ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-12
    Description: Genome-wide association studies (GWASs) have ascertained numerous trait-associated common genetic variants, frequently localized to regulatory DNA. We found that common genetic variation at BCL11A associated with fetal hemoglobin (HbF) level lies in noncoding sequences decorated by an erythroid enhancer chromatin signature. Fine-mapping uncovers a motif-disrupting common variant associated with reduced transcription factor (TF) binding, modestly diminished BCL11A expression, and elevated HbF. The surrounding sequences function in vivo as a developmental stage-specific, lineage-restricted enhancer. Genome engineering reveals the enhancer is required in erythroid but not B-lymphoid cells for BCL11A expression. These findings illustrate how GWASs may expose functional variants of modest impact within causal elements essential for appropriate gene expression. We propose the GWAS-marked BCL11A enhancer represents an attractive target for therapeutic genome engineering for the beta-hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bauer, Daniel E -- Kamran, Sophia C -- Lessard, Samuel -- Xu, Jian -- Fujiwara, Yuko -- Lin, Carrie -- Shao, Zhen -- Canver, Matthew C -- Smith, Elenoe C -- Pinello, Luca -- Sabo, Peter J -- Vierstra, Jeff -- Voit, Richard A -- Yuan, Guo-Cheng -- Porteus, Matthew H -- Stamatoyannopoulos, John A -- Lettre, Guillaume -- Orkin, Stuart H -- 123382/Canadian Institutes of Health Research/Canada -- K08 DK093705/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30 DK049216/DK/NIDDK NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 HG005085/HG/NHGRI NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HL032259/HL/NHLBI NIH HHS/ -- U54HG004594/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):253-7. doi: 10.1126/science.1242088.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115442" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carrier Proteins/*genetics ; Cell Line, Tumor ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; Chromosome Mapping ; *Enhancer Elements, Genetic ; Erythroid Cells/*metabolism ; Fetal Hemoglobin/*biosynthesis/genetics ; *Gene Expression Regulation ; Gene Targeting ; Genetic Engineering ; Genetic Variation ; Genome-Wide Association Study ; Hemoglobinopathies/*genetics/therapy ; Humans ; Mice ; Nuclear Proteins/*genetics ; Precursor Cells, B-Lymphoid/metabolism ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-06-18
    Description: The positioning of nucleosomes along chromatin has been implicated in the regulation of gene expression in eukaryotic cells, because packaging DNA into nucleosomes affects sequence accessibility. We developed a tiled microarray approach to identify at high resolution the translational positions of 2278 nucleosomes over 482 kilobases of Saccharomyces cerevisiae DNA, including almost all of chromosome III and 223 additional regulatory regions. The majority of the nucleosomes identified were well-positioned. We found a stereotyped chromatin organization at Pol II promoters consisting of a nucleosome-free region approximately 200 base pairs upstream of the start codon flanked on both sides by positioned nucleosomes. The nucleosome-free sequences were evolutionarily conserved and were enriched in poly-deoxyadenosine or poly-deoxythymidine sequences. Most occupied transcription factor binding motifs were devoid of nucleosomes, strongly suggesting that nucleosome positioning is a global determinant of transcription factor access.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yuan, Guo-Cheng -- Liu, Yuen-Jong -- Dion, Michael F -- Slack, Michael D -- Wu, Lani F -- Altschuler, Steven J -- Rando, Oliver J -- New York, N.Y. -- Science. 2005 Jul 22;309(5734):626-30. Epub 2005 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bauer Center for Genomics Research, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961632" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromosomes, Fungal/chemistry/*genetics ; Conserved Sequence ; DNA, Fungal/genetics ; DNA, Intergenic/genetics ; Gene Expression ; *Genome, Fungal ; Markov Chains ; Models, Statistical ; *Nucleosomes/ultrastructure ; Oligonucleotide Array Sequence Analysis ; Poly A/analysis ; Poly T/analysis ; Promoter Regions, Genetic ; Regulatory Sequences, Nucleic Acid ; Saccharomyces cerevisiae/*genetics ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-05
    Description: Little is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we show that high-fat diet (HFD)-induced obesity augments the numbers and function of Lgr5(+) intestinal stem cells of the mammalian intestine. Mechanistically, a HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-delta) signature in intestinal stem cells and progenitor cells (non-intestinal stem cells), and pharmacological activation of PPAR-delta recapitulates the effects of a HFD on these cells. Like a HFD, ex vivo treatment of intestinal organoid cultures with fatty acid constituents of the HFD enhances the self-renewal potential of these organoid bodies in a PPAR-delta-dependent manner. Notably, HFD- and agonist-activated PPAR-delta signalling endow organoid-initiating capacity to progenitors, and enforced PPAR-delta signalling permits these progenitors to form in vivo tumours after loss of the tumour suppressor Apc. These findings highlight how diet-modulated PPAR-delta activation alters not only the function of intestinal stem and progenitor cells, but also their capacity to initiate tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846772/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846772/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Beyaz, Semir -- Mana, Miyeko D -- Roper, Jatin -- Kedrin, Dmitriy -- Saadatpour, Assieh -- Hong, Sue-Jean -- Bauer-Rowe, Khristian E -- Xifaras, Michael E -- Akkad, Adam -- Arias, Erika -- Pinello, Luca -- Katz, Yarden -- Shinagare, Shweta -- Abu-Remaileh, Monther -- Mihaylova, Maria M -- Lamming, Dudley W -- Dogum, Rizkullah -- Guo, Guoji -- Bell, George W -- Selig, Martin -- Nielsen, G Petur -- Gupta, Nitin -- Ferrone, Cristina R -- Deshpande, Vikram -- Yuan, Guo-Cheng -- Orkin, Stuart H -- Sabatini, David M -- Yilmaz, Omer H -- AI47389/AI/NIAID NIH HHS/ -- DK043351/DK/NIDDK NIH HHS/ -- K08 CA198002/CA/NCI NIH HHS/ -- K99 AG041765/AG/NIA NIH HHS/ -- K99 AG045144/AG/NIA NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R00 AG041765/AG/NIA NIH HHS/ -- R00 AG045144/AG/NIA NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32DK007191/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 3;531(7592):53-8. doi: 10.1038/nature17173.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, MIT, Cambridge, Massachusetts 02139, USA. ; Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Division of Gastroenterology and Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA. ; Departments of Pathology, Gastroenterology, and Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, Massachusetts 02142, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA. ; Division of Digestive Diseases, University of Mississippi Medical Center, Jackson, Missisippi 39216, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935695" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Count ; Cell Self Renewal/drug effects ; Cell Transformation, Neoplastic/*drug effects ; Colonic Neoplasms/*pathology ; Diet, High-Fat/*adverse effects ; Female ; Genes, APC ; Humans ; Intestines/*pathology ; Male ; Mice ; Obesity/chemically induced/pathology ; Organoids/drug effects/metabolism/pathology ; PPAR delta/metabolism ; Signal Transduction/drug effects ; Stem Cell Niche/drug effects ; Stem Cells/*drug effects/metabolism/*pathology ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-17
    Description: Enhancers, critical determinants of cellular identity, are commonly recognized by correlative chromatin marks and gain-of-function potential, although only loss-of-function studies can demonstrate their requirement in the native genomic context. Previously, we identified an erythroid enhancer of human BCL11A, subject to common genetic variation associated with the fetal haemoglobin level, the mouse orthologue of which is necessary for erythroid BCL11A expression. Here we develop pooled clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 guide RNA libraries to perform in situ saturating mutagenesis of the human and mouse enhancers. This approach reveals critical minimal features and discrete vulnerabilities of these enhancers. Despite conserved function of the composite enhancers, their architecture diverges. The crucial human sequences appear to be primate-specific. Through editing of primary human progenitors and mouse transgenesis, we validate the BCL11A erythroid enhancer as a target for fetal haemoglobin reinduction. The detailed enhancer map will inform therapeutic genome editing, and the screening approach described here is generally applicable to functional interrogation of non-coding genomic elements.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Canver, Matthew C -- Smith, Elenoe C -- Sher, Falak -- Pinello, Luca -- Sanjana, Neville E -- Shalem, Ophir -- Chen, Diane D -- Schupp, Patrick G -- Vinjamur, Divya S -- Garcia, Sara P -- Luc, Sidinh -- Kurita, Ryo -- Nakamura, Yukio -- Fujiwara, Yuko -- Maeda, Takahiro -- Yuan, Guo-Cheng -- Zhang, Feng -- Orkin, Stuart H -- Bauer, Daniel E -- 5DP1-MH100706/DP/NCCDPHP CDC HHS/ -- 5R01-DK097768/DK/NIDDK NIH HHS/ -- F30DK103359-01A1/DK/NIDDK NIH HHS/ -- K08DK093705/DK/NIDDK NIH HHS/ -- K99 HG008171/HG/NHGRI NIH HHS/ -- K99-HG008171/HG/NHGRI NIH HHS/ -- K99HG008399/HG/NHGRI NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- P01HL032262/HL/NHLBI NIH HHS/ -- P30DK049216/DK/NIDDK NIH HHS/ -- R01 A1084905/PHS HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R01HG005085/HG/NHGRI NIH HHS/ -- R01HL119099/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Nov 12;527(7577):192-7. doi: 10.1038/nature15521. Epub 2015 Sep 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences and Department of Biological Engineering, MIT, Cambridge, Massachusetts 02142, USA. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan. ; Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan. ; Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA. ; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26375006" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Associated Proteins/*metabolism ; CRISPR-Cas Systems/genetics ; Carrier Proteins/*genetics ; Cells, Cultured ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; Enhancer Elements, Genetic/*genetics ; Erythroblasts/metabolism ; Fetal Hemoglobin/genetics ; *Genetic Engineering ; Genome/genetics ; Humans ; Mice ; Molecular Sequence Data ; Mutagenesis/*genetics ; Nuclear Proteins/*genetics ; Organ Specificity ; RNA, Guide/genetics ; Reproducibility of Results ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-30
    Description: MICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells. These antibodies inhibited tumor growth in multiple fully immunocompetent mouse models and reduced human melanoma metastases in a humanized mouse model. Antitumor immunity was mediated mainly by natural killer (NK) cells through activation of NKG2D and CD16 Fc receptors. This approach prevents the loss of important immunostimulatory ligands by human cancers and reactivates antitumor immunity.
    Keywords: Immunology, Medicine, Diseases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-04-19
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-31
    Description: We present single-cell clustering using bifurcation analysis (SCUBA), a novel computational method for extracting lineage relationships from single-cell gene expression data and modeling the dynamic changes associated with cell differentiation. SCUBA draws techniques from nonlinear dynamics and stochastic differential equation theories, providing a systematic framework for modeling complex processes involving...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-20
    Description: Single-cell gene expression data provide invaluable resources for systematic characterization of cellular hierarchy in multi-cellular organisms. However, cell lineage reconstruction is still often associated with significant uncertainty due to technological constraints. Such uncertainties have not been taken into account in current methods. We present ECLAIR (Ensemble Cell Lineage Analysis with Improved Robustness), a novel computational method for the statistical inference of cell lineage relationships from single-cell gene expression data. ECLAIR uses an ensemble approach to improve the robustness of lineage predictions, and provides a quantitative estimate of the uncertainty of lineage branchings. We show that the application of ECLAIR to published datasets successfully reconstructs known lineage relationships and significantly improves the robustness of predictions. ECLAIR is a powerful bioinformatics tool for single-cell data analysis. It can be used for robust lineage reconstruction with quantitative estimate of prediction accuracy.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-13
    Description: Epigenetic mechanisms play an important role in the regulation of cell type-specific gene activities, yet how epigenetic patterns are established and maintained remains poorly understood. Recent studies have supported a role of DNA sequences in recruitment of epigenetic regulators. Alignment-free methods have been applied to identify distinct sequence features that are associated with epigenetic patterns and to predict epigenomic profiles. Here, we review recent advances in such applications, including the methods to map DNA sequence to feature space, sequence comparison and prediction models. Computational studies using these methods have provided important insights into the epigenetic regulatory mechanisms.
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...