov, Ludmil -- Behjati, Sam -- Yates, Lucy R -- Bolli, Niccolo -- Mudie, Laura -- Hardy, Claire -- Martin, Sancha -- McLaren, Stuart -- O'Meara, Sarah -- Anderson, Elizabeth -- Maddison, Mark -- Gamble, Stephen -- ICGC Breast Cancer Group -- ICGC Bone Cancer Group -- ICGC Prostate Cancer Group -- Foster, Christopher -- Warren, Anne Y -- Whitaker, Hayley -- Brewer, Daniel -- Eeles, Rosalind -- Cooper, Colin -- Neal, David -- Lynch, Andy G -- Visakorpi, Tapio -- Isaacs, William B -- van't Veer, Laura -- Caldas, Carlos -- Desmedt, Christine -- Sotiriou, Christos -- Aparicio, Sam -- Foekens, John A -- Eyfjord, Jorunn Erla -- Lakhani, Sunil R -- Thomas, Gilles -- Myklebost, Ola -- Span, Paul N -- Borresen-Dale, Anne-Lise -- Richardson, Andrea L -- Van de Vijver, Marc -- Vincent-Salomon, Anne -- Van den Eynden, Gert G -- Flanagan, Adrienne M -- Futreal, P Andrew -- Janes, Sam M -- Bova, G Steven -- Stratton, Michael R -- McDermott, Ultan -- Campbell, Peter J -- 088340/Wellcome Trust/United Kingdom -- 091730/Wellcome Trust/United Kingdom -- 14835/Cancer Research UK/United Kingdom -- C5047/A14835/Cancer Research UK/United Kingdom -- G0900871/Medical Research Council/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- WT100183MA/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):1251343. doi: 10.1126/science.1251343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. ; Department of Physiology, School of Medicine-Center for Resesarch in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Spain. ; Lungs for Living Research Centre, Rayne Institute, University College London (UCL), London, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Department of Clinical Science, University of Bergen, Bergen, Norway. Department of Oncology, Haukeland University Hospital, Bergen, Norway. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Human Genome Laboratory, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Department of Haematology, University of Cambridge, Cambridge, UK. ; University of Liverpool and HCA Pathology Laboratories, London, UK. ; Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. ; Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK. ; Institute of Cancer Research, Sutton, London, UK. University of East Anglia, Norwich, UK. ; Institute of Cancer Research, Sutton, London, UK. ; Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland. ; Johns Hopkins University, Baltimore, MD, USA. ; Netherlands Cancer Institute, Amsterdam, Netherlands. ; Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium. ; British Columbia Cancer Agency, Vancouver, Canada. ; Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands. ; Cancer Research Laboratory, University of Iceland, Reykjavik, Iceland. ; School of Medicine, University of Queensland, Brisbane, Australia. Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia. UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia. ; Universite Lyon 1, Institut National du Cancer (INCa)-Synergie, Lyon, France. ; Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. ; Department of Radiation Oncology and Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands. ; Dana-Farber Cancer Institute, Boston, MA, USA. ; Department of Pathology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands. ; Institut Bergonie, 229 cours de l'Argone, 33076 Bordeaux, France. Institut Curie, Department of Tumor Biology, 26 rue d'Ulm, 75248 Paris cedex 05, France. ; Translational Cancer Research Unit and Department of Pathology, GZA Hospitals, Antwerp, Belgium. ; Royal National Orthopaedic Hospital, Middlesex, UK. UCL Cancer Institute, University College London, London, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. MD Anderson Cancer Center, Houston, TX, USA. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. Department of Haematology, University of Cambridge, Cambridge, UK. pc8@sanger.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082706" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinogenesis/genetics ; Chromatin/chemistry ; *DNA Transposable Elements ; Exons ; Genome, Human ; Humans ; *Long Interspersed Nucleotide Elements ; Mutagenesis, Insertional ; Neoplasms/*genetics ; *Transduction, Genetic ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-24
    Description: A central tenet in evolutionary theory is that mutations occur randomly with respect to their value to an organism; selection then governs whether they are fixed in a population. This principle has been challenged by long-standing theoretical models predicting that selection could modulate the rate of mutation itself. However, our understanding of how the mutation rate varies between different sites within a genome has been hindered by technical difficulties in measuring it. Here we present a study that overcomes previous limitations by combining phylogenetic and population genetic techniques. Upon comparing 34 Escherichia coli genomes, we observe that the neutral mutation rate varies by more than an order of magnitude across 2,659 genes, with mutational hot and cold spots spanning several kilobases. Importantly, the variation is not random: we detect a lower rate in highly expressed genes and in those undergoing stronger purifying selection. Our observations suggest that the mutation rate has been evolutionarily optimized to reduce the risk of deleterious mutations. Current knowledge of factors influencing the mutation rate-including transcription-coupled repair and context-dependent mutagenesis-do not explain these observations, indicating that additional mechanisms must be involved. The findings have important implications for our understanding of evolution and the control of mutations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martincorena, Inigo -- Seshasayee, Aswin S N -- Luscombe, Nicholas M -- England -- Nature. 2012 May 3;485(7396):95-8. doi: 10.1038/nature10995.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK. martinco@ebi.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22522932" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Escherichia coli/genetics ; Genome, Bacterial/genetics ; *Models, Genetic ; Mutagenesis/*genetics ; Phylogeny ; Risk ; Selection, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: The somatic mutations present in the genome of a cell accumulate over the lifetime of a multicellular organism. These mutations can provide insights into the developmental lineage tree, the number of divisions that each cell has undergone and the mutational processes that have been operative. Here we describe whole genomes of clonal lines derived from multiple tissues of healthy mice. Using somatic base substitutions, we reconstructed the early cell divisions of each animal, demonstrating the contributions of embryonic cells to adult tissues. Differences were observed between tissues in the numbers and types of mutations accumulated by each cell, which likely reflect differences in the number of cell divisions they have undergone and varying contributions of different mutational processes. If somatic mutation rates are similar to those in mice, the results indicate that precise insights into development and mutagenesis of normal human cells will be possible.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Behjati, Sam -- Huch, Meritxell -- van Boxtel, Ruben -- Karthaus, Wouter -- Wedge, David C -- Tamuri, Asif U -- Martincorena, Inigo -- Petljak, Mia -- Alexandrov, Ludmil B -- Gundem, Gunes -- Tarpey, Patrick S -- Roerink, Sophie -- Blokker, Joyce -- Maddison, Mark -- Mudie, Laura -- Robinson, Ben -- Nik-Zainal, Serena -- Campbell, Peter -- Goldman, Nick -- van de Wetering, Marc -- Cuppen, Edwin -- Clevers, Hans -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 092096/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 104151/Wellcome Trust/United Kingdom -- WT100183MA/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Sep 18;513(7518):422-5. doi: 10.1038/nature13448. Epub 2014 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK [2] Department of Paediatrics, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands [2] [3] Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK. ; 1] Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands [2]. ; Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. ; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, CancerGenomiCs.nl &University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands. ; 1] Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK [2] East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043003" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks/genetics ; Cell Division ; Cell Lineage/*genetics ; Cells, Cultured ; Clone Cells/*cytology/*metabolism ; Embryo, Mammalian/cytology ; Genome/*genetics ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Mutagenesis/*genetics ; Mutation/*genetics ; Mutation Rate ; Organoids/cytology/metabolism ; Phylogeny ; Sequence Analysis, DNA ; Tail/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-25
    Description: Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918581/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3918581/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murchison, Elizabeth P -- Wedge, David C -- Alexandrov, Ludmil B -- Fu, Beiyuan -- Martincorena, Inigo -- Ning, Zemin -- Tubio, Jose M C -- Werner, Emma I -- Allen, Jan -- De Nardi, Andrigo Barboza -- Donelan, Edward M -- Marino, Gabriele -- Fassati, Ariberto -- Campbell, Peter J -- Yang, Fengtang -- Burt, Austin -- Weiss, Robin A -- Stratton, Michael R -- 088340/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- G0501446/Medical Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- G9721629/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2014 Jan 24;343(6169):437-40. doi: 10.1126/science.1247167.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24458646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/*genetics ; Dog Diseases/*genetics ; Dogs/*genetics ; Founder Effect ; Gene Dosage ; Genome ; Karyotype ; Mutation ; Retroelements ; Venereal Tumors, Veterinary/*epidemiology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-09-26
    Description: Spontaneously occurring mutations accumulate in somatic cells throughout a person's lifetime. The majority of these mutations do not have a noticeable effect, but some can alter key cellular functions. Early somatic mutations can cause developmental disorders, whereas the progressive accumulation of mutations throughout life can lead to cancer and contribute to aging. Genome sequencing has revolutionized our understanding of somatic mutation in cancer, providing a detailed view of the mutational processes and genes that drive cancer. Yet, fundamental gaps remain in our knowledge of how normal cells evolve into cancer cells. We briefly summarize a number of the lessons learned over 5 years of cancer genome sequencing and discuss their implications for our understanding of cancer progression and aging.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martincorena, Inigo -- Campbell, Peter J -- 103858/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1483-9. doi: 10.1126/science.aab4082. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. ; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. Department of Haematology, University of Cambridge, Cambridge, UK. pc8@sanger.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404825" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics ; DNA Mutational Analysis ; Evolution, Molecular ; Genome, Human ; Humans ; *Mutagenesis ; *Mutation ; Neoplasms/epidemiology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-23
    Description: How somatic mutations accumulate in normal cells is central to understanding cancer development but is poorly understood. We performed ultradeep sequencing of 74 cancer genes in small (0.8 to 4.7 square millimeters) biopsies of normal skin. Across 234 biopsies of sun-exposed eyelid epidermis from four individuals, the burden of somatic mutations averaged two to six mutations per megabase per cell, similar to that seen in many cancers, and exhibited characteristic signatures of exposure to ultraviolet light. Remarkably, multiple cancer genes are under strong positive selection even in physiologically normal skin, including most of the key drivers of cutaneous squamous cell carcinomas. Positively selected mutations were found in 18 to 32% of normal skin cells at a density of ~140 driver mutations per square centimeter. We observed variability in the driver landscape among individuals and variability in the sizes of clonal expansions across genes. Thus, aged sun-exposed skin is a patchwork of thousands of evolving clones with over a quarter of cells carrying cancer-causing mutations while maintaining the physiological functions of epidermis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4471149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martincorena, Inigo -- Roshan, Amit -- Gerstung, Moritz -- Ellis, Peter -- Van Loo, Peter -- McLaren, Stuart -- Wedge, David C -- Fullam, Anthony -- Alexandrov, Ludmil B -- Tubio, Jose M -- Stebbings, Lucy -- Menzies, Andrew -- Widaa, Sara -- Stratton, Michael R -- Jones, Philip H -- Campbell, Peter J -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- 103858/Wellcome Trust/United Kingdom -- C609/A17257/Cancer Research UK/United Kingdom -- WT088340MA/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 May 22;348(6237):880-6. doi: 10.1126/science.aaa6806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. ; MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK. ; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. Francis Crick Institute, London, UK. Department of Human Genetics, University of Leuven, Leuven, Belgium. ; MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, UK. phj20@mrc-cu.cam.ac.uk pc8@sanger.ac.uk. ; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK. Department of Haematology, University of Cambridge, Cambridge, UK. phj20@mrc-cu.cam.ac.uk pc8@sanger.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999502" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Squamous Cell/*genetics/pathology ; *Clonal Evolution ; Epidermis/metabolism/pathology/radiation effects ; Eyelids/metabolism/pathology/radiation effects ; *Genes, Neoplasm ; Humans ; *Mutation/genetics/radiation effects ; Neoplasms, Radiation-Induced/genetics/pathology ; *Selection, Genetic ; Skin Neoplasms/*genetics/pathology ; Tumor Burden/*genetics/radiation effects ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-05-03
    Description: We analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, another with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nik-Zainal, Serena -- Davies, Helen -- Staaf, Johan -- Ramakrishna, Manasa -- Glodzik, Dominik -- Zou, Xueqing -- Martincorena, Inigo -- Alexandrov, Ludmil B -- Martin, Sancha -- Wedge, David C -- Van Loo, Peter -- Ju, Young Seok -- Smid, Marcel -- Brinkman, Arie B -- Morganella, Sandro -- Aure, Miriam R -- Lingjaerde, Ole Christian -- Langerod, Anita -- Ringner, Markus -- Ahn, Sung-Min -- Boyault, Sandrine -- Brock, Jane E -- Broeks, Annegien -- Butler, Adam -- Desmedt, Christine -- Dirix, Luc -- Dronov, Serge -- Fatima, Aquila -- Foekens, John A -- Gerstung, Moritz -- Hooijer, Gerrit K J -- Jang, Se Jin -- Jones, David R -- Kim, Hyung-Yong -- King, Tari A -- Krishnamurthy, Savitri -- Lee, Hee Jin -- Lee, Jeong-Yeon -- Li, Yilong -- McLaren, Stuart -- Menzies, Andrew -- Mustonen, Ville -- O'Meara, Sarah -- Pauporte, Iris -- Pivot, Xavier -- Purdie, Colin A -- Raine, Keiran -- Ramakrishnan, Kamna -- Rodriguez-Gonzalez, F German -- Romieu, Gilles -- Sieuwerts, Anieta M -- Simpson, Peter T -- Shepherd, Rebecca -- Stebbings, Lucy -- Stefansson, Olafur A -- Teague, Jon -- Tommasi, Stefania -- Treilleux, Isabelle -- Van den Eynden, Gert G -- Vermeulen, Peter -- Vincent-Salomon, Anne -- Yates, Lucy -- Caldas, Carlos -- Veer, Laura Van't -- Tutt, Andrew -- Knappskog, Stian -- Tan, Benita Kiat Tee -- Jonkers, Jos -- Borg, Ake -- Ueno, Naoto T -- Sotiriou, Christos -- Viari, Alain -- Futreal, P Andrew -- Campbell, Peter J -- Span, Paul N -- Van Laere, Steven -- Lakhani, Sunil R -- Eyfjord, Jorunn E -- Thompson, Alastair M -- Birney, Ewan -- Stunnenberg, Hendrik G -- van de Vijver, Marc J -- Martens, John W M -- Borresen-Dale, Anne-Lise -- Richardson, Andrea L -- Kong, Gu -- Thomas, Gilles -- Stratton, Michael R -- Nature. 2016 May 2. doi: 10.1038/nature17676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK. ; East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 9NB, UK. ; Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund SE-223 81, Sweden. ; Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, New Mexico, USA. ; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. ; Department of Human Genetics, University of Leuven, B-3000 Leuven, Belgium. ; Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam 3015CN, The Netherlands. ; Radboud University, Department of Molecular Biology, Faculty of Science, 6525GA Nijmegen, The Netherlands. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo 0310, Norway. ; K. G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo 0310, Norway. ; Department of Computer Science, University of Oslo, Oslo, Norway. ; Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, South Korea. ; Translational Research Lab, Centre Leon Berard, 28, rue Laennec, 69373 Lyon Cedex 08, France. ; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands. ; Breast Cancer Translational Research Laboratory, Universite Libre de Bruxelles, Institut Jules Bordet, Bd de Waterloo 121, B-1000 Brussels, Belgium. ; Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium. ; Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA. ; Department of Pathology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. ; Department of Pathology, Asan Medical Center, College of Medicine, Ulsan University, Ulsan, South Korea. ; Department of Pathology, College of Medicine, Hanyang University, Seoul 133-791, South Korea. ; Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA. ; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard., Houston, Texas 77030, USA. ; Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, South Korea. ; Institut National du Cancer, Research Division, Clinical Research Department, 52 avenue Morizet, 92513 Boulogne-Billancourt, France. ; University Hospital of Minjoz, INSERM UMR 1098, Bd Fleming, Besancon 25000, France. ; Pathology Department, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK. ; Oncologie Senologie, ICM Institut Regional du Cancer, Montpellier, France. ; The University of Queensland, UQ Centre for Clinical Research and School of Medicine, Brisbane, Queensland 4029, Australia. ; Cancer Research Laboratory, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland. ; IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy. ; Department of Pathology, Centre Leon Berard, 28 rue Laennec, 69373 Lyon Cedex 08, France. ; Department of Pathology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium. ; Institut Curie, Paris Sciences Lettres University, Department of Pathology and INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France. ; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK. ; Breast Cancer Now Research Unit, King's College London, London SE1 9RT, UK. ; Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London SW3 6JB, UK. ; Department of Clinical Science, University of Bergen, 5020 Bergen, Norway. ; Department of Oncology, Haukeland University Hospital, 5021 Bergen, Norway. ; National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore. ; Singapore General Hospital, Outram Road, 169608, Singapore. ; Equipe Erable, INRIA Grenoble-Rhone-Alpes, 655, Avenue de l'Europe, 38330 Montbonnot-Saint Martin, France. ; Synergie Lyon Cancer, Centre Leon Berard, 28 rue Laennec, Lyon Cedex 08, France. ; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, Texas 77230, USA. ; Department of Radiation Oncology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen 6525GA, The Netherlands. ; Pathology Queensland, The Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia. ; Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27135926" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-02
    Description: Despite years of extensive cancer genome sequencing, very little is known about the extent of somatic mutation and selection in normal tissues. To address this, we recently performed a sequencing study of 234 small biopsies of normal skin from four middle-aged healthy individuals (1). This study revealed that cells from...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: 〈p〉The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with 〈i〉NOTCH1〈/i〉 and 〈i〉TP53〈/i〉 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of 〈i〉NOTCH1〈/i〉 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: 〈p〉The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with 〈i〉NOTCH1〈/i〉 and 〈i〉TP53〈/i〉 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of 〈i〉NOTCH1〈/i〉 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...