ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-05-20
    Description: Transistors with exfoliated two-dimensional (2D) materials on a SiO 2 /Si substrate have been applied and have been proven effective in a wide range of applications, such as circuits, memory, photodetectors, gas sensors, optical modulators, valleytronics, and spintronics. However, these devices usually suffer from limited gate control because of the thick SiO 2 gate dielectric and the lack of reliable transfer method. We introduce a new back-gate transistor scheme fabricated on a novel Al 2 O 3 /ITO (indium tin oxide)/SiO 2 /Si "stack" substrate, which was engineered with distinguishable optical identification of exfoliated 2D materials. High-quality exfoliated 2D materials could be easily obtained and recognized on this stack. Two typical 2D materials, MoS 2 and ReS 2 , were implemented to demonstrate the enhancement of gate controllability. Both transistors show excellent electrical characteristics, including steep subthreshold swing (62 mV dec –1 for MoS 2 and 83 mV dec –1 for ReS 2 ), high mobility (61.79 cm 2 V –1 s –1 for MoS 2 and 7.32 cm 2 V –1 s –1 for ReS 2 ), large on/off ratio (~10 7 ), and reasonable working gate bias (below 3 V). Moreover, MoS 2 and ReS 2 photodetectors fabricated on the basis of the scheme have impressively leading photoresponsivities of 4000 and 760 A W –1 in the depletion area, respectively, and both have exceeded 10 6 A W –1 in the accumulation area, which is the best ever obtained. This opens up a suite of applications of this novel platform in 2D materials research with increasing needs of enhanced gate control.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-23
    Description: 5-Hydroxymethylcytosine (5-hmC) may represent a new epigenetic modification of cytosine. While the dynamics of 5-hmC during neurodevelopment have recently been reported, little is known about its genomic distribution and function(s) in neurodegenerative diseases such as Huntington's disease (HD). We here observed a marked reduction of the 5-hmC signal in YAC128 (yeast artificial chromosome transgene with 128 CAG repeats) HD mouse brain tissues when compared with age-matched wild-type (WT) mice, suggesting a deficiency of 5-hmC reconstruction in HD brains during postnatal development. Genome-wide distribution analysis of 5-hmC further confirmed the diminishment of the 5-hmC signal in striatum and cortex in YAC128 HD mice. General genomic features of 5-hmC are highly conserved, not being affected by either disease or brain regions. Intriguingly, we have identified disease-specific (YAC128 versus WT) differentially hydroxymethylated regions (DhMRs), and found that acquisition of DhmRs in gene body is a positive epigenetic regulator for gene expression. Ingenuity pathway analysis (IPA) of genotype-specific DhMR-annotated genes revealed that alternation of a number of canonical pathways involving neuronal development/differentiation (Wnt/β-catenin/Sox pathway, axonal guidance signaling pathway) and neuronal function/survival (glutamate receptor/calcium/CREB, GABA receptor signaling, dopamine-DARPP32 feedback pathway, etc.) could be important for the onset of HD. Our results indicate that loss of the 5-hmC marker is a novel epigenetic feature in HD, and that this aberrant epigenetic regulation may impair the neurogenesis, neuronal function and survival in HD brain. Our study also opens a new avenue for HD treatment; re-establishing the native 5-hmC landscape may have the potential to slow/halt the progression of HD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-09
    Description: Use of multi-model ensembles from global climate models to simulate the current and future climate change has flourished as a research topic during recent decades. This paper assesses the performance of multi-model ensembles in simulating global land temperature from 1960 to 1999, using Nash-Sutcliffe model efficiency and Taylor diagrams. The future trends of temperature for different scales and emission scenarios are projected based on the posterior model probabilities estimated by Bayesian methods. The results show that ensemble prediction can improve the accuracy of simulations of the spatiotemporal distribution of global temperature. The performance of Bayesian model averaging (BMA) at simulating the annual temperature dynamic is significantly better than single climate models and their simple model averaging (SMA). However, BMA simulation can demonstrate the temperature trend on the decadal scale, but its annual assessment of accuracy is relatively weak. The ensemble prediction presents dissimilarly accurate descriptions in different regions, and the best performance appears in Australia. The results also indicate that future temperatures in northern Asia rise with the greatest speed in some scenarios, and Australia is the most sensitive region for the effects of greenhouse gas emissions. In addition to the uncertainty of ensemble prediction, the impacts of climate change on agriculture production and water resources are discussed as an extension of this research.
    Print ISSN: 0309-1333
    Electronic ISSN: 1477-0296
    Topics: Geography
    Published by Sage
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd〈sub〉2〈/sub〉As〈sub〉2〈/sub〉. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi–long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-02-01
    Description: Brassinosteroid (BR) homeostasis and signaling are crucial for normal growth and development of plants. BR signaling through cell-surface receptor kinases and intracellular components leads to dephosphorylation and accumulation of the nuclear protein BZR1. How BR signaling regulates gene expression, however, remains unknown. Here we show that BZR1 is a transcriptional repressor that has a previously unknown DNA binding domain and binds directly to the promoters of feedback-regulated BR biosynthetic genes. Microarray analyses identified additional potential targets of BZR1 and illustrated, together with physiological studies, that BZR1 coordinates BR homeostasis and signaling by playing dual roles in regulating BR biosynthesis and downstream growth responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925132/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925132/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Jun-Xian -- Gendron, Joshua M -- Sun, Yu -- Gampala, Srinivas S L -- Gendron, Nathan -- Sun, Catherine Qing -- Wang, Zhi-Yong -- 5T32GM007276/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01 GM066258-04/GM/NIGMS NIH HHS/ -- R01 GM66258-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1634-8. Epub 2005 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681342" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/physiology ; Arabidopsis Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/*metabolism ; Feedback, Physiological ; *Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Homeostasis ; Light ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Growth Regulators/biosynthesis/*metabolism/pharmacology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Steroids/biosynthesis/*metabolism/pharmacology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-08-08
    Description: Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single large-effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckler, Edward S -- Holland, James B -- Bradbury, Peter J -- Acharya, Charlotte B -- Brown, Patrick J -- Browne, Chris -- Ersoz, Elhan -- Flint-Garcia, Sherry -- Garcia, Arturo -- Glaubitz, Jeffrey C -- Goodman, Major M -- Harjes, Carlos -- Guill, Kate -- Kroon, Dallas E -- Larsson, Sara -- Lepak, Nicholas K -- Li, Huihui -- Mitchell, Sharon E -- Pressoir, Gael -- Peiffer, Jason A -- Rosas, Marco Oropeza -- Rocheford, Torbert R -- Romay, M Cinta -- Romero, Susan -- Salvo, Stella -- Sanchez Villeda, Hector -- da Silva, H Sofia -- Sun, Qi -- Tian, Feng -- Upadyayula, Narasimham -- Ware, Doreen -- Yates, Heather -- Yu, Jianming -- Zhang, Zhiwu -- Kresovich, Stephen -- McMullen, Michael D -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):714-8. doi: 10.1126/science.1174276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture (USDA)-Agricultural Research Service (USDA-ARS), USA. esb33@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661422" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Epistasis, Genetic ; Flowers/*genetics/growth & development ; Gene Frequency ; Genes, Plant ; Genetic Variation ; Geography ; Inbreeding ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; Quantitative Trait, Heritable ; Recombination, Genetic ; Time Factors ; Zea mays/*genetics/growth & development/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-08-08
    Description: Maize genetic diversity has been used to understand the molecular basis of phenotypic variation and to improve agricultural efficiency and sustainability. We crossed 25 diverse inbred maize lines to the B73 reference line, capturing a total of 136,000 recombination events. Variation for recombination frequencies was observed among families, influenced by local (cis) genetic variation. We identified evidence for numerous minor single-locus effects but little two-locus linkage disequilibrium or segregation distortion, which indicated a limited role for genes with large effects and epistatic interactions on fitness. We observed excess residual heterozygosity in pericentromeric regions, which suggested that selection in inbred lines has been less efficient in these regions because of reduced recombination frequency. This implies that pericentromeric regions may contribute disproportionally to heterosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMullen, Michael D -- Kresovich, Stephen -- Villeda, Hector Sanchez -- Bradbury, Peter -- Li, Huihui -- Sun, Qi -- Flint-Garcia, Sherry -- Thornsberry, Jeffry -- Acharya, Charlotte -- Bottoms, Christopher -- Brown, Patrick -- Browne, Chris -- Eller, Magen -- Guill, Kate -- Harjes, Carlos -- Kroon, Dallas -- Lepak, Nick -- Mitchell, Sharon E -- Peterson, Brooke -- Pressoir, Gael -- Romero, Susan -- Oropeza Rosas, Marco -- Salvo, Stella -- Yates, Heather -- Hanson, Mark -- Jones, Elizabeth -- Smith, Stephen -- Glaubitz, Jeffrey C -- Goodman, Major -- Ware, Doreen -- Holland, James B -- Buckler, Edward S -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):737-40. doi: 10.1126/science.1174320.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Department of Agriculture-Agriculture Research Service (USDA-ARS), USA. mcmullenm@missouri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661427" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Centromere/genetics ; *Chromosome Mapping ; Chromosomes, Plant/*genetics ; Crosses, Genetic ; Epistasis, Genetic ; Flowers/genetics/growth & development ; *Genetic Variation ; Genome, Plant ; Heterozygote ; Hybrid Vigor ; Inbreeding ; Linkage Disequilibrium ; Phenotype ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Recombination, Genetic ; Selection, Genetic ; Zea mays/classification/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-10
    Description: As the semiconductor devices of integrated circuits approach the physical limitations of scaling, alternative transistor and memory designs are needed to achieve improvements in speed, density, and power consumption. We report on a transistor that uses an embedded tunneling field-effect transistor for charging and discharging the semi-floating gate. This transistor operates at low voltages (〈/=2.0 volts), with a large threshold voltage window of 3.1 volts, and can achieve ultra-high-speed writing operations (on time scales of ~1 nanosecond). A linear dependence of drain current on light intensity was observed when the transistor was exposed to light, so possible applications include image sensing with high density and performance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Peng-Fei -- Lin, Xi -- Liu, Lei -- Sun, Qing-Qing -- Zhou, Peng -- Liu, Xiao-Yong -- Liu, Wei -- Gong, Yi -- Zhang, David Wei -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):640-3. doi: 10.1126/science.1240961.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, China. pfw@fudan.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929978" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-10-20
    Description: In the development of topological photonics, achieving three-dimensional topological insulators is of notable interest since it enables the exploration of new topological physics with photons and promises novel photonic devices that are robust against disorders in three dimensions. Previous theoretical proposals toward three-dimensional topological insulators use complex geometries that are challenging to implement. On the basis of the concept of synthetic dimension, we show that a two-dimensional array of ring resonators, which was previously demonstrated to exhibit a two-dimensional topological insulator phase, automatically becomes a three-dimensional topological insulator when the frequency dimension is taken into account. Moreover, by modulating a few of the resonators, a screw dislocation along the frequency axis can be created, which provides robust one-way transport of photons along the frequency axis. Demonstrating the physics of screw dislocation in a topological system has been a substantial challenge in solid-state systems. Our work indicates that the physics of three-dimensional topological insulators can be explored in standard integrated photonic platforms, leading to opportunities for novel devices that control the frequency of light.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...