ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-19
    Description: Major international projects are underway that are aimed at creating a comprehensive catalogue of all the genes responsible for the initiation and progression of cancer. These studies involve the sequencing of matched tumour-normal samples followed by mathematical analysis to identify those genes in which mutations occur more frequently than expected by random chance. Here we describe a fundamental problem with cancer genome studies: as the sample size increases, the list of putatively significant genes produced by current analytical methods burgeons into the hundreds. The list includes many implausible genes (such as those encoding olfactory receptors and the muscle protein titin), suggesting extensive false-positive findings that overshadow true driver events. We show that this problem stems largely from mutational heterogeneity and provide a novel analytical methodology, MutSigCV, for resolving the problem. We apply MutSigCV to exome sequences from 3,083 tumour-normal pairs and discover extraordinary variation in mutation frequency and spectrum within cancer types, which sheds light on mutational processes and disease aetiology, and in mutation frequency across the genome, which is strongly correlated with DNA replication timing and also with transcriptional activity. By incorporating mutational heterogeneity into the analyses, MutSigCV is able to eliminate most of the apparent artefactual findings and enable the identification of genes truly associated with cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919509/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lawrence, Michael S -- Stojanov, Petar -- Polak, Paz -- Kryukov, Gregory V -- Cibulskis, Kristian -- Sivachenko, Andrey -- Carter, Scott L -- Stewart, Chip -- Mermel, Craig H -- Roberts, Steven A -- Kiezun, Adam -- Hammerman, Peter S -- McKenna, Aaron -- Drier, Yotam -- Zou, Lihua -- Ramos, Alex H -- Pugh, Trevor J -- Stransky, Nicolas -- Helman, Elena -- Kim, Jaegil -- Sougnez, Carrie -- Ambrogio, Lauren -- Nickerson, Elizabeth -- Shefler, Erica -- Cortes, Maria L -- Auclair, Daniel -- Saksena, Gordon -- Voet, Douglas -- Noble, Michael -- DiCara, Daniel -- Lin, Pei -- Lichtenstein, Lee -- Heiman, David I -- Fennell, Timothy -- Imielinski, Marcin -- Hernandez, Bryan -- Hodis, Eran -- Baca, Sylvan -- Dulak, Austin M -- Lohr, Jens -- Landau, Dan-Avi -- Wu, Catherine J -- Melendez-Zajgla, Jorge -- Hidalgo-Miranda, Alfredo -- Koren, Amnon -- McCarroll, Steven A -- Mora, Jaume -- Lee, Ryan S -- Crompton, Brian -- Onofrio, Robert -- Parkin, Melissa -- Winckler, Wendy -- Ardlie, Kristin -- Gabriel, Stacey B -- Roberts, Charles W M -- Biegel, Jaclyn A -- Stegmaier, Kimberly -- Bass, Adam J -- Garraway, Levi A -- Meyerson, Matthew -- Golub, Todd R -- Gordenin, Dmitry A -- Sunyaev, Shamil -- Lander, Eric S -- Getz, Gad -- ES065073/ES/NIEHS NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U24 CA143845/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2013 Jul 11;499(7457):214-8. doi: 10.1038/nature12213. Epub 2013 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23770567" target="_blank"〉PubMed〈/a〉
    Keywords: Artifacts ; DNA Replication Timing ; Exome/genetics ; False Positive Reactions ; Gene Expression ; *Genetic Heterogeneity ; Genome, Human/genetics ; Humans ; Lung Neoplasms/genetics ; Mutation/*genetics ; Mutation Rate ; Neoplasms/classification/*genetics/pathology ; Neoplasms, Squamous Cell/genetics ; Oncogenes/*genetics ; Reproducibility of Results ; Sample Size
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-11
    Description: Prostate cancer is the second most common cause of male cancer deaths in the United States. However, the full range of prostate cancer genomic alterations is incompletely characterized. Here we present the complete sequence of seven primary human prostate cancers and their paired normal counterparts. Several tumours contained complex chains of balanced (that is, 'copy-neutral') rearrangements that occurred within or adjacent to known cancer genes. Rearrangement breakpoints were enriched near open chromatin, androgen receptor and ERG DNA binding sites in the setting of the ETS gene fusion TMPRSS2-ERG, but inversely correlated with these regions in tumours lacking ETS fusions. This observation suggests a link between chromatin or transcriptional regulation and the genesis of genomic aberrations. Three tumours contained rearrangements that disrupted CADM2, and four harboured events disrupting either PTEN (unbalanced events), a prostate tumour suppressor, or MAGI2 (balanced events), a PTEN interacting protein not previously implicated in prostate tumorigenesis. Thus, genomic rearrangements may arise from transcriptional or chromatin aberrancies and engage prostate tumorigenic mechanisms.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075885/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075885/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berger, Michael F -- Lawrence, Michael S -- Demichelis, Francesca -- Drier, Yotam -- Cibulskis, Kristian -- Sivachenko, Andrey Y -- Sboner, Andrea -- Esgueva, Raquel -- Pflueger, Dorothee -- Sougnez, Carrie -- Onofrio, Robert -- Carter, Scott L -- Park, Kyung -- Habegger, Lukas -- Ambrogio, Lauren -- Fennell, Timothy -- Parkin, Melissa -- Saksena, Gordon -- Voet, Douglas -- Ramos, Alex H -- Pugh, Trevor J -- Wilkinson, Jane -- Fisher, Sheila -- Winckler, Wendy -- Mahan, Scott -- Ardlie, Kristin -- Baldwin, Jennifer -- Simons, Jonathan W -- Kitabayashi, Naoki -- MacDonald, Theresa Y -- Kantoff, Philip W -- Chin, Lynda -- Gabriel, Stacey B -- Gerstein, Mark B -- Golub, Todd R -- Meyerson, Matthew -- Tewari, Ashutosh -- Lander, Eric S -- Getz, Gad -- Rubin, Mark A -- Garraway, Levi A -- 2 P50 CA090381-11/CA/NCI NIH HHS/ -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33 CA126674-03/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Feb 10;470(7333):214-20. doi: 10.1038/nature09744.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21307934" target="_blank"〉PubMed〈/a〉
    Keywords: Carrier Proteins/genetics ; Case-Control Studies ; Cell Adhesion Molecules/genetics ; Chromatin/genetics/metabolism ; Chromosome Aberrations ; Chromosome Breakpoints ; Epigenesis, Genetic/genetics ; Gene Expression Regulation, Neoplastic ; Genome, Human/*genetics ; Humans ; Male ; PTEN Phosphohydrolase/genetics/metabolism ; Prostatic Neoplasms/*genetics ; Recombination, Genetic/genetics ; Signal Transduction/genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-05-25
    Description: Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367798/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367798/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berger, Michael F -- Hodis, Eran -- Heffernan, Timothy P -- Deribe, Yonathan Lissanu -- Lawrence, Michael S -- Protopopov, Alexei -- Ivanova, Elena -- Watson, Ian R -- Nickerson, Elizabeth -- Ghosh, Papia -- Zhang, Hailei -- Zeid, Rhamy -- Ren, Xiaojia -- Cibulskis, Kristian -- Sivachenko, Andrey Y -- Wagle, Nikhil -- Sucker, Antje -- Sougnez, Carrie -- Onofrio, Robert -- Ambrogio, Lauren -- Auclair, Daniel -- Fennell, Timothy -- Carter, Scott L -- Drier, Yotam -- Stojanov, Petar -- Singer, Meredith A -- Voet, Douglas -- Jing, Rui -- Saksena, Gordon -- Barretina, Jordi -- Ramos, Alex H -- Pugh, Trevor J -- Stransky, Nicolas -- Parkin, Melissa -- Winckler, Wendy -- Mahan, Scott -- Ardlie, Kristin -- Baldwin, Jennifer -- Wargo, Jennifer -- Schadendorf, Dirk -- Meyerson, Matthew -- Gabriel, Stacey B -- Golub, Todd R -- Wagner, Stephan N -- Lander, Eric S -- Getz, Gad -- Chin, Lynda -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33 CA126674-03/CA/NCI NIH HHS/ -- R33 CA126674-04/CA/NCI NIH HHS/ -- R33 CA155554/CA/NCI NIH HHS/ -- R33 CA155554-01/CA/NCI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 9;485(7399):502-6. doi: 10.1038/nature11071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622578" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Breakpoints/radiation effects ; DNA Damage ; DNA Mutational Analysis ; Gene Expression Regulation, Neoplastic ; Genome, Human/*genetics ; Guanine Nucleotide Exchange Factors/*genetics/metabolism ; Humans ; Melanocytes/metabolism/pathology ; Melanoma/*genetics/pathology ; Mutagenesis/radiation effects ; Mutation/*genetics/radiation effects ; Oncogenes/genetics ; Sunlight/*adverse effects ; Ultraviolet Rays/adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-30
    Description: Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A) and plasticity (they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation. Furthermore, although Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track Th17 cells during immune responses to show that CD4(+) T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF-beta signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gagliani, Nicola -- Amezcua Vesely, Maria Carolina -- Iseppon, Andrea -- Brockmann, Leonie -- Xu, Hao -- Palm, Noah W -- de Zoete, Marcel R -- Licona-Limon, Paula -- Paiva, Ricardo S -- Ching, Travers -- Weaver, Casey -- Zi, Xiaoyuan -- Pan, Xinghua -- Fan, Rong -- Garmire, Lana X -- Cotton, Matthew J -- Drier, Yotam -- Bernstein, Bradley -- Geginat, Jens -- Stockinger, Brigitta -- Esplugues, Enric -- Huber, Samuel -- Flavell, Richard A -- K01 ES025434/ES/NIEHS NIH HHS/ -- K01ES025434/ES/NIEHS NIH HHS/ -- P20 GM103457/GM/NIGMS NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 9;523(7559):221-5. doi: 10.1038/nature14452. Epub 2015 Apr 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunobiology, School of Medicine, Yale University, New Haven, 06520, USA. ; Medizinische Klinik und Poliklinik, Universitatsklinikum Hamburg-Eppendorf, Hamburg 20246, Germany. ; 1] Department of Immunobiology, School of Medicine, Yale University, New Haven, 06520, USA [2] Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; 1] Department of Immunobiology, School of Medicine, Yale University, New Haven, 06520, USA [2] Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, D.F. Mexico 04510, Mexico (P.L.-L.); Department of Cell Biology, Second Military Medical University, Shanghai 200433, China (X.Z.). ; University of Hawaii Cancer Center, Manoa 96813, USA. ; Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA. ; 1] Department of Biomedical Engineering, Yale University, New Haven, 06520, USA [2] Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, D.F. Mexico 04510, Mexico (P.L.-L.); Department of Cell Biology, Second Military Medical University, Shanghai 200433, China (X.Z.). ; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA. ; Department of Biomedical Engineering, Yale University, New Haven, 06520, USA. ; Howard Hughes Medical Institute and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan 20122, Italy. ; Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK. ; Immunology Institute, Mount Sinai School of Medicine, Icahn Medical Institute, New York, New York, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25924064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Transdifferentiation ; Female ; Gene Expression Profiling ; Gene Expression Regulation ; Helminthiasis/immunology ; Male ; Mice ; Nippostrongylus/immunology ; Staphylococcal Infections/immunology ; Staphylococcus aureus/immunology ; T-Lymphocytes, Regulatory/*cytology/*immunology ; Th17 Cells/*cytology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-25
    Description: Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flavahan, William A -- Drier, Yotam -- Liau, Brian B -- Gillespie, Shawn M -- Venteicher, Andrew S -- Stemmer-Rachamimov, Anat O -- Suva, Mario L -- Bernstein, Bradley E -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Jan 7;529(7584):110-4. doi: 10.1038/nature16490. Epub 2015 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA. ; Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26700815" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; CRISPR-Cas Systems/genetics ; Cell Cycle Proteins/metabolism ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/drug effects ; Cells, Cultured ; Chromatin/drug effects/genetics/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; CpG Islands/genetics ; DNA Methylation/drug effects/genetics ; Down-Regulation/drug effects ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/drug effects ; *Gene Expression Regulation, Neoplastic/drug effects ; Glioma/drug therapy/*enzymology/*genetics/pathology ; Glutarates/metabolism ; Humans ; Insulator Elements/drug effects/*genetics ; Isocitrate Dehydrogenase/chemistry/*genetics/metabolism ; Mutation/*genetics ; Oncogenes/*genetics ; Phenotype ; Protein Binding ; Receptor, Platelet-Derived Growth Factor alpha/genetics ; Repressor Proteins/metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-04-17
    Description: We introduce Pathifier, an algorithm that infers pathway deregulation scores for each tumor sample on the basis of expression data. This score is determined, in a context-specific manner, for every particular dataset and type of cancer that is being investigated. The algorithm transforms gene-level information into pathway-level information, generating a...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...