ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aridor, M -- Balch, W E -- New York, N.Y. -- Science. 2000 Feb 4;287(5454):816-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10691557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Cell Line ; Drug Delivery Systems ; Endoplasmic Reticulum/*metabolism/secretion ; Golgi Apparatus/metabolism ; Growth Hormone/chemistry/metabolism/secretion ; Immunophilins/chemistry/metabolism ; Insulin/chemistry/metabolism/secretion ; Ligands ; Mice ; Models, Biological ; Protein Conformation ; Protein Engineering ; Protein Folding ; Recombinant Fusion Proteins/*chemistry/*metabolism/secretion ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-03
    Description: How does the Golgi stack mediate transport of cargo from the endoplasmic reticulum (ER) to the cell surface? A possibility is that cargo-containing vesicles derived from the ER form early Golgi compartments that then mature by retrieval of processing enzymes from later Golgi compartments. Maturation continues at terminal Golgi compartments by retrieval of transport components from the endocytic pathway to promote sorting of cargo to multiple cellular destinations. Hence, retrograde movement may integrate exocytic and endocytic pathways in eukaryotic cells and coordinate membrane flow and cargo transport through the Golgi stack.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allan, B B -- Balch, W E -- GM 33301/GM/NIGMS NIH HHS/ -- GM 42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):63-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Scripps Research Institute, Department of Cell Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10390362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Cell Membrane/metabolism ; Coated Vesicles/metabolism ; Coatomer Protein ; *Endocytosis ; Endoplasmic Reticulum/*metabolism ; *Exocytosis ; Golgi Apparatus/enzymology/*metabolism/ultrastructure ; Membrane Proteins/metabolism ; Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-07-21
    Description: The guanosine triphosphatase Rab1 regulates the transport of newly synthesized proteins from the endoplasmic reticulum to the Golgi apparatus through interaction with effector molecules, but the molecular mechanisms by which this occurs are unknown. Here, the tethering factor p115 was shown to be a Rab1 effector that binds directly to activated Rab1. Rab1 recruited p115 to coat protein complex II (COPII) vesicles during budding from the endoplasmic reticulum, where it interacted with a select set of COPII vesicle-associated SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) to form a cis-SNARE complex that promotes targeting to the Golgi apparatus. We propose that Rab1-regulated assembly of functional effector-SNARE complexes defines a conserved molecular mechanism to coordinate recognition between subcellular compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allan, B B -- Moyer, B D -- Balch, W E -- CA58689/CA/NCI NIH HHS/ -- GM 33301/GM/NIGMS NIH HHS/ -- GM42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):444-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Cell and Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903204" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Transport ; Carrier Proteins/*metabolism ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/*metabolism ; Intracellular Membranes/metabolism ; Membrane Fusion ; *Membrane Glycoproteins ; Membrane Proteins/*metabolism ; Mutation ; Organelles/metabolism ; Phosphoproteins/*metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; SNARE Proteins ; *Saccharomyces cerevisiae Proteins ; *Vesicular Transport Proteins ; Viral Envelope Proteins/metabolism ; rab1 GTP-Binding Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-02-21
    Description: Syntaxins are thought to function during vesicular transport as receptors on the target membrane and to contribute to the specificity of membrane docking and fusion by interacting with vesicle-associated receptors. Here, syntaxin 5 (Syn5) was shown to be an integral component of endoplasmic reticulum-derived transport vesicles. This pool, but not the target, Golgi-associated Syn5 pool, was essential for the assembly of vesicular-tubular pre-Golgi intermediates and the delivery of cargo to the Golgi. The requirement for vesicle-associated Syn5 in transport suggests a reevaluation of the basis for operation of the early secretory pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rowe, T -- Dascher, C -- Bannykh, S -- Plutner, H -- Balch, W E -- CA58689/CA/NCI NIH HHS/ -- GM 42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1998 Jan 30;279(5351):696-700.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9445473" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Antibodies ; Biological Transport ; Carrier Proteins/metabolism ; Cell Line ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/*metabolism/ultrastructure ; Mannose-Binding Lectins ; Membrane Fusion ; *Membrane Glycoproteins ; Membrane Proteins/immunology/*metabolism ; N-Ethylmaleimide-Sensitive Proteins ; Organelles/metabolism ; Qa-SNARE Proteins ; Qb-SNARE Proteins ; Qc-SNARE Proteins ; R-SNARE Proteins ; Rats ; SNARE Proteins ; *Vesicular Transport Proteins ; Vesicular stomatitis Indiana virus/physiology ; Viral Envelope Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-07-25
    Description: Transport of membrane proteins between intracellular compartments requires specific sequences in the protein cytoplasmic domain to direct packaging into vesicle shuttles. A sequence that mediates export from the endoplasmic reticulum (ER) has proved elusive. A di-acidic signal (Asp-X-Glu, where X represents any amino acid) on the cytoplasmic tail of vesicular stomatitis virus glycoprotein (VSV-G) and other cargo molecules was required for efficient recruitment to vesicles mediating export from the ER in baby hamster kidney cells. The existence of such a signal provides evidence that export from the ER occurs through a selective mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishimura, N -- Balch, W E -- GM 42336/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):556-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228004" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/metabolism ; Amino Acid Sequence ; Animals ; Biological Transport ; Cell Line ; Cricetinae ; Cytoplasm/chemistry ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/metabolism ; *Membrane Glycoproteins ; Membrane Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutation ; Protein Folding ; Protein Sorting Signals/chemistry/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/metabolism ; Recombinant Fusion Proteins/metabolism ; Viral Envelope Proteins/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-03-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powers, Evan T -- Balch, William E -- R01 GM033301/GM/NIGMS NIH HHS/ -- R01 HL079442/HL/NHLBI NIH HHS/ -- R01 HL095524/HL/NHLBI NIH HHS/ -- England -- Nature. 2011 Mar 3;471(7336):42-3. doi: 10.1038/471042a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368816" target="_blank"〉PubMed〈/a〉
    Keywords: Cadmium/pharmacology ; Carrier Proteins/chemistry/genetics/metabolism ; Drug Resistance, Bacterial ; Escherichia coli/cytology/drug effects/genetics/*metabolism ; Escherichia coli Proteins/chemistry/genetics/*metabolism ; Molecular Chaperones/genetics/metabolism ; Penicillin Resistance ; Periplasm/drug effects/*metabolism ; Periplasmic Proteins/genetics/*metabolism ; Protein Disulfide-Isomerases/chemistry/genetics/metabolism ; *Protein Folding ; Recombinant Fusion Proteins/chemistry/genetics/metabolism ; beta-Lactamases/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-02-16
    Description: The protein components of eukaryotic cells face acute and chronic challenges to their integrity. Eukaryotic protein homeostasis, or proteostasis, enables healthy cell and organismal development and aging and protects against disease. Here, we describe the proteostasis network, a set of interacting activities that maintain the health of proteome and the organism. Deficiencies in proteostasis lead to many metabolic, oncological, neurodegenerative, and cardiovascular disorders. Small-molecule or biological proteostasis regulators that manipulate the concentration, conformation, quaternary structure, and/or the location of protein(s) have the potential to ameliorate some of the most challenging diseases of our era.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balch, William E -- Morimoto, Richard I -- Dillin, Andrew -- Kelly, Jeffery W -- AG 18917/AG/NIA NIH HHS/ -- AG026647/AG/NIA NIH HHS/ -- AG04342/AG/NIA NIH HHS/ -- DK46336/DK/NIDDK NIH HHS/ -- DK75295/DK/NIDDK NIH HHS/ -- GM38109/GM/NIGMS NIH HHS/ -- NS50636/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):916-9. doi: 10.1126/science.1141448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Institute for Childhood and Neglected Diseases, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276881" target="_blank"〉PubMed〈/a〉
    Keywords: *Aging ; Animals ; Cell Line ; *Cell Physiological Phenomena ; *Drug Therapy ; Homeostasis ; Humans ; Infection/drug therapy/metabolism ; Metabolic Diseases/drug therapy/metabolism ; Metabolic Networks and Pathways ; Neoplasms/drug therapy/metabolism ; Protein Conformation ; Protein Folding ; Protein Transport ; Proteins/*chemistry/*metabolism/therapeutic use ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021983/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021983/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hutt, Darren -- Balch, William E -- P01 AG031097/AG/NIA NIH HHS/ -- R01 DK051870/DK/NIDDK NIH HHS/ -- R01 DK051870-13/DK/NIDDK NIH HHS/ -- R01 GM033301/GM/NIGMS NIH HHS/ -- R01 GM033301-27/GM/NIGMS NIH HHS/ -- R01 GM042336/GM/NIGMS NIH HHS/ -- R01 GM042336-20/GM/NIGMS NIH HHS/ -- R01 HL079442/HL/NHLBI NIH HHS/ -- R01 HL079442-07/HL/NHLBI NIH HHS/ -- R01 HL095524/HL/NHLBI NIH HHS/ -- R01 HL095524-02/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):766-7. doi: 10.1126/science.1194160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705837" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Cell Membrane/*metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator/*chemistry/*metabolism ; Cytosol/metabolism ; Endoplasmic Reticulum/metabolism ; HSP70 Heat-Shock Proteins/metabolism ; HSP90 Heat-Shock Proteins/metabolism ; Homeostasis ; Humans ; Lysosomes/metabolism ; Molecular Chaperones/metabolism ; Mutant Proteins/chemistry/metabolism ; *Protein Folding ; Protein Stability ; Protein Transport ; Proteome/metabolism ; Temperature ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1980-07-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fox, G E -- Stackebrandt, E -- Hespell, R B -- Gibson, J -- Maniloff, J -- Dyer, T A -- Wolfe, R S -- Balch, W E -- Tanner, R S -- Magrum, L J -- Zablen, L B -- Blakemore, R -- Gupta, R -- Bonen, L -- Lewis, B J -- Stahl, D A -- Luehrsen, K R -- Chen, K N -- Woese, C R -- New York, N.Y. -- Science. 1980 Jul 25;209(4455):457-63.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6771870" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*classification ; Base Sequence ; Biological Evolution ; Chloroplasts/analysis ; Clostridium/classification ; Cyanobacteria/classification ; DNA/analysis ; *Phylogeny ; RNA, Ribosomal/*analysis ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-01
    Description: Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (F508 CFTR) is the major cause of cystic fibrosis, one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of patients with cystic fibrosis. Low temperature or inhibition of histone deacetylases can partly rescue F508 CFTR cellular processing defects and function. A favourable change of F508 CFTR protein-protein interactions was proposed as a mechanism of rescue; however, CFTR interactome dynamics during temperature shift and inhibition of histone deacetylases are unknown. Here we report the first comprehensive analysis of the CFTR and F508 CFTR interactome and its dynamics during temperature shift and inhibition of histone deacetylases. By using a novel deep proteomic analysis method, we identify 638 individual high-confidence CFTR interactors and discover a F508 deletion-specific interactome, which is extensively remodelled upon rescue. Detailed analysis of the interactome remodelling identifies key novel interactors, whose loss promote F508 CFTR channel function in primary cystic fibrosis epithelia or which are critical for CFTR biogenesis. Our results demonstrate that global remodelling of F508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of cystic fibrosis caused by deletion of F508.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pankow, Sandra -- Bamberger, Casimir -- Calzolari, Diego -- Martinez-Bartolome, Salvador -- Lavallee-Adam, Mathieu -- Balch, William E -- Yates, John R 3rd -- 5R01HL079442-08/HL/NHLBI NIH HHS/ -- HHSN268201000035C/PHS HHS/ -- P01 AG031097/AG/NIA NIH HHS/ -- P01AG031097/AG/NIA NIH HHS/ -- P41 GM103533/GM/NIGMS NIH HHS/ -- R01 HL079442/HL/NHLBI NIH HHS/ -- R01DK051870/DK/NIDDK NIH HHS/ -- R01HL095524/HL/NHLBI NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):510-6. doi: 10.1038/nature15729. Epub 2015 Nov 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26618866" target="_blank"〉PubMed〈/a〉
    Keywords: Bronchi/cytology ; Cells, Cultured ; Cystic Fibrosis/genetics/*metabolism/*therapy ; Cystic Fibrosis Transmembrane Conductance ; Regulator/biosynthesis/*genetics/*metabolism ; Epithelial Cells/chemistry/metabolism ; Gene Knockdown Techniques ; Glycosylation ; Histone Deacetylase Inhibitors/pharmacology ; Histone Deacetylases/deficiency/metabolism ; Humans ; Mutant Proteins/genetics/metabolism ; Protein Folding ; Protein Interaction Mapping ; *Protein Interaction Maps ; Proteomics ; RNA Interference ; RNAi Therapeutics ; Sequence Deletion/*genetics ; Temperature
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...