ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (2,121)
  • Cell Line  (2,037)
  • Chemical Engineering
  • American Association for the Advancement of Science (AAAS)  (3,899)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2016-04-30
    Description: Noncoding variants play a central role in the genetics of complex traits, but we still lack a full understanding of the molecular pathways through which they act. We quantified the contribution of cis-acting genetic effects at all major stages of gene regulation from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65% of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also detected 2893 splicing QTLs, most of which have little or no effect on gene-level expression. These splicing QTLs are major contributors to complex traits, roughly on a par with variants that affect gene expression levels. Our study provides a comprehensive view of the mechanisms linking genetic variation to variation in human gene regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang I -- van de Geijn, Bryce -- Raj, Anil -- Knowles, David A -- Petti, Allegra A -- Golan, David -- Gilad, Yoav -- Pritchard, Jonathan K -- R01MH084703/MH/NIMH NIH HHS/ -- R01MH101825/MH/NIMH NIH HHS/ -- U01HG007036/HG/NHGRI NIH HHS/ -- U54CA149145/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. ; Department of Computer Science, Stanford University, Stanford, CA, USA. Department of Radiology, Stanford University, Stanford, CA, USA. ; Genome Institute, Washington University in St. Louis, St. Louis, MO, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL, USA. gilad@uchicago.edu pritch@stanford.edu. ; Department of Genetics, Stanford University, Stanford, CA, USA. Department of Biology, Stanford University, Stanford, CA, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. gilad@uchicago.edu pritch@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27126046" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/metabolism ; *Gene Expression Regulation ; *Genetic Variation ; Genome-Wide Association Study ; Humans ; Immune System Diseases/*genetics ; Lymphocytes/immunology ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; RNA Splicing/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Hydroxymethylcytosine, well described in DNA, occurs also in RNA. Here, we show that hydroxymethylcytosine preferentially marks polyadenylated RNAs and is deposited by Tet in Drosophila. We map the transcriptome-wide hydroxymethylation landscape, revealing hydroxymethylcytosine in the transcripts of many genes, notably in coding sequences, and identify consensus sites for hydroxymethylation. We found that RNA hydroxymethylation can favor mRNA translation. Tet and hydroxymethylated RNA are found to be most abundant in the Drosophila brain, and Tet-deficient fruitflies suffer impaired brain development, accompanied by decreased RNA hydroxymethylation. This study highlights the distribution, localization, and function of cytosine hydroxymethylation and identifies central roles for this modification in Drosophila.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delatte, Benjamin -- Wang, Fei -- Ngoc, Long Vo -- Collignon, Evelyne -- Bonvin, Elise -- Deplus, Rachel -- Calonne, Emilie -- Hassabi, Bouchra -- Putmans, Pascale -- Awe, Stephan -- Wetzel, Collin -- Kreher, Judith -- Soin, Romuald -- Creppe, Catherine -- Limbach, Patrick A -- Gueydan, Cyril -- Kruys, Veronique -- Brehm, Alexander -- Minakhina, Svetlana -- Defrance, Matthieu -- Steward, Ruth -- Fuks, Francois -- R01 GM089992/GM/NIGMS NIH HHS/ -- T32 CA117846/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):282-5. doi: 10.1126/science.aac5253.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ; Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. ; Laboratory of Molecular Biology of the Gene, Faculty of Sciences, Universite Libre de Bruxelles, Gosselies, Belgium. ; Institut fur Molekularbiologie und Tumorforschung, Philipps-Universitat Marburg, Marburg, Germany. ; Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA. ; Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB Cancer Research Center (U-CRC), Universite Libre de Bruxelles (ULB), Brussels, Belgium. ffuks@ulb.ac.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816380" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*abnormalities/metabolism ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; Dioxygenases/genetics/metabolism ; Drosophila melanogaster/genetics/*growth & development/metabolism ; Methylation ; RNA, Messenger/genetics/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-28
    Description: Genes encoding human beta-type globin undergo a developmental switch from embryonic to fetal to adult-type expression. Mutations in the adult form cause inherited hemoglobinopathies or globin disorders, including sickle cell disease and thalassemia. Some experimental results have suggested that these diseases could be treated by induction of fetal-type hemoglobin (HbF). However, the mechanisms that repress HbF in adults remain unclear. We found that the LRF/ZBTB7A transcription factor occupies fetal gamma-globin genes and maintains the nucleosome density necessary for gamma-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A. Our study may provide additional opportunities for therapeutic targeting in the treatment of hemoglobinopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4778394/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Masuda, Takeshi -- Wang, Xin -- Maeda, Manami -- Canver, Matthew C -- Sher, Falak -- Funnell, Alister P W -- Fisher, Chris -- Suciu, Maria -- Martyn, Gabriella E -- Norton, Laura J -- Zhu, Catherine -- Kurita, Ryo -- Nakamura, Yukio -- Xu, Jian -- Higgs, Douglas R -- Crossley, Merlin -- Bauer, Daniel E -- Orkin, Stuart H -- Kharchenko, Peter V -- Maeda, Takahiro -- R01 AI084905/AI/NIAID NIH HHS/ -- R01 HL032259/HL/NHLBI NIH HHS/ -- R56 DK105001/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Jan 15;351(6270):285-9. doi: 10.1126/science.aad3312.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. ; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia. ; Medical Research Council, Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. ; Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan. Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Children's Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org. ; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. peter.kharchenko@post.harvard.edu tmaeda@partners.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26816381" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sickle Cell/genetics ; Animals ; Carrier Proteins/genetics/*metabolism ; Cell Line ; Chromatin/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Erythroblasts/cytology ; Erythropoiesis/genetics ; Fetal Hemoglobin/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Knockout ; Nuclear Proteins/genetics/*metabolism ; Repressor Proteins/genetics/*metabolism ; Sequence Deletion ; Thalassemia/genetics ; Transcription Factors/genetics/*metabolism ; gamma-Globins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-29
    Description: To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tirosh, Itay -- Izar, Benjamin -- Prakadan, Sanjay M -- Wadsworth, Marc H 2nd -- Treacy, Daniel -- Trombetta, John J -- Rotem, Asaf -- Rodman, Christopher -- Lian, Christine -- Murphy, George -- Fallahi-Sichani, Mohammad -- Dutton-Regester, Ken -- Lin, Jia-Ren -- Cohen, Ofir -- Shah, Parin -- Lu, Diana -- Genshaft, Alex S -- Hughes, Travis K -- Ziegler, Carly G K -- Kazer, Samuel W -- Gaillard, Aleth -- Kolb, Kellie E -- Villani, Alexandra-Chloe -- Johannessen, Cory M -- Andreev, Aleksandr Y -- Van Allen, Eliezer M -- Bertagnolli, Monica -- Sorger, Peter K -- Sullivan, Ryan J -- Flaherty, Keith T -- Frederick, Dennie T -- Jane-Valbuena, Judit -- Yoon, Charles H -- Rozenblatt-Rosen, Orit -- Shalek, Alex K -- Regev, Aviv -- Garraway, Levi A -- 1U24CA180922/CA/NCI NIH HHS/ -- DP2 OD020839/OD/NIH HHS/ -- K99 CA194163/CA/NCI NIH HHS/ -- K99CA194163/CA/NCI NIH HHS/ -- P01CA163222/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- P50GM107618/GM/NIGMS NIH HHS/ -- R35CA197737/CA/NCI NIH HHS/ -- U54CA112962/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Apr 8;352(6282):189-96. doi: 10.1126/science.aad0501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA. ; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia. ; HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Surgical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Surgical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA. ; Program in Therapeutic Sciences, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA. HMS LINCS Center and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Ludwig Center at Harvard, Boston, MA 02215, USA. ; Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Department of Chemistry, MIT, Cambridge, MA 02142, USA. Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA 02139, USA. Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Department of Immunology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Department of Biology and Koch Institute, MIT, Boston, MA 02142, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. bizar@partners.org aregev@broadinstitute.org levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27124452" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Communication ; Cell Cycle ; Drug Resistance, Neoplasm/genetics ; Endothelial Cells/pathology ; Genomics ; Humans ; Immunotherapy ; Lymphocyte Activation ; Melanoma/*genetics/*secondary/therapy ; Microphthalmia-Associated Transcription Factor/metabolism ; Neoplasm Metastasis ; RNA/genetics ; Sequence Analysis, RNA ; Single-Cell Analysis ; Skin Neoplasms/*pathology ; Stromal Cells/pathology ; T-Lymphocytes/immunology/pathology ; Transcriptome ; *Tumor Microenvironment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-04-16
    Description: Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, Christopher D -- Siregar, Josephine E -- Mollard, Vanessa -- Vega-Rodriguez, Joel -- Syafruddin, Din -- Matsuoka, Hiroyuki -- Matsuzaki, Motomichi -- Toyama, Tomoko -- Sturm, Angelika -- Cozijnsen, Anton -- Jacobs-Lorena, Marcelo -- Kita, Kiyoshi -- Marzuki, Sangkot -- McFadden, Geoffrey I -- AI031478/AI/NIAID NIH HHS/ -- RR00052/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):349-53. doi: 10.1126/science.aad9279.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. gim@unimelb.edu.au deang@unimelb.edu.au. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia. ; Johns Hopkins University Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, Malaria Research Institute, Baltimore, MD 21205, USA. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia. Department of Parasitology, Faculty of Medicine, Hasanuddin University, Jalan Perintis Kemerdekaan Km10, Makassar 90245, Indonesia. ; Division of Medical Zoology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto, Nagasaki 852-8523, Japan. ; Eijkman Institute for Molecular Biology, JI Diponegoro no. 69, Jakarta, 10430, Indonesia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/*parasitology ; Antimalarials/*pharmacology/therapeutic use ; Atovaquone/*pharmacology/therapeutic use ; Cell Line ; Cytochromes b/*genetics ; Drug Resistance/*genetics ; Genes, Mitochondrial/genetics ; Humans ; Life Cycle Stages/drug effects/genetics ; Malaria/drug therapy/*parasitology/transmission ; Male ; Mice ; Mitochondria/*genetics ; Mutation ; Plasmodium berghei/*drug effects/genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-02
    Description: Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Alec A K -- Der, Bryan S -- Shin, Jonghyeon -- Vaidyanathan, Prashant -- Paralanov, Vanya -- Strychalski, Elizabeth A -- Ross, David -- Densmore, Douglas -- Voigt, Christopher A -- P50 GM098792/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 1;352(6281):aac7341. doi: 10.1126/science.aac7341.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA. ; Biological Design Center, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA. ; Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20817, USA. ; Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. cavoigt@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27034378" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Base Pairing ; Base Sequence ; *Biotechnology ; DNA/*genetics ; Escherichia coli/*genetics ; *Gene Regulatory Networks ; Programming Languages ; Software ; Synthetic Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-19
    Description: Exploiting binding affinities between molecules is an established practice in many fields, including biochemical separations, diagnostics, and drug development; however, using these affinities to control biomolecule release is a more recent strategy. Affinity-controlled release takes advantage of the reversible nature of noncovalent interactions between a therapeutic protein and a binding partner to slow the diffusive release of the protein from a vehicle. This process, in contrast to degradation-controlled sustained-release formulations such as poly(lactic-co-glycolic acid) microspheres, is controlled through the strength of the binding interaction, the binding kinetics, and the concentration of binding partners. In the context of affinity-controlled release--and specifically the discovery or design of binding partners--we review advances in in vitro selection and directed evolution of proteins, peptides, and oligonucleotides (aptamers), aided by computational design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pakulska, Malgosia M -- Miersch, Shane -- Shoichet, Molly S -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):aac4750. doi: 10.1126/science.aac4750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, and Donnelly Centre, University of Toronto, Toronto, Ontario, Canada. Department of Chemistry, University of Toronto, Toronto, Ontario, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26989257" target="_blank"〉PubMed〈/a〉
    Keywords: Chemical Engineering ; Combinatorial Chemistry Techniques ; Delayed-Action Preparations/*chemistry ; Directed Molecular Evolution ; *Drug Design ; Humans ; Lactic Acid/*chemistry ; Microspheres ; Polyglycolic Acid/*chemistry ; Proteins/*administration & dosage
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-26
    Description: Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding sequences of human transcription factors (TFs), but the consequences of such variation remain largely unexplored. We developed a computational, structure-based approach to evaluate TF variants for their impact on DNA binding activity and used universal protein-binding microarrays to assay sequence-specific DNA binding activity across 41 reference and 117 variant alleles found in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 28 genes that affect DNA binding affinity or specificity and identified thousands of rare alleles likely to alter the DNA binding activity of human sequence-specific TFs. Our results suggest that most individuals have unique repertoires of TF DNA binding activities, which may contribute to phenotypic variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4825693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barrera, Luis A -- Vedenko, Anastasia -- Kurland, Jesse V -- Rogers, Julia M -- Gisselbrecht, Stephen S -- Rossin, Elizabeth J -- Woodard, Jaie -- Mariani, Luca -- Kock, Kian Hong -- Inukai, Sachi -- Siggers, Trevor -- Shokri, Leila -- Gordan, Raluca -- Sahni, Nidhi -- Cotsapas, Chris -- Hao, Tong -- Yi, Song -- Kellis, Manolis -- Daly, Mark J -- Vidal, Marc -- Hill, David E -- Bulyk, Martha L -- P50 HG004233/HG/NHGRI NIH HHS/ -- R01 HG003985/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1450-4. doi: 10.1126/science.aad2257. Epub 2016 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. ; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. ; Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. ; Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Center for Human Genetics Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA. Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA. Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA. Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013732" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*genetics/metabolism ; Exome/genetics ; *Gene Expression Regulation ; Genetic Diseases, Inborn/*genetics ; Genetic Variation ; Genome, Human ; Humans ; Mutation ; Polymorphism, Single Nucleotide ; Protein Array Analysis ; Protein Binding ; Sequence Analysis, DNA ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-04-02
    Description: Recent studies have implicated long noncoding RNAs (lncRNAs) as regulators of many important biological processes. Here we report on the identification and characterization of a lncRNA, lnc13, that harbors a celiac disease-associated haplotype block and represses expression of certain inflammatory genes under homeostatic conditions. Lnc13 regulates gene expression by binding to hnRNPD, a member of a family of ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). Upon stimulation, lnc13 levels are reduced, thereby allowing increased expression of the repressed genes. Lnc13 levels are significantly decreased in small intestinal biopsy samples from patients with celiac disease, which suggests that down-regulation of lnc13 may contribute to the inflammation seen in this disease. Furthermore, the lnc13 disease-associated variant binds hnRNPD less efficiently than its wild-type counterpart, thus helping to explain how these single-nucleotide polymorphisms contribute to celiac disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castellanos-Rubio, Ainara -- Fernandez-Jimenez, Nora -- Kratchmarov, Radomir -- Luo, Xiaobing -- Bhagat, Govind -- Green, Peter H R -- Schneider, Robert -- Kiledjian, Megerditch -- Bilbao, Jose Ramon -- Ghosh, Sankar -- R01-AI093985/AI/NIAID NIH HHS/ -- R01-DK102180/DK/NIDDK NIH HHS/ -- R01-GM067005/GM/NIGMS NIH HHS/ -- R37-AI33443/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 1;352(6281):91-5. doi: 10.1126/science.aad0467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. ; Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country (UPV-EHU), BioCruces Research Institute, Leioa 48940, Basque Country, Spain. ; Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. ; Center for Celiac Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA. ; Alexandria Center for Life Sciences, New York University School of Medicine, New York, NY 10016, USA. ; Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA. ; Department of Microbiology and Immunology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA. sg2715@columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27034373" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Celiac Disease/*genetics/pathology ; Down-Regulation ; Gene Expression Regulation ; *Genetic Predisposition to Disease ; Haplotypes ; Heterogeneous-Nuclear Ribonucleoproteins/genetics ; Humans ; Inflammation/*genetics ; Mice ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; RNA, Long Noncoding/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-24
    Description: Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uhlen, Mathias -- Fagerberg, Linn -- Hallstrom, Bjorn M -- Lindskog, Cecilia -- Oksvold, Per -- Mardinoglu, Adil -- Sivertsson, Asa -- Kampf, Caroline -- Sjostedt, Evelina -- Asplund, Anna -- Olsson, IngMarie -- Edlund, Karolina -- Lundberg, Emma -- Navani, Sanjay -- Szigyarto, Cristina Al-Khalili -- Odeberg, Jacob -- Djureinovic, Dijana -- Takanen, Jenny Ottosson -- Hober, Sophia -- Alm, Tove -- Edqvist, Per-Henrik -- Berling, Holger -- Tegel, Hanna -- Mulder, Jan -- Rockberg, Johan -- Nilsson, Peter -- Schwenk, Jochen M -- Hamsten, Marica -- von Feilitzen, Kalle -- Forsberg, Mattias -- Persson, Lukas -- Johansson, Fredric -- Zwahlen, Martin -- von Heijne, Gunnar -- Nielsen, Jens -- Ponten, Fredrik -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. mathias.uhlen@scilifelab.se. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. ; Science for Life Laboratory, KTH-Royal Institute of Technology, SE-171 21 Stockholm, Sweden. Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden. ; Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, D-44139 Dortmund, Germany. ; Lab Surgpath, Mumbai, India. ; Department of Proteomics, KTH-Royal Institute of Technology, SE-106 91 Stockholm, Sweden. ; Science for Life Laboratory, Department of Neuroscience, Karolinska Institute, SE-171 77 Stockholm, Sweden. ; Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Horsholm, Denmark. Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613900" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Cell Line ; *Databases, Protein ; Female ; Genes ; Genetic Code ; Humans ; Internet ; Male ; Membrane Proteins/genetics/metabolism ; Mitochondrial Proteins/genetics/metabolism ; Neoplasms/genetics/metabolism ; Protein Array Analysis ; Protein Isoforms/genetics/metabolism ; Proteome/genetics/*metabolism ; Tissue Distribution ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-08-01
    Description: The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648357/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heisler, David B -- Kudryashova, Elena -- Grinevich, Dmitry O -- Suarez, Cristian -- Winkelman, Jonathan D -- Birukov, Konstantin G -- Kotha, Sainath R -- Parinandi, Narasimham L -- Vavylonis, Dimitrios -- Kovar, David R -- Kudryashov, Dmitri S -- R01 GM079265/GM/NIGMS NIH HHS/ -- R01 GM098430/GM/NIGMS NIH HHS/ -- R01 GM114666/GM/NIGMS NIH HHS/ -- R01 HL076259/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):535-9. doi: 10.1126/science.aab4090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. ; Section of Pulmonary and Critical Care and Lung Injury Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. ; Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA. ; Department of Physics, Lehigh University, Bethlehem, PA 18015, USA. ; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA. The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA. kudryashov.1@osu.edu kudryashova.1@osu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228148" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Antigens, Bacterial/*chemistry/genetics/*toxicity ; Bacterial Toxins/*chemistry/genetics/*toxicity ; Cell Line ; Fetal Proteins/*antagonists & inhibitors ; Intestinal Mucosa/drug effects/metabolism ; Microfilament Proteins/*antagonists & inhibitors ; Nuclear Proteins/*antagonists & inhibitors ; Polymerization/drug effects ; Protein Structure, Tertiary ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-03-31
    Description: The occurrence of Ebola virus (EBOV) in West Africa during 2013-2015 is unprecedented. Early reports suggested that in this outbreak EBOV is mutating twice as fast as previously observed, which indicates the potential for changes in transmissibility and virulence and could render current molecular diagnostics and countermeasures ineffective. We have determined additional full-length sequences from two clusters of imported EBOV infections into Mali, and we show that the nucleotide substitution rate (9.6 x 10(-4) substitutions per site per year) is consistent with rates observed in Central African outbreaks. In addition, overall variation among all genotypes observed remains low. Thus, our data indicate that EBOV is not undergoing rapid evolution in humans during the current outbreak. This finding has important implications for outbreak response and public health decisions and should alleviate several previously raised concerns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hoenen, T -- Safronetz, D -- Groseth, A -- Wollenberg, K R -- Koita, O A -- Diarra, B -- Fall, I S -- Haidara, F C -- Diallo, F -- Sanogo, M -- Sarro, Y S -- Kone, A -- Togo, A C G -- Traore, A -- Kodio, M -- Dosseh, A -- Rosenke, K -- de Wit, E -- Feldmann, F -- Ebihara, H -- Munster, V J -- Zoon, K C -- Feldmann, H -- Sow, S -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 3;348(6230):117-9. doi: 10.1126/science.aaa5646. Epub 2015 Mar 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA. ; Bioinformatics and Computational Biosciences Branch, NIAID, NIH, Bethesda, MD 20892, USA. ; Center of Research and Training for HIV and Tuberculosis, University of Science, Technique and Technologies of Bamako, Mali. ; World Health Organization Office, Bamako, Mali. ; Centre des Operations d'Urgence, Centre pour le Developpement des Vaccins (CVD-Mali), Centre National d'Appui a la lutte contre la Maladie, Ministere de la Sante et de l'Hygiene Publique, Bamako, Mali. ; World Health Organization Inter-Country Support Team, Ouagadougou, Burkina Faso. ; Rocky Mountain Veterinary Branch, Division of Intramural Research, NIAID, NIH, Hamilton, MT 59840, USA. ; Office of the Scientific Director, NIAID, NIH, Bethesda, MD 20895, USA. ; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA. feldmannh@niaid.nih.gov ssow@medicine.umaryland.edu. ; Centre des Operations d'Urgence, Centre pour le Developpement des Vaccins (CVD-Mali), Centre National d'Appui a la lutte contre la Maladie, Ministere de la Sante et de l'Hygiene Publique, Bamako, Mali. feldmannh@niaid.nih.gov ssow@medicine.umaryland.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25814067" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Disease Outbreaks ; Ebolavirus/classification/*genetics/isolation & purification ; Genotype ; Hemorrhagic Fever, Ebola/epidemiology/*virology ; Humans ; Mali/epidemiology ; Molecular Sequence Data ; *Mutation Rate ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-09-01
    Description: DNA strand exchange plays a central role in genetic recombination across all kingdoms of life, but the physical basis for these reactions remains poorly defined. Using single-molecule imaging, we found that bacterial RecA and eukaryotic Rad51 and Dmc1 all stabilize strand exchange intermediates in precise three-nucleotide steps. Each step coincides with an energetic signature (0.3 kBT) that is conserved from bacteria to humans. Triplet recognition is strictly dependent on correct Watson-Crick pairing. Rad51, RecA, and Dmc1 can all step over mismatches, but only Dmc1 can stabilize mismatched triplets. This finding provides insight into why eukaryotes have evolved a meiosis-specific recombinase. We propose that canonical Watson-Crick base triplets serve as the fundamental unit of pairing interactions during DNA recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ja Yil -- Terakawa, Tsuyoshi -- Qi, Zhi -- Steinfeld, Justin B -- Redding, Sy -- Kwon, YoungHo -- Gaines, William A -- Zhao, Weixing -- Sung, Patrick -- Greene, Eric C -- CA146940/CA/NCI NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 ES015252/ES/NIEHS NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01ES015252/ES/NIEHS NIH HHS/ -- T32 GM007367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):977-81. doi: 10.1126/science.aab2666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Department of Biophysics, Kyoto University, Sakyo, Kyoto, Japan. ; Department of Chemistry, Columbia University, New York, NY, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Howard Hughes Medical Institute, Columbia University, New York, NY, USA. ecg2108@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315438" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Cell Cycle Proteins/chemistry/metabolism ; DNA/*chemistry/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Evolution, Molecular ; *Homologous Recombination ; Humans ; Meiosis ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Rad51 Recombinase/chemistry/*metabolism ; Rec A Recombinases/chemistry/*metabolism ; Recombinases/chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-01-03
    Description: Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neafsey, Daniel E -- Waterhouse, Robert M -- Abai, Mohammad R -- Aganezov, Sergey S -- Alekseyev, Max A -- Allen, James E -- Amon, James -- Arca, Bruno -- Arensburger, Peter -- Artemov, Gleb -- Assour, Lauren A -- Basseri, Hamidreza -- Berlin, Aaron -- Birren, Bruce W -- Blandin, Stephanie A -- Brockman, Andrew I -- Burkot, Thomas R -- Burt, Austin -- Chan, Clara S -- Chauve, Cedric -- Chiu, Joanna C -- Christensen, Mikkel -- Costantini, Carlo -- Davidson, Victoria L M -- Deligianni, Elena -- Dottorini, Tania -- Dritsou, Vicky -- Gabriel, Stacey B -- Guelbeogo, Wamdaogo M -- Hall, Andrew B -- Han, Mira V -- Hlaing, Thaung -- Hughes, Daniel S T -- Jenkins, Adam M -- Jiang, Xiaofang -- Jungreis, Irwin -- Kakani, Evdoxia G -- Kamali, Maryam -- Kemppainen, Petri -- Kennedy, Ryan C -- Kirmitzoglou, Ioannis K -- Koekemoer, Lizette L -- Laban, Njoroge -- Langridge, Nicholas -- Lawniczak, Mara K N -- Lirakis, Manolis -- Lobo, Neil F -- Lowy, Ernesto -- MacCallum, Robert M -- Mao, Chunhong -- Maslen, Gareth -- Mbogo, Charles -- McCarthy, Jenny -- Michel, Kristin -- Mitchell, Sara N -- Moore, Wendy -- Murphy, Katherine A -- Naumenko, Anastasia N -- Nolan, Tony -- Novoa, Eva M -- O'Loughlin, Samantha -- Oringanje, Chioma -- Oshaghi, Mohammad A -- Pakpour, Nazzy -- Papathanos, Philippos A -- Peery, Ashley N -- Povelones, Michael -- Prakash, Anil -- Price, David P -- Rajaraman, Ashok -- Reimer, Lisa J -- Rinker, David C -- Rokas, Antonis -- Russell, Tanya L -- Sagnon, N'Fale -- Sharakhova, Maria V -- Shea, Terrance -- Simao, Felipe A -- Simard, Frederic -- Slotman, Michel A -- Somboon, Pradya -- Stegniy, Vladimir -- Struchiner, Claudio J -- Thomas, Gregg W C -- Tojo, Marta -- Topalis, Pantelis -- Tubio, Jose M C -- Unger, Maria F -- Vontas, John -- Walton, Catherine -- Wilding, Craig S -- Willis, Judith H -- Wu, Yi-Chieh -- Yan, Guiyun -- Zdobnov, Evgeny M -- Zhou, Xiaofan -- Catteruccia, Flaminia -- Christophides, George K -- Collins, Frank H -- Cornman, Robert S -- Crisanti, Andrea -- Donnelly, Martin J -- Emrich, Scott J -- Fontaine, Michael C -- Gelbart, William -- Hahn, Matthew W -- Hansen, Immo A -- Howell, Paul I -- Kafatos, Fotis C -- Kellis, Manolis -- Lawson, Daniel -- Louis, Christos -- Luckhart, Shirley -- Muskavitch, Marc A T -- Ribeiro, Jose M -- Riehle, Michael A -- Sharakhov, Igor V -- Tu, Zhijian -- Zwiebel, Laurence J -- Besansky, Nora J -- 092654/Wellcome Trust/United Kingdom -- R01 AI050243/AI/NIAID NIH HHS/ -- R01 AI063508/AI/NIAID NIH HHS/ -- R01 AI073745/AI/NIAID NIH HHS/ -- R01 AI076584/AI/NIAID NIH HHS/ -- R01 AI080799/AI/NIAID NIH HHS/ -- R01 AI104956/AI/NIAID NIH HHS/ -- R21 AI101459/AI/NIAID NIH HHS/ -- R56 AI107263/AI/NIAID NIH HHS/ -- SC1 AI109055/AI/NIAID NIH HHS/ -- U19 AI089686/AI/NIAID NIH HHS/ -- U19 AI110818/AI/NIAID NIH HHS/ -- U41 HG007234/HG/NHGRI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):1258522. doi: 10.1126/science.1258522. Epub 2014 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. neafsey@broadinstitute.org nbesansk@nd.edu. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland. ; Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran. ; George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu. ; Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. ; Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA. ; Tomsk State University, 36 Lenina Avenue, Tomsk, Russia. ; Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA. ; Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. ; Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. ; Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia. ; Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. ; Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada. ; Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA. ; Institut de Recherche pour le Developpement, Unites Mixtes de Recherche Maladies Infectieuses et Vecteurs Ecologie, Genetique, Evolution et Controle, 911, Avenue Agropolis, BP 64501 Montpellier, France. ; Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA. ; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. ; Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA. ; Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso. ; Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA. ; Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar. ; European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA. ; Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. ; Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Universita degli Studi di Perugia, Perugia, Italy. ; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK. ; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus. ; Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa. ; National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya. ; Department of Biology, University of Crete, 700 13 Heraklion, Greece. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. ; Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya. ; Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. ; Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA. ; Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA. ; Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA. ; Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA. ; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. ; Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. ; Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA. ; Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland. ; Department of Entomology, Texas A&M University, College Station, TX 77807, USA. ; Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand. ; Fundacao Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. ; School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA. ; Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruna, Spain. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK. ; School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK. ; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA. ; Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA. ; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA. ; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands. ; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA. ; Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA. ; Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA. ; Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy. ; Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA. ; Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA. ; Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. ; Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA. ; Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. neafsey@broadinstitute.org nbesansk@nd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/classification/*genetics ; Base Sequence ; Chromosomes, Insect/genetics ; Drosophila/genetics ; *Evolution, Molecular ; *Genome, Insect ; Humans ; Insect Vectors/classification/*genetics ; Malaria/*transmission ; Molecular Sequence Data ; Phylogeny ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-10-17
    Description: Transcriptional enhancers direct precise on-off patterns of gene expression during development. To explore the basis for this precision, we conducted a high-throughput analysis of the Otx-a enhancer, which mediates expression in the neural plate of Ciona embryos in response to fibroblast growth factor (FGF) signaling and a localized GATA determinant. We provide evidence that enhancer specificity depends on submaximal recognition motifs having reduced binding affinities ("suboptimization"). Native GATA and ETS (FGF) binding sites contain imperfect matches to consensus motifs. Perfect matches mediate robust but ectopic patterns of gene expression. The native sites are not arranged at optimal intervals, and subtle changes in their spacing alter enhancer activity. Multiple tiers of enhancer suboptimization produce specific, but weak, patterns of expression, and we suggest that clusters of weak enhancers, including certain "superenhancers," circumvent this trade-off in specificity and activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farley, Emma K -- Olson, Katrina M -- Zhang, Wei -- Brandt, Alexander J -- Rokhsar, Daniel S -- Levine, Michael S -- GM46638/GM/NIGMS NIH HHS/ -- NS076542/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):325-8. doi: 10.1126/science.aac6948.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. msl2@princeton.edu ekfarley@princeton.edu. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA. ; Department of Medicine, University of California, San Diego, CA 92093-0688, USA. ; Department of Chemistry, University of California, Berkeley, CA 94720-3200, USA. ; Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California, Berkeley, CA 94720-3200, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472909" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Ciona intestinalis/genetics/*growth & development ; Consensus Sequence ; Enhancer Elements, Genetic/genetics/*physiology ; Fas-Associated Death Domain Protein/metabolism ; Fibroblast Growth Factors/*metabolism ; GATA Transcription Factors/*metabolism ; *Gene Expression Regulation, Developmental ; Molecular Sequence Data ; Organ Specificity/genetics/physiology ; Otx Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-07-15
    Description: The carnivoran giant panda has a specialized bamboo diet, to which its alimentary tract is poorly adapted. Measurements of daily energy expenditure across five captive and three wild pandas averaged 5.2 megajoules (MJ)/day, only 37.7% of the predicted value (13.8 MJ/day). For the wild pandas, the mean was 6.2 MJ/day, or 45% of the mammalian expectation. Pandas achieve this exceptionally low expenditure in part by reduced sizes of several vital organs and low physical activity. In addition, circulating levels of thyroid hormones thyroxine (T4) and triiodothyronine (T3) averaged 46.9 and 64%, respectively, of the levels expected for a eutherian mammal of comparable size. A giant panda-unique mutation in the DUOX2 gene, critical for thyroid hormone synthesis, might explain these low thyroid hormone levels. A combination of morphological, behavioral, physiological, and genetic adaptations, leading to low energy expenditure, likely enables giant pandas to survive on a bamboo diet.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nie, Yonggang -- Speakman, John R -- Wu, Qi -- Zhang, Chenglin -- Hu, Yibo -- Xia, Maohua -- Yan, Li -- Hambly, Catherine -- Wang, Lu -- Wei, Wei -- Zhang, Jinguo -- Wei, Fuwen -- New York, N.Y. -- Science. 2015 Jul 10;349(6244):171-4. doi: 10.1126/science.aab2413.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK. ; Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China. ; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, Scotland, UK. ; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China. ; Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. weifw@ioz.ac.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26160943" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Temperature ; Cattle ; Chromosomes, Human, Pair 15/genetics ; Diet/veterinary ; Dogs ; *Eating ; Energy Metabolism/genetics/*physiology ; Gastrointestinal Tract ; Genetic Variation ; Humans ; Mice ; Molecular Sequence Data ; Motor Activity ; NADPH Oxidase/*genetics ; Organ Size ; Sasa ; Thyroxine/blood ; Triiodothyronine/blood ; Ursidae/anatomy & histology/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-09-01
    Description: Super-resolution fluorescence microscopy is distinct among nanoscale imaging tools in its ability to image protein dynamics in living cells. Structured illumination microscopy (SIM) stands out in this regard because of its high speed and low illumination intensities, but typically offers only a twofold resolution gain. We extended the resolution of live-cell SIM through two approaches: ultrahigh numerical aperture SIM at 84-nanometer lateral resolution for more than 100 multicolor frames, and nonlinear SIM with patterned activation at 45- to 62-nanometer resolution for approximately 20 to 40 frames. We applied these approaches to image dynamics near the plasma membrane of spatially resolved assemblies of clathrin and caveolin, Rab5a in early endosomes, and alpha-actinin, often in relationship to cortical actin. In addition, we examined mitochondria, actin, and the Golgi apparatus dynamics in three dimensions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659358/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Dong -- Shao, Lin -- Chen, Bi-Chang -- Zhang, Xi -- Zhang, Mingshu -- Moses, Brian -- Milkie, Daniel E -- Beach, Jordan R -- Hammer, John A 3rd -- Pasham, Mithun -- Kirchhausen, Tomas -- Baird, Michelle A -- Davidson, Michael W -- Xu, Pingyong -- Betzig, Eric -- GM-075252/GM/NIGMS NIH HHS/ -- R01 GM075252/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):aab3500. doi: 10.1126/science.aab3500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China. ; Key Laboratory of RNA Biology and Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. ; Coleman Technologies, 5131 West Chester Pike, Newtown Square, PA 19073, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. ; Department of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA. ; Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310, USA. ; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. betzige@janelia.hhmi.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315442" target="_blank"〉PubMed〈/a〉
    Keywords: Actinin/analysis ; Actins/analysis ; Animals ; Cell Line ; Clathrin/analysis ; Clathrin-Coated Vesicles/chemistry/ultrastructure ; Coated Pits, Cell-Membrane/chemistry/ultrastructure ; Cytoskeleton/chemistry/metabolism/*ultrastructure ; *Endocytosis ; Endosomes/chemistry/ultrastructure ; Golgi Apparatus/ultrastructure ; Image Processing, Computer-Assisted ; Imaging, Three-Dimensional/instrumentation/*methods ; Microscopy, Fluorescence/instrumentation/*methods ; Mitochondria/chemistry/ultrastructure ; Organelles/chemistry/metabolism/*ultrastructure ; rab5 GTP-Binding Proteins/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-08
    Description: Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Jonathan P -- Pletnikova, Olga -- Troncoso, Juan C -- Wong, Philip C -- P50AG05146/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):650-5. doi: 10.1126/science.aab0983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. wong@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250685" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*genetics ; Animals ; Base Sequence ; Cells, Cultured ; Cysteine Endopeptidases/genetics ; DNA-Binding Proteins/genetics/*physiology ; Embryonic Stem Cells ; Exons/*genetics ; Frontotemporal Dementia/*genetics ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Protein Isoforms/genetics ; *RNA Splicing ; RNA Stability ; RNA, Messenger/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-06-27
    Description: Bacterial adaptive immunity uses CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) proteins together with CRISPR transcripts for foreign DNA degradation. In type II CRISPR-Cas systems, activation of Cas9 endonuclease for DNA recognition upon guide RNA binding occurs by an unknown mechanism. Crystal structures of Cas9 bound to single-guide RNA reveal a conformation distinct from both the apo and DNA-bound states, in which the 10-nucleotide RNA "seed" sequence required for initial DNA interrogation is preordered in an A-form conformation. This segment of the guide RNA is essential for Cas9 to form a DNA recognition-competent structure that is poised to engage double-stranded DNA target sequences. We construe this as convergent evolution of a "seed" mechanism reminiscent of that used by Argonaute proteins during RNA interference in eukaryotes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Fuguo -- Zhou, Kaihong -- Ma, Linlin -- Gressel, Saskia -- Doudna, Jennifer A -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1477-81. doi: 10.1126/science.aab1452.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. ; Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. ; Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA. California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA. Department of Chemistry, University of California, Berkeley, CA 94720, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Innovative Genomics Initiative, University of California, Berkeley, CA 94720, USA. doudna@berkeley.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113724" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*chemistry ; Base Sequence ; *CRISPR-Cas Systems ; Caspase 9/*chemistry/genetics ; *Clustered Regularly Interspaced Short Palindromic Repeats ; Crystallography, X-Ray ; DNA/chemistry ; *DNA Cleavage ; Enzyme Activation ; Evolution, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; RNA Interference ; RNA, Guide/*chemistry ; Streptococcus pyogenes/*enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-10-31
    Description: Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sigova, Alla A -- Abraham, Brian J -- Ji, Xiong -- Molinie, Benoit -- Hannett, Nancy M -- Guo, Yang Eric -- Jangi, Mohini -- Giallourakis, Cosmas C -- Sharp, Phillip A -- Young, Richard A -- HG002668/HG/NHGRI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 20;350(6263):978-81. doi: 10.1126/science.aad3346. Epub 2015 Oct 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02140, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26516199" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cell Line ; Consensus Sequence ; DNA/metabolism ; Embryonic Stem Cells/metabolism ; *Enhancer Elements, Genetic ; *Gene Expression Regulation ; Mice ; *Promoter Regions, Genetic ; RNA, Messenger/*metabolism ; *Transcription, Genetic ; YY1 Transcription Factor/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-01-09
    Description: Naive and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N(6)-methyladenosine (m(6)A) transferase, as a regulator for terminating murine naive pluripotency. Mettl3 knockout preimplantation epiblasts and naive embryonic stem cells are depleted for m(6)A in mRNAs, yet are viable. However, they fail to adequately terminate their naive state and, subsequently, undergo aberrant and restricted lineage priming at the postimplantation stage, which leads to early embryonic lethality. m(6)A predominantly and directly reduces mRNA stability, including that of key naive pluripotency-promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo and identifies regulatory modules that functionally influence naive and primed pluripotency in an opposing manner.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geula, Shay -- Moshitch-Moshkovitz, Sharon -- Dominissini, Dan -- Mansour, Abed AlFatah -- Kol, Nitzan -- Salmon-Divon, Mali -- Hershkovitz, Vera -- Peer, Eyal -- Mor, Nofar -- Manor, Yair S -- Ben-Haim, Moshe Shay -- Eyal, Eran -- Yunger, Sharon -- Pinto, Yishay -- Jaitin, Diego Adhemar -- Viukov, Sergey -- Rais, Yoach -- Krupalnik, Vladislav -- Chomsky, Elad -- Zerbib, Mirie -- Maza, Itay -- Rechavi, Yoav -- Massarwa, Rada -- Hanna, Suhair -- Amit, Ido -- Levanon, Erez Y -- Amariglio, Ninette -- Stern-Ginossar, Noam -- Novershtern, Noa -- Rechavi, Gideon -- Hanna, Jacob H -- New York, N.Y. -- Science. 2015 Feb 27;347(6225):1002-6. doi: 10.1126/science.1261417. Epub 2015 Jan 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. ; Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA. ; Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. The Department of Pediatrics and the Pediatric Immunology Unit, Rambam Medical Center, and the B. Rappaport Faculty of Medicine, Technion, Haifa, Israel. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il. ; Cancer Research Center, Chaim Sheba Medical Center, Tel Hashomer, Israel, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel. jacob.hanna@weizmann.ac.il noa.novershtern@weizmann.ac.il gidi.rechavi@sheba.health.gov.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25569111" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Animals ; Blastocyst/enzymology ; Cell Differentiation/genetics/*physiology ; Cell Line ; Embryo Loss/genetics ; Epigenesis, Genetic ; Female ; Gene Knockout Techniques ; Male ; Methylation ; Methyltransferases/genetics/*physiology ; Mice ; Mice, Knockout ; Pluripotent Stem Cells/*cytology/enzymology ; RNA, Messenger/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-02-24
    Description: Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor-like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luca, Vincent C -- Jude, Kevin M -- Pierce, Nathan W -- Nachury, Maxence V -- Fischer, Suzanne -- Garcia, K Christopher -- 1R01-GM097015/GM/NIGMS NIH HHS/ -- R01 GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):847-53. doi: 10.1126/science.1261093.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. kcgarcia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700513" target="_blank"〉PubMed〈/a〉
    Keywords: Alagille Syndrome/genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Fucose/chemistry ; Glucose/chemistry ; Glycosylation ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Molecular Sequence Data ; Molecular Targeted Therapy ; Polysaccharides/chemistry ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Notch1/*chemistry/genetics/ultrastructure ; Serine/chemistry/genetics ; Threonine/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-06-27
    Description: Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzer, Thilo -- Kern, Marcelo -- King, Andrew J -- Larson, Tony R -- Teodor, Roxana I -- Donninger, Samantha L -- Li, Yi -- Dowle, Adam A -- Cartwright, Jared -- Bates, Rachel -- Ashford, David -- Thomas, Jerry -- Walker, Carol -- Bowser, Tim A -- Graham, Ian A -- BB/K018809/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):309-12. doi: 10.1126/science.aab1852. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK. ; Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK. ; GlaxoSmithKline, 1061 Mountain Highway, Post Office Box 168, Boronia, Victoria 3155, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113639" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Benzylisoquinolines/chemistry/*metabolism ; Cytochrome P-450 Enzyme System/genetics/*metabolism ; Genetic Loci ; Isoquinolines/chemistry/*metabolism ; Molecular Sequence Data ; Morphinans/chemistry/*metabolism ; Mutation ; Oxidation-Reduction ; Papaver/*enzymology/genetics ; Plant Proteins/genetics/*metabolism ; Quaternary Ammonium Compounds/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-06-20
    Description: During clathrin-mediated endocytosis (CME), plasma membrane regions are internalized to retrieve extracellular molecules and cell surface components. Whether endocytosis occurs by direct clathrin assembly into curved lattices on the budding vesicle or by initial recruitment to flat membranes and subsequent reshaping has been controversial. To distinguish between these models, we combined fluorescence microscopy and electron tomography to locate endocytic sites and to determine their coat and membrane shapes during invagination. The curvature of the clathrin coat increased, whereas the coated surface area remained nearly constant. Furthermore, clathrin rapidly exchanged at all stages of CME. Thus, coated vesicle budding appears to involve bending of a dynamic preassembled clathrin coat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Avinoam, Ori -- Schorb, Martin -- Beese, Carsten J -- Briggs, John A G -- Kaksonen, Marko -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1369-72. doi: 10.1126/science.aaa9555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Electron Microscopy Core Facility, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. ; Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de. ; Cell Biology and Biophysics Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. Structural and Computational Biology Unit, The European Molecular Biology Laboratory, Heidelberg 69117, Germany. marko.kaksonen@unige.ch john.briggs@embl.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089517" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Clathrin/*chemistry ; Coated Pits, Cell-Membrane/*chemistry ; Electron Microscope Tomography ; *Endocytosis ; Fluorescence Recovery After Photobleaching ; Humans ; Microscopy, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-04-04
    Description: By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405120/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Katajisto, Pekka -- Dohla, Julia -- Chaffer, Christine L -- Pentinmikko, Nalle -- Marjanovic, Nemanja -- Iqbal, Sharif -- Zoncu, Roberto -- Chen, Walter -- Weinberg, Robert A -- Sabatini, David M -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Apr 17;348(6232):340-3. doi: 10.1126/science.1260384. Epub 2015 Apr 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu. ; Institute of Biotechnology, University of Helsinki, P.O. Box 00014, Helsinki, Finland. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. ; Whitehead Institute for Biomedical Research, Boston, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. Broad Institute, Cambridge, MA 02142, USA. The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA. pekka.katajisto@helsinki.fi sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25837514" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Aging/genetics/*physiology ; Cell Division/genetics/*physiology ; Cell Line ; Humans ; Mitochondria/*physiology/ultrastructure ; Stem Cells/*physiology/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-05-23
    Description: The 5' leader of the HIV-1 genome contains conserved elements that direct selective packaging of the unspliced, dimeric viral RNA into assembling particles. By using a (2)H-edited nuclear magnetic resonance (NMR) approach, we determined the structure of a 155-nucleotide region of the leader that is independently capable of directing packaging (core encapsidation signal; Psi(CES)). The RNA adopts an unexpected tandem three-way junction structure, in which residues of the major splice donor and translation initiation sites are sequestered by long-range base pairing and guanosines essential for both packaging and high-affinity binding to the cognate Gag protein are exposed in helical junctions. The structure reveals how translation is attenuated, Gag binding promoted, and unspliced dimeric genomes selected, by the RNA conformer that directs packaging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keane, Sarah C -- Heng, Xiao -- Lu, Kun -- Kharytonchyk, Siarhei -- Ramakrishnan, Venkateswaran -- Carter, Gregory -- Barton, Shawn -- Hosic, Azra -- Florwick, Alyssa -- Santos, Justin -- Bolden, Nicholas C -- McCowin, Sayo -- Case, David A -- Johnson, Bruce A -- Salemi, Marco -- Telesnitsky, Alice -- Summers, Michael F -- 2T34 GM008663/GM/NIGMS NIH HHS/ -- P50 GM 103297/GM/NIGMS NIH HHS/ -- P50 GM103297/GM/NIGMS NIH HHS/ -- R01 GM042561/GM/NIGMS NIH HHS/ -- R01 GM42561/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 May 22;348(6237):917-21. doi: 10.1126/science.aaa9266.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA. ; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA. ; One Moon Scientific, Incorporated, 839 Grant Avenue, Westfield, NJ 07090, USA, and City University of New York (CUNY) Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA. ; Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA. ; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA. summers@hhmi.umbc.edu ateles@umich.edu. ; Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA. summers@hhmi.umbc.edu ateles@umich.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999508" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Genome, Viral ; Guanosine/chemistry ; HIV-1/*chemistry/genetics/*physiology ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Peptide Chain Initiation, Translational ; RNA Splicing ; RNA, Viral/*chemistry/genetics ; *Virus Assembly ; gag Gene Products, Human Immunodeficiency Virus/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-10-13
    Description: The shortage of organs for transplantation is a major barrier to the treatment of organ failure. Although porcine organs are considered promising, their use has been checked by concerns about the transmission of porcine endogenous retroviruses (PERVs) to humans. Here we describe the eradication of all PERVs in a porcine kidney epithelial cell line (PK15). We first determined the PK15 PERV copy number to be 62. Using CRISPR-Cas9, we disrupted all copies of the PERV pol gene and demonstrated a 〉1000-fold reduction in PERV transmission to human cells, using our engineered cells. Our study shows that CRISPR-Cas9 multiplexability can be as high as 62 and demonstrates the possibility that PERVs can be inactivated for clinical application of porcine-to-human xenotransplantation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Luhan -- Guell, Marc -- Niu, Dong -- George, Haydy -- Lesha, Emal -- Grishin, Dennis -- Aach, John -- Shrock, Ellen -- Xu, Weihong -- Poci, Jurgen -- Cortazio, Rebeca -- Wilkinson, Robert A -- Fishman, Jay A -- Church, George -- P50 HG005550/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Nov 27;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub 2015 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. gchurch@genetics.med.harvard.edu luhan.yang@egenesisbio.com. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA. eGenesis Biosciences, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. ; Transplant Infectious Disease and Compromised Host Program, Massachusetts General Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26456528" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; CRISPR-Cas Systems ; Cell Line ; Endogenous Retroviruses/*genetics ; Epithelial Cells/virology ; Gene Dosage ; Gene Targeting/*methods ; Genes, pol ; HEK293 Cells ; Humans ; Kidney/virology ; Molecular Sequence Data ; Retroviridae Infections/*prevention & control/transmission/virology ; Swine/*virology ; Transplantation, Heterologous/*methods ; *Virus Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-15
    Description: Most spontaneous DNA double-strand breaks (DSBs) result from replication-fork breakage. Break-induced replication (BIR), a genome rearrangement-prone repair mechanism that requires the Pol32/POLD3 subunit of eukaryotic DNA Poldelta, was proposed to repair broken forks, but how genome destabilization is avoided was unknown. We show that broken fork repair initially uses error-prone Pol32-dependent synthesis, but that mutagenic synthesis is limited to within a few kilobases from the break by Mus81 endonuclease and a converging fork. Mus81 suppresses template switches between both homologous sequences and diverged human Alu repetitive elements, highlighting its importance for stability of highly repetitive genomes. We propose that lack of a timely converging fork or Mus81 may propel genome instability observed in cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayle, Ryan -- Campbell, Ian M -- Beck, Christine R -- Yu, Yang -- Wilson, Marenda -- Shaw, Chad A -- Bjergbaek, Lotte -- Lupski, James R -- Ira, Grzegorz -- F31 NS083159/NS/NINDS NIH HHS/ -- GM080600/GM/NIGMS NIH HHS/ -- HG006542/HG/NHGRI NIH HHS/ -- NS058529/NS/NINDS NIH HHS/ -- NS083159/NS/NINDS NIH HHS/ -- R01 GM080600/GM/NIGMS NIH HHS/ -- R01 NS058529/NS/NINDS NIH HHS/ -- U54 HG006542/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):742-7. doi: 10.1126/science.aaa8391.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. ; Department of Molecular Biology and Genetics, University of Aarhus, Aarhus 8000, Denmark. ; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Department of Pediatrics, and Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. Texas Children's Hospital, Houston, TX 77030, USA. ; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. gira@bcm.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26273056" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Base Sequence ; *DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; DNA Replication/*genetics ; DNA-Binding Proteins/genetics/*metabolism ; DNA-Directed DNA Polymerase/metabolism ; Endonucleases/genetics/*metabolism ; *Genomic Instability ; Humans ; Molecular Sequence Data ; Neoplasms/genetics ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-02-07
    Description: The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably due to their effects on protein expression levels. Yet the impact of genetic variation, including eQTLs, on protein levels remains poorly understood. To address this, we mapped genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or protein abundance (pQTLs). We found that most QTLs are associated with transcript expression levels, with consequent effects on ribosome and protein levels. However, eQTLs tend to have significantly reduced effect sizes on protein levels, which suggests that their potential impact on downstream phenotypes is often attenuated or buffered. Additionally, we identified a class of cis QTLs that affect protein abundance with little or no effect on messenger RNA or ribosome levels, which suggests that they may arise from differences in posttranslational regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507520/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Battle, Alexis -- Khan, Zia -- Wang, Sidney H -- Mitrano, Amy -- Ford, Michael J -- Pritchard, Jonathan K -- Gilad, Yoav -- F32 HG006972/HG/NHGRI NIH HHS/ -- F32HG006972/HG/NHGRI NIH HHS/ -- GM077959/GM/NIGMS NIH HHS/ -- HG007036/HG/NHGRI NIH HHS/ -- MH084703/MH/NIMH NIH HHS/ -- R01 GM077959/GM/NIGMS NIH HHS/ -- R01 MH084703/MH/NIMH NIH HHS/ -- U01 HG007036/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 6;347(6222):664-7. doi: 10.1126/science.1260793. Epub 2014 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; MS Bioworks, LLC, 3950 Varsity Drive, Ann Arbor, MI 48108, USA. ; Department of Genetics, Stanford University, Stanford, CA 94305, USA. Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Department of Biology, Stanford University, Stanford, CA 94305, USA. pritch@stanford.edu gilad@uchicago.edu. ; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. pritch@stanford.edu gilad@uchicago.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25657249" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Flanking Region ; 5' Flanking Region ; Cell Line ; Exons ; *Gene Expression Regulation ; *Genetic Variation ; Humans ; Phenotype ; Protein Biosynthesis/*genetics ; *Quantitative Trait Loci ; RNA, Messenger/*genetics ; Ribosomes/metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-04-25
    Description: The Protoaurignacian culture is pivotal to the debate about the timing of the arrival of modern humans in western Europe and the demise of Neandertals. However, which group is responsible for this culture remains uncertain. We investigated dental remains associated with the Protoaurignacian. The lower deciduous incisor from Riparo Bombrini is modern human, based on its morphology. The upper deciduous incisor from Grotta di Fumane contains ancient mitochondrial DNA of a modern human type. These teeth are the oldest human remains in an Aurignacian-related archaeological context, confirming that by 41,000 calendar years before the present, modern humans bearing Protoaurignacian culture spread into southern Europe. Because the last Neandertals date to 41,030 to 39,260 calendar years before the present, we suggest that the Protoaurignacian triggered the demise of Neandertals in this area.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Benazzi, S -- Slon, V -- Talamo, S -- Negrino, F -- Peresani, M -- Bailey, S E -- Sawyer, S -- Panetta, D -- Vicino, G -- Starnini, E -- Mannino, M A -- Salvadori, P A -- Meyer, M -- Paabo, S -- Hublin, J-J -- New York, N.Y. -- Science. 2015 May 15;348(6236):793-6. doi: 10.1126/science.aaa2773. Epub 2015 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. stefano.benazzi@unibo.it. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. ; Dipartimento di Antichita, Filosofia, Storia e Geografia, Universita di Genova, Via Balbi 2, 16126 Genova, Italy. ; Sezione di Scienze Preistoriche e Antropologiche, Dipartimento di Studi Umanistici, Corso Ercole I d'Este 32, Universita di Ferrara, 44100 Ferrara, Italy. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Center for the Study of Human Origins, Department of Anthropology, New York University, 25 Waverly Place, New York, NY 10003, USA. ; CNR Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy. ; Museo Archeologico del Finale, Chiostri di Santa Caterina, 17024 Finale Ligure Borgo, Italy. ; Scuola di Scienze Umanistiche, Dipartimento di Studi Storici, Universita di Torino, via S. Ottavio 20, 10124 Torino, Italy. Museo Preistorico Nazionale dei Balzi Rossi, Via Balzi Rossi 9, 18039 Ventimiglia, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908660" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeology ; Base Sequence ; DNA, Mitochondrial/analysis/genetics ; Dental Enamel/chemistry ; *Extinction, Biological ; Genome, Mitochondrial/genetics ; Humans ; Incisor/anatomy & histology/chemistry ; Molecular Sequence Data ; Neanderthals/anatomy & histology/*classification/*genetics ; *Phylogeny ; Tooth, Deciduous/anatomy & histology/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-05-17
    Description: A switchlike response in nuclear factor-kappaB (NF-kappaB) activity implies the existence of a threshold in the NF-kappaB signaling module. We show that the CARD-containing MAGUK protein 1 (CARMA1, also called CARD11)-TAK1 (MAP3K7)-inhibitor of NF-kappaB (IkappaB) kinase-beta (IKKbeta) module is a switch mechanism for NF-kappaB activation in B cell receptor (BCR) signaling. Experimental and mathematical modeling analyses showed that IKK activity is regulated by positive feedback from IKKbeta to TAK1, generating a steep dose response to BCR stimulation. Mutation of the scaffolding protein CARMA1 at serine-578, an IKKbeta target, abrogated not only late TAK1 activity, but also the switchlike activation of NF-kappaB in single cells, suggesting that phosphorylation of this residue accounts for the feedback.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinohara, Hisaaki -- Behar, Marcelo -- Inoue, Kentaro -- Hiroshima, Michio -- Yasuda, Tomoharu -- Nagashima, Takeshi -- Kimura, Shuhei -- Sanjo, Hideki -- Maeda, Shiori -- Yumoto, Noriko -- Ki, Sewon -- Akira, Shizuo -- Sako, Yasushi -- Hoffmann, Alexander -- Kurosaki, Tomohiro -- Okada-Hatakeyama, Mariko -- 5R01CA141722/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2014 May 16;344(6185):760-4. doi: 10.1126/science.1250020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ; Laboratory for Cell Signaling Dynamics, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan. Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ; Graduate School of Engineering, Tottori University 4-101, Koyama-minami, Tottori 680-8552, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ; Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan. ; Signaling Systems Laboratory, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences (QC Bio) and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90025, USA. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp. ; Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. ahoffmann@ucla.edu kurosaki@rcai.riken.jp marikoh@rcai.riken.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833394" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/metabolism ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Cell Line ; Chickens ; Feedback, Physiological ; Guanylate Cyclase/genetics/*metabolism ; I-kappa B Kinase/*metabolism ; MAP Kinase Kinase Kinases/genetics/*metabolism ; Mice ; Mice, Knockout ; Mutation ; NF-kappa B/*agonists ; Phosphorylation ; Receptors, Antigen, B-Cell/genetics/*metabolism ; Serine/genetics/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-02-15
    Description: Evolutionary changes in traits involved in both ecological divergence and mate choice may produce reproductive isolation and speciation. However, there are few examples of such dual traits, and the genetic and molecular bases of their evolution have not been identified. We show that methyl-branched cuticular hydrocarbons (mbCHCs) are a dual trait that affects both desiccation resistance and mate choice in Drosophila serrata. We identify a fatty acid synthase mFAS (CG3524) responsible for mbCHC production in Drosophila and find that expression of mFAS is undetectable in oenocytes (cells that produce CHCs) of a closely related, desiccation-sensitive species, D. birchii, due in part to multiple changes in cis-regulatory sequences of mFAS. We suggest that ecologically influenced changes in the production of mbCHCs have contributed to reproductive isolation between the two species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Henry -- Loehlin, David W -- Dufour, Heloise D -- Vaccarro, Kathy -- Millar, Jocelyn G -- Carroll, Sean B -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Mar 7;343(6175):1148-51. doi: 10.1126/science.1249998. Epub 2014 Feb 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24526311" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Desiccation ; Drosophila/*genetics/physiology ; Ecosystem ; Evolution, Molecular ; Fatty Acid Synthases/*genetics/physiology ; *Genes, Insect ; *Genetic Variation ; Hydrocarbons/*metabolism ; *Mating Preference, Animal ; Molecular Sequence Data ; *Reproductive Isolation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-09-13
    Description: In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000x coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic. This West African variant likely diverged from central African lineages around 2004, crossed from Guinea to Sierra Leone in May 2014, and has exhibited sustained human-to-human transmission subsequently, with no evidence of additional zoonotic sources. Because many of the mutations alter protein sequences and other biologically meaningful targets, they should be monitored for impact on diagnostics, vaccines, and therapies critical to outbreak response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4431643/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gire, Stephen K -- Goba, Augustine -- Andersen, Kristian G -- Sealfon, Rachel S G -- Park, Daniel J -- Kanneh, Lansana -- Jalloh, Simbirie -- Momoh, Mambu -- Fullah, Mohamed -- Dudas, Gytis -- Wohl, Shirlee -- Moses, Lina M -- Yozwiak, Nathan L -- Winnicki, Sarah -- Matranga, Christian B -- Malboeuf, Christine M -- Qu, James -- Gladden, Adrianne D -- Schaffner, Stephen F -- Yang, Xiao -- Jiang, Pan-Pan -- Nekoui, Mahan -- Colubri, Andres -- Coomber, Moinya Ruth -- Fonnie, Mbalu -- Moigboi, Alex -- Gbakie, Michael -- Kamara, Fatima K -- Tucker, Veronica -- Konuwa, Edwin -- Saffa, Sidiki -- Sellu, Josephine -- Jalloh, Abdul Azziz -- Kovoma, Alice -- Koninga, James -- Mustapha, Ibrahim -- Kargbo, Kandeh -- Foday, Momoh -- Yillah, Mohamed -- Kanneh, Franklyn -- Robert, Willie -- Massally, James L B -- Chapman, Sinead B -- Bochicchio, James -- Murphy, Cheryl -- Nusbaum, Chad -- Young, Sarah -- Birren, Bruce W -- Grant, Donald S -- Scheiffelin, John S -- Lander, Eric S -- Happi, Christian -- Gevao, Sahr M -- Gnirke, Andreas -- Rambaut, Andrew -- Garry, Robert F -- Khan, S Humarr -- Sabeti, Pardis C -- 095831/Wellcome Trust/United Kingdom -- 1DP2OD006514-01/OD/NIH HHS/ -- 1U01HG007480-01/HG/NHGRI NIH HHS/ -- 260864/European Research Council/International -- DP2 OD006514/OD/NIH HHS/ -- GM080177/GM/NIGMS NIH HHS/ -- HHSN272200900049C/AI/NIAID NIH HHS/ -- HHSN272200900049C/PHS HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 HG007480/HG/NHGRI NIH HHS/ -- U19 AI110818/AI/NIAID NIH HHS/ -- U19 AI115589/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1369-72. doi: 10.1126/science.1259657. Epub 2014 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. andersen@broadinstitute.org augstgoba@yahoo.com psabeti@oeb.harvard.edu. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. ; Kenema Government Hospital, Kenema, Sierra Leone. ; Kenema Government Hospital, Kenema, Sierra Leone. Eastern Polytechnic College, Kenema, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. ; Tulane University Medical Center, New Orleans, LA 70112, USA. ; Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Systems Biology, Harvard Medical School, Boston, MA 02115, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Redeemer's University, Ogun State, Nigeria. ; University of Sierra Leone, Freetown, Sierra Leone. ; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214632" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Disease Outbreaks ; Ebolavirus/*genetics/isolation & purification ; *Epidemiological Monitoring ; Genetic Variation ; Genome, Viral/genetics ; Genomics/methods ; Hemorrhagic Fever, Ebola/epidemiology/*transmission/*virology ; Humans ; Mutation ; Sequence Analysis, DNA ; Sierra Leone/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-02-18
    Description: The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor required for normal cortical development and is expressed in cortical progenitor cells. GPR56 expression levels regulate progenitor proliferation. GPR56 splice forms are highly variable between mice and humans, and the regulatory element of gyrencephalic mammals directs restricted lateral cortical expression. Our data reveal a mechanism by which control of GPR56 expression pattern by multiple alternative promoters can influence stem cell proliferation, gyral patterning, and, potentially, neocortex evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480613/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480613/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bae, Byoung-Il -- Tietjen, Ian -- Atabay, Kutay D -- Evrony, Gilad D -- Johnson, Matthew B -- Asare, Ebenezer -- Wang, Peter P -- Murayama, Ayako Y -- Im, Kiho -- Lisgo, Steven N -- Overman, Lynne -- Sestan, Nenad -- Chang, Bernard S -- Barkovich, A James -- Grant, P Ellen -- Topcu, Meral -- Politsky, Jeffrey -- Okano, Hideyuki -- Piao, Xianhua -- Walsh, Christopher A -- 2R01NS035129/NS/NINDS NIH HHS/ -- G0700089/Medical Research Council/United Kingdom -- GR082557/Wellcome Trust/United Kingdom -- HHSN275200900011C/PHS HHS/ -- N01-HD-9-0011/HD/NICHD NIH HHS/ -- R01 NS035129/NS/NINDS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- U01MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):764-8. doi: 10.1126/science.1244392.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Broad Institute of MIT and Harvard, and Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531968" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Base Sequence ; Biological Evolution ; Body Patterning/*genetics ; Cats ; Cell Proliferation ; Cerebral Cortex/anatomy & histology/cytology/*embryology ; Codon, Nonsense ; Frontal Lobe/anatomy & histology/cytology/embryology ; Genetic Variation ; Haplotypes ; Humans ; Mice ; Molecular Sequence Data ; Neural Stem Cells/cytology/*physiology ; Pedigree ; Promoter Regions, Genetic/genetics ; Receptors, G-Protein-Coupled/*genetics ; Sequence Deletion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-05-24
    Description: Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model. FoxP mutants took longer than wild-type flies to form decisions of similar or reduced accuracy, especially in difficult, low-contrast tasks. RNA interference with FoxP expression in alphabeta core Kenyon cells, or the overexpression of a potassium conductance in these neurons, recapitulated the FoxP mutant phenotype. A mushroom body subdomain whose development or function require the transcription factor FoxP thus supports the progression of a decision toward commitment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206523/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DasGupta, Shamik -- Ferreira, Clara Howcroft -- Miesenbock, Gero -- 090309/Wellcome Trust/United Kingdom -- G0700888/Medical Research Council/United Kingdom -- G0701225/Medical Research Council/United Kingdom -- R01 DA030601/DA/NIDA NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 May 23;344(6186):901-4. doi: 10.1126/science.1252114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. ; Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK. gero.miesenboeck@cncb.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Behavior, Animal ; Cell Line ; *Decision Making ; Drosophila Proteins/genetics/*physiology ; Drosophila melanogaster/genetics/*physiology ; Forkhead Transcription Factors/genetics/*physiology ; Mushroom Bodies/growth & development/metabolism ; Mutation ; Neurons/physiology ; Odors ; *Psychomotor Performance ; RNA Interference ; Reaction Time/genetics/*physiology ; Smell
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-09-13
    Description: Fucosylation of intestinal epithelial cells, catalyzed by fucosyltransferase 2 (Fut2), is a major glycosylation mechanism of host-microbiota symbiosis. Commensal bacteria induce epithelial fucosylation, and epithelial fucose is used as a dietary carbohydrate by many of these bacteria. However, the molecular and cellular mechanisms that regulate the induction of epithelial fucosylation are unknown. Here, we show that type 3 innate lymphoid cells (ILC3) induced intestinal epithelial Fut2 expression and fucosylation in mice. This induction required the cytokines interleukin-22 and lymphotoxin in a commensal bacteria-dependent and -independent manner, respectively. Disruption of intestinal fucosylation led to increased susceptibility to infection by Salmonella typhimurium. Our data reveal a role for ILC3 in shaping the gut microenvironment through the regulation of epithelial glycosylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774895/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goto, Yoshiyuki -- Obata, Takashi -- Kunisawa, Jun -- Sato, Shintaro -- Ivanov, Ivaylo I -- Lamichhane, Aayam -- Takeyama, Natsumi -- Kamioka, Mariko -- Sakamoto, Mitsuo -- Matsuki, Takahiro -- Setoyama, Hiromi -- Imaoka, Akemi -- Uematsu, Satoshi -- Akira, Shizuo -- Domino, Steven E -- Kulig, Paulina -- Becher, Burkhard -- Renauld, Jean-Christophe -- Sasakawa, Chihiro -- Umesaki, Yoshinori -- Benno, Yoshimi -- Kiyono, Hiroshi -- 1R01DK098378/DK/NIDDK NIH HHS/ -- R01 DK098378/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2014 Sep 12;345(6202):1254009. doi: 10.1126/science.1254009. Epub 2014 Aug 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka 567-0085, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. ; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Nippon Institute for Biological Science, Tokyo 198-0024, Japan. ; Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba 305-0074, Japan. ; Yakult Central Institute, Tokyo 186-8650, Japan. ; Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Department of Mucosal Immunology, School of Medicine, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba, 260-8670, Japan. ; Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan. ; Department of Obstetrics and Gynecology, Cellular and Molecular Biology Program, University of Michigan Medical Center, Ann Arbor, MI 48109-5617, USA. ; Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland. ; Ludwig Institute for Cancer Research and Universite Catholique de Louvain, Brussels B-1200, Belgium. ; Nippon Institute for Biological Science, Tokyo 198-0024, Japan. Division of Bacterial Infection, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan. ; Benno Laboratory, Innovation Center, RIKEN, Wako, Saitama 351-0198, Japan. ; Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan. Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25214634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Fucose/*metabolism ; Fucosyltransferases/genetics/metabolism ; Germ-Free Life ; Glycosylation ; Goblet Cells/enzymology/immunology/microbiology ; Ileum/enzymology/immunology/microbiology ; *Immunity, Innate ; Interleukins/immunology ; Intestinal Mucosa/enzymology/*immunology/microbiology ; Lymphocytes/*immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Molecular Sequence Data ; Paneth Cells/enzymology/immunology/microbiology ; Salmonella Infections/*immunology/microbiology ; *Salmonella typhimurium
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2014-03-01
    Description: Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA.DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357282/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colak, Dilek -- Zaninovic, Nikica -- Cohen, Michael S -- Rosenwaks, Zev -- Yang, Wang-Yong -- Gerhardt, Jeannine -- Disney, Matthew D -- Jaffrey, Samie R -- R01 GM079235/GM/NIGMS NIH HHS/ -- R01 MH80420/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 28;343(6174):1002-5. doi: 10.1126/science.1245831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578575" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA Methylation ; Embryonic Stem Cells/metabolism ; Fragile X Mental Retardation Protein/*genetics ; Fragile X Syndrome/*genetics ; *Gene Silencing ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Neurons/metabolism ; Nuclear Proteins/genetics ; Promoter Regions, Genetic/genetics ; RNA, Messenger/*genetics ; RNA, Small Interfering/genetics ; Trinucleotide Repeats/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-03-15
    Description: Ecological specialization should minimize niche overlap, yet herbivorous neotropical flies (Blepharoneura) and their lethal parasitic wasps (parasitoids) exhibit both extreme specialization and apparent niche overlap in host plants. From just two plant species at one site in Peru, we collected 3636 flowers yielding 1478 fly pupae representing 14 Blepharoneura fly species, 18 parasitoid species (14 Bellopius species), and parasitoid-host associations, all discovered through analysis of molecular data. Multiple sympatric species specialize on the same sex flowers of the same fly host-plant species-which suggests extreme niche overlap; however, niche partitioning was exposed by interactions between wasps and flies. Most Bellopius species emerged as adults from only one fly species, yet evidence from pupae (preadult emergence samples) show that most Bellopius also attacked additional fly species but never emerged as adults from those flies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Condon, Marty A -- Scheffer, Sonja J -- Lewis, Matthew L -- Wharton, Robert -- Adams, Dean C -- Forbes, Andrew A -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1240-4. doi: 10.1126/science.1245007.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Cornell College, Mount Vernon, IA 52314, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24626926" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biodiversity ; Cucurbitaceae/*parasitology ; Flowers/parasitology ; *Food Chain ; *Herbivory ; Molecular Sequence Data ; Peru ; Pupa/parasitology ; Tephritidae/embryology/*parasitology ; Wasps/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2014-08-30
    Description: The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raghavan, Maanasa -- DeGiorgio, Michael -- Albrechtsen, Anders -- Moltke, Ida -- Skoglund, Pontus -- Korneliussen, Thorfinn S -- Gronnow, Bjarne -- Appelt, Martin -- Gullov, Hans Christian -- Friesen, T Max -- Fitzhugh, William -- Malmstrom, Helena -- Rasmussen, Simon -- Olsen, Jesper -- Melchior, Linea -- Fuller, Benjamin T -- Fahrni, Simon M -- Stafford, Thomas Jr -- Grimes, Vaughan -- Renouf, M A Priscilla -- Cybulski, Jerome -- Lynnerup, Niels -- Lahr, Marta Mirazon -- Britton, Kate -- Knecht, Rick -- Arneborg, Jette -- Metspalu, Mait -- Cornejo, Omar E -- Malaspinas, Anna-Sapfo -- Wang, Yong -- Rasmussen, Morten -- Raghavan, Vibha -- Hansen, Thomas V O -- Khusnutdinova, Elza -- Pierre, Tracey -- Dneprovsky, Kirill -- Andreasen, Claus -- Lange, Hans -- Hayes, M Geoffrey -- Coltrain, Joan -- Spitsyn, Victor A -- Gotherstrom, Anders -- Orlando, Ludovic -- Kivisild, Toomas -- Villems, Richard -- Crawford, Michael H -- Nielsen, Finn C -- Dissing, Jorgen -- Heinemeier, Jan -- Meldgaard, Morten -- Bustamante, Carlos -- O'Rourke, Dennis H -- Jakobsson, Mattias -- Gilbert, M Thomas P -- Nielsen, Rasmus -- Willerslev, Eske -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1255832. doi: 10.1126/science.1255832.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, Pennsylvania State University, 502 Wartik Laboratory, University Park, PA 16802, USA. ; Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. ; Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. ; Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Arctic Centre at the Ethnographic Collections (SILA), National Museum of Denmark, Frederiksholms Kanal 12, 1220 Copenhagen, Denmark. ; Department of Anthropology, University of Toronto, Toronto, Ontario M5S 2S2, Canada. ; Arctic Studies Center, Post Office Box 37012, Department of Anthropology, MRC 112, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. ; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark. ; AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark. ; Anthropological Laboratory, Institute of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Frederik V's Vej 11, 2100 Copenhagen, Denmark. ; Department of Earth System Science, University of California, Irvine, CA 92697, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. AMS 14C Dating Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark. ; Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. ; Department of Archaeology, Memorial University, Queen's College, 210 Prince Philip Drive, St. John's, Newfoundland, A1C 5S7, Canada. ; Canadian Museum of History, 100 Rue Laurier, Gatineau, Quebec K1A 0M8, Canada. Department of Anthropology, University of Western Ontario, 1151 Richmond Street North, London N6A 5C2, Canada. ; Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. ; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany. Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK. ; Department of Archaeology, University of Aberdeen, St. Mary's Building, Elphinstone Road, Aberdeen AB24 3UF, Scotland, UK. ; National Museum of Denmark, Frederiksholms kanal 12, 1220 Copenhagen, Denmark. School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK. ; Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Evolutionary Biology, University of Tartu, Tartu 51010, Estonia. ; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. School of Biological Sciences, Washington State University, Post Office Box 644236, Pullman, WA 99164, USA. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. Ancestry.com DNA LLC, San Francisco, CA 94107, USA. ; Informatics and Bio-computing, Ontario Institute for Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, M5G 0A3, Canada. ; Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark. ; Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia. Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Bashkortostan 450074, Russia. ; State Museum for Oriental Art, 12a, Nikitsky Boulevard, Moscow 119019, Russia. ; Greenland National Museum and Archives, Post Office Box 145, 3900 Nuuk, Greenland. ; Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. Department of Anthropology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA. Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. ; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA. ; Research Centre for Medical Genetics of Russian Academy of Medical Sciences, 1 Moskvorechie, Moscow 115478, Russia. ; Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden. ; Estonian Biocentre, Evolutionary Biology Group, Tartu 51010, Estonia. Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 1QH, UK. ; Laboratory of Biological Anthropology, University of Kansas, Lawrence, KS 66045, USA. ; Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA. ; Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, 75236 Uppsala, Sweden. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ewillerslev@snm.ku.dk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170159" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska/ethnology ; Arctic Regions/ethnology ; Base Sequence ; Bone and Bones ; Canada/ethnology ; DNA, Mitochondrial/genetics ; Genome, Human/*genetics ; Greenland/ethnology ; Hair ; History, Ancient ; *Human Migration ; Humans ; Inuits/ethnology/*genetics/history ; Molecular Sequence Data ; Siberia/ethnology ; Survivors/history ; Tooth
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-08-26
    Description: The ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)-responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding-response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV. EutV is known to regulate the eut messenger RNAs by binding dual-hairpin structures that overlap terminators and thus prevent transcription termination. In the presence of AdoCbl, EutV cannot bind to EutX and, instead, causes transcriptional read through of multiple eut genes. This work introduces riboswitch-mediated control of protein sequestration as a posttranscriptional mechanism to coordinately regulate gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DebRoy, Sruti -- Gebbie, Margo -- Ramesh, Arati -- Goodson, Jonathan R -- Cruz, Melissa R -- van Hoof, Ambro -- Winkler, Wade C -- Garsin, Danielle A -- P30 DK056338/DK/NIDDK NIH HHS/ -- R01 AI076406/AI/NIAID NIH HHS/ -- R01 AI110432/AI/NIAID NIH HHS/ -- R01 GM099790/GM/NIGMS NIH HHS/ -- R01AI076406/AI/NIAID NIH HHS/ -- R01GM099790/GM/NIGMS NIH HHS/ -- R56 AI110432/AI/NIAID NIH HHS/ -- R56AI110432/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 22;345(6199):937-40. doi: 10.1126/science.1255091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, TX 77030, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. ; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA. danielle.a.garsin@uth.tmc.edu wwinkler@umd.edu. ; Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, TX 77030, USA. danielle.a.garsin@uth.tmc.edu wwinkler@umd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25146291" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cobamides/*metabolism ; Enterococcus faecalis/*genetics/metabolism ; Ethanolamine/*metabolism ; *Gene Expression Regulation, Bacterial ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Messenger/chemistry/genetics/*metabolism ; *Response Elements ; Riboswitch/genetics/*physiology ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-06-28
    Description: Dynamin superfamily molecular motors use guanosine triphosphate (GTP) as a source of energy for membrane-remodeling events. We found that knockdown of nucleoside diphosphate kinases (NDPKs) NM23-H1/H2, which produce GTP through adenosine triphosphate (ATP)-driven conversion of guanosine diphosphate (GDP), inhibited dynamin-mediated endocytosis. NM23-H1/H2 localized at clathrin-coated pits and interacted with the proline-rich domain of dynamin. In vitro, NM23-H1/H2 were recruited to dynamin-induced tubules, stimulated GTP-loading on dynamin, and triggered fission in the presence of ATP and GDP. NM23-H4, a mitochondria-specific NDPK, colocalized with mitochondrial dynamin-like OPA1 involved in mitochondria inner membrane fusion and increased GTP-loading on OPA1. Like OPA1 loss of function, silencing of NM23-H4 but not NM23-H1/H2 resulted in mitochondrial fragmentation, reflecting fusion defects. Thus, NDPKs interact with and provide GTP to dynamins, allowing these motor proteins to work with high thermodynamic efficiency.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601533/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boissan, Mathieu -- Montagnac, Guillaume -- Shen, Qinfang -- Griparic, Lorena -- Guitton, Jerome -- Romao, Maryse -- Sauvonnet, Nathalie -- Lagache, Thibault -- Lascu, Ioan -- Raposo, Graca -- Desbourdes, Celine -- Schlattner, Uwe -- Lacombe, Marie-Lise -- Polo, Simona -- van der Bliek, Alexander M -- Roux, Aurelien -- Chavrier, Philippe -- 311536/European Research Council/International -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1510-5. doi: 10.1126/science.1253768.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. ; Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA. ; Hospices Civils de Lyon, Pierre Benite, France. Universite de Lyon, Lyon, France. ; Institut Curie, Research Center, Paris, France. Structure and Membrane Compartments, CNRS UMR 144, Paris, France. ; Institut Pasteur, Unite de Biologie des Interactions Cellulaires, Paris, France. ; Quantitative Image Analysis Unit, Institut Pasteur, Paris, France. ; Institut de Biochimie et Genetique Cellulaires-CNRS, Universite Bordeaux 2, Bordeaux, France. ; Universite Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France. Inserm, U1055, Grenoble, France. ; Universite Pierre et Marie Curie, University Paris 06, Paris, France. Saint-Antoine Research Center, INSERM UMR-S 938, Paris, France. ; IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy. Dipartimento di Scienze della Salute, Universita' degli Studi di Milano, Milan, Italy. ; Biochemistry Department, University of Geneva, & Swiss National Center for Competence in Research Program Chemical Biology, Geneva, Switzerland. ; Institut Curie, Research Center, Paris, France. Membrane and Cytoskeleton Dynamics, CNRS UMR 144, Paris, France. mathieu.boissan@inserm.fr philippe.chavrier@curie.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970086" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Cell Membrane/*metabolism ; Coated Pits, Cell-Membrane/metabolism ; Dynamins/*metabolism ; Endocytosis ; GTP Phosphohydrolases/metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Humans ; Intracellular Membranes/metabolism ; Membrane Fusion ; Mitochondria/metabolism ; NM23 Nucleoside Diphosphate Kinases/genetics/*metabolism ; Nucleoside Diphosphate Kinase D/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-08-30
    Description: The genetic changes underlying the initial steps of animal domestication are still poorly understood. We generated a high-quality reference genome for the rabbit and compared it to resequencing data from populations of wild and domestic rabbits. We identified more than 100 selective sweeps specific to domestic rabbits but only a relatively small number of fixed (or nearly fixed) single-nucleotide polymorphisms (SNPs) for derived alleles. SNPs with marked allele frequency differences between wild and domestic rabbits were enriched for conserved noncoding sites. Enrichment analyses suggest that genes affecting brain and neuronal development have often been targeted during domestication. We propose that because of a truly complex genetic background, tame behavior in rabbits and other domestic animals evolved by shifts in allele frequencies at many loci, rather than by critical changes at only a few domestication loci.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carneiro, Miguel -- Rubin, Carl-Johan -- Di Palma, Federica -- Albert, Frank W -- Alfoldi, Jessica -- Barrio, Alvaro Martinez -- Pielberg, Gerli -- Rafati, Nima -- Sayyab, Shumaila -- Turner-Maier, Jason -- Younis, Shady -- Afonso, Sandra -- Aken, Bronwen -- Alves, Joel M -- Barrell, Daniel -- Bolet, Gerard -- Boucher, Samuel -- Burbano, Hernan A -- Campos, Rita -- Chang, Jean L -- Duranthon, Veronique -- Fontanesi, Luca -- Garreau, Herve -- Heiman, David -- Johnson, Jeremy -- Mage, Rose G -- Peng, Ze -- Queney, Guillaume -- Rogel-Gaillard, Claire -- Ruffier, Magali -- Searle, Steve -- Villafuerte, Rafael -- Xiong, Anqi -- Young, Sarah -- Forsberg-Nilsson, Karin -- Good, Jeffrey M -- Lander, Eric S -- Ferrand, Nuno -- Lindblad-Toh, Kerstin -- Andersson, Leif -- 095908/Wellcome Trust/United Kingdom -- U54 HG003067/HG/NHGRI NIH HHS/ -- WT095908/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1074-9. doi: 10.1126/science.1253714.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich, UK. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. ; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Production, Ain Shams University, Shoubra El-Kheima, Cairo, Egypt. ; Wellcome Trust Sanger Institute, Hinxton, UK. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. ; Institut National de la Recherche Agronomique (INRA), UMR1388 Genetique, Physiologie et Systemes d'Elevage, F-31326 Castanet-Tolosan, France. ; Labovet Conseil, BP539, 85505 Les Herbiers Cedex, France. ; INRA, UMR1198 Biologie du Developpement et Reproduction, F-78350 Jouy-en-Josas, France. ; Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy. ; Laboratory of Immunology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA. ; U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA. ; ANTAGENE, Animal Genomics Laboratory, Lyon, France. ; INRA, UMR1313 Genetique Animale et Biologie Integrative, F- 78350, Jouy-en-Josas, France. ; Wellcome Trust Sanger Institute, Hinxton, UK. ; Instituto de Estudios Sociales Avanzados, (IESA-CSIC) Campo Santo de los Martires 7, Cordoba, Spain. ; Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. ; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA. ; CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Universidade do Porto, 4485-661, Vairao, Portugal. Departamento de Biologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre sn. 4169-007 Porto, Portugal. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se. ; Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden. Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA. kersli@broadinstitute.org leif.andersson@imbim.uu.se.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170157" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/anatomy & histology/*genetics/psychology ; Animals, Wild/anatomy & histology/*genetics/psychology ; Base Sequence ; Behavior, Animal ; Breeding ; Evolution, Molecular ; Gene Frequency ; Genetic Loci ; Genome/genetics ; Molecular Sequence Data ; Phenotype ; Polymorphism, Single Nucleotide ; Rabbits/anatomy & histology/*genetics/psychology ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-11-15
    Description: Cellular memory is crucial to many natural biological processes and sophisticated synthetic biology applications. Existing cellular memories rely on epigenetic switches or recombinases, which are limited in scalability and recording capacity. In this work, we use the DNA of living cell populations as genomic "tape recorders" for the analog and distributed recording of long-term event histories. We describe a platform for generating single-stranded DNA (ssDNA) in vivo in response to arbitrary transcriptional signals. When coexpressed with a recombinase, these intracellularly expressed ssDNAs target specific genomic DNA addresses, resulting in precise mutations that accumulate in cell populations as a function of the magnitude and duration of the inputs. This platform could enable long-term cellular recorders for environmental and biomedical applications, biological state machines, and enhanced genome engineering strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266475/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266475/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farzadfard, Fahim -- Lu, Timothy K -- 1DP2OD008435/OD/NIH HHS/ -- 1P50GM098792/GM/NIGMS NIH HHS/ -- DP2 OD008435/OD/NIH HHS/ -- P50 GM098792/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 14;346(6211):1256272. doi: 10.1126/science.1256272.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA. MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA. MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. ; Synthetic Biology Group, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA. MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA. MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. timlu@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25395541" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Bioengineering ; Cells ; DNA, Single-Stranded/*genetics ; Escherichia coli/genetics ; *Genetic Code ; Genomics/methods ; Information Storage and Retrieval/*methods ; Memory ; Molecular Sequence Data ; Synthetic Biology ; *Tape Recording ; Transcription, Genetic ; *Writing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-04-05
    Description: Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryson, J Barney -- Machado, Carolina Barcellos -- Crossley, Martin -- Stevenson, Danielle -- Bros-Facer, Virginie -- Burrone, Juan -- Greensmith, Linda -- Lieberam, Ivo -- 095589/Wellcome Trust/United Kingdom -- G0900585/Medical Research Council/United Kingdom -- G1001234/Biotechnology and Biological Sciences Research Council/United Kingdom -- MR/K000608/1/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):94-7. doi: 10.1126/science.1248523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24700859" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology ; Cell Line ; Electric Stimulation ; Embryonic Stem Cells/cytology/physiology ; Female ; Hindlimb ; Isometric Contraction ; *Light ; Mice ; Mice, Inbred C57BL ; Motor Neurons/cytology/*physiology/*transplantation ; Muscle Denervation ; Muscle Fibers, Skeletal/physiology ; Muscle, Skeletal/*innervation/*physiology ; Nerve Regeneration ; *Optogenetics ; Rhodopsin/genetics/metabolism ; Sciatic Nerve/physiology ; Transfection ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-03-01
    Description: Understanding the spatial organization of gene expression with single-nucleotide resolution requires localizing the sequences of expressed RNA transcripts within a cell in situ. Here, we describe fluorescent in situ RNA sequencing (FISSEQ), in which stably cross-linked complementary DNA (cDNA) amplicons are sequenced within a biological sample. Using 30-base reads from 8102 genes in situ, we examined RNA expression and localization in human primary fibroblasts with a simulated wound-healing assay. FISSEQ is compatible with tissue sections and whole-mount embryos and reduces the limitations of optical resolution and noisy signals on single-molecule detection. Our platform enables massively parallel detection of genetic elements, including gene transcripts and molecular barcodes, and can be used to investigate cellular phenotype, gene regulation, and environment in situ.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140943/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Je Hyuk -- Daugharthy, Evan R -- Scheiman, Jonathan -- Kalhor, Reza -- Yang, Joyce L -- Ferrante, Thomas C -- Terry, Richard -- Jeanty, Sauveur S F -- Li, Chao -- Amamoto, Ryoji -- Peters, Derek T -- Turczyk, Brian M -- Marblestone, Adam H -- Inverso, Samuel A -- Bernard, Amy -- Mali, Prashant -- Rios, Xavier -- Aach, John -- Church, George M -- GM080177/GM/NIGMS NIH HHS/ -- MH098977/MH/NIMH NIH HHS/ -- P50 HG005550/HG/NHGRI NIH HHS/ -- RC2 HL102815/HL/NHLBI NIH HHS/ -- RC2HL102815/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32 GM080177/GM/NIGMS NIH HHS/ -- U01 MH098977/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 21;343(6177):1360-3. doi: 10.1126/science.1250212. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wyss Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578530" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line ; Cells, Cultured ; DNA, Complementary ; Fluorescence ; Gene Expression Profiling/*methods ; Humans ; Induced Pluripotent Stem Cells ; RNA, Messenger/genetics/metabolism ; Sequence Analysis, RNA/*methods ; Single-Cell Analysis ; Transcription Initiation Site ; *Transcriptome ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-04-26
    Description: Mutations in the mitochondrial genome are associated with multiple diseases and biological processes; however, little is known about the extent of sequence variation in the mitochondrial transcriptome. By ultra-deeply sequencing mitochondrial RNA (〉6000x) from the whole blood of ~1000 individuals from the CARTaGENE project, we identified remarkable levels of sequence variation within and across individuals, as well as sites that show consistent patterns of posttranscriptional modification. Using a genome-wide association study, we find that posttranscriptional modification of functionally important sites in mitochondrial transfer RNAs (tRNAs) is under strong genetic control, largely driven by a missense mutation in MRPP3 that explains ~22% of the variance. These results reveal a major nuclear genetic determinant of posttranscriptional modification in mitochondria and suggest that tRNA posttranscriptional modification may affect cellular energy production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodgkinson, Alan -- Idaghdour, Youssef -- Gbeha, Elias -- Grenier, Jean-Christophe -- Hip-Ki, Elodie -- Bruat, Vanessa -- Goulet, Jean-Philippe -- de Malliard, Thibault -- Awadalla, Philip -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):413-5. doi: 10.1126/science.1251110.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CHU Sainte-Justine Research Centre, Department of Pediatrics, Faculty of Medicine, Universite de Montreal, 3175 Chemin de la Cote-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763589" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Base Sequence ; DNA, Mitochondrial/chemistry/genetics ; Female ; *Genetic Variation ; *Genome, Mitochondrial ; Genome-Wide Association Study ; High-Throughput Nucleotide Sequencing ; Humans ; Male ; Methylation ; Middle Aged ; Mutation, Missense ; Polymorphism, Single Nucleotide ; RNA/chemistry/*genetics/metabolism ; RNA Processing, Post-Transcriptional ; RNA, Transfer/chemistry/*genetics/metabolism ; Ribonuclease P/*genetics/metabolism ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-05-31
    Description: Phosphatidylinositol 4-kinases (PI4Ks) and small guanosine triphosphatases (GTPases) are essential for processes that require expansion and remodeling of phosphatidylinositol 4-phosphate (PI4P)-containing membranes, including cytokinesis, intracellular development of malarial pathogens, and replication of a wide range of RNA viruses. However, the structural basis for coordination of PI4K, GTPases, and their effectors is unknown. Here, we describe structures of PI4Kbeta (PI4KIIIbeta) bound to the small GTPase Rab11a without and with the Rab11 effector protein FIP3. The Rab11-PI4KIIIbeta interface is distinct compared with known structures of Rab complexes and does not involve switch regions used by GTPase effectors. Our data provide a mechanism for how PI4KIIIbeta coordinates Rab11 and its effectors on PI4P-enriched membranes and also provide strategies for the design of specific inhibitors that could potentially target plasmodial PI4KIIIbeta to combat malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046302/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burke, John E -- Inglis, Alison J -- Perisic, Olga -- Masson, Glenn R -- McLaughlin, Stephen H -- Rutaganira, Florentine -- Shokat, Kevan M -- Williams, Roger L -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- PG11/109/29247/British Heart Foundation/United Kingdom -- R01AI099245/AI/NIAID NIH HHS/ -- T32 GM064337/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1035-8. doi: 10.1126/science.1253397.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. jeburke@uvic.ca rlw@mrc-lmb.cam.ac.uk. ; Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB2 0QH, UK. ; Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876499" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antimalarials/chemistry/pharmacology ; Binding Sites ; Cell Line ; Crystallography, X-Ray ; Drug Design ; Humans ; I-kappa B Kinase/*chemistry ; Molecular Sequence Data ; Mutation ; Phosphotransferases (Alcohol Group Acceptor)/*chemistry/genetics ; Plasmodium/drug effects/growth & development ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; rab GTP-Binding Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-03-29
    Description: Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, transfer RNAs, transposons, and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in a-mater derivatives resulting from loss of the MATalpha allele on synIII. The complete design and synthesis of synIII establishes S. cerevisiae as the basis for designer eukaryotic genome biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033833/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033833/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Annaluru, Narayana -- Muller, Heloise -- Mitchell, Leslie A -- Ramalingam, Sivaprakash -- Stracquadanio, Giovanni -- Richardson, Sarah M -- Dymond, Jessica S -- Kuang, Zheng -- Scheifele, Lisa Z -- Cooper, Eric M -- Cai, Yizhi -- Zeller, Karen -- Agmon, Neta -- Han, Jeffrey S -- Hadjithomas, Michalis -- Tullman, Jennifer -- Caravelli, Katrina -- Cirelli, Kimberly -- Guo, Zheyuan -- London, Viktoriya -- Yeluru, Apurva -- Murugan, Sindurathy -- Kandavelou, Karthikeyan -- Agier, Nicolas -- Fischer, Gilles -- Yang, Kun -- Martin, J Andrew -- Bilgel, Murat -- Bohutski, Pavlo -- Boulier, Kristin M -- Capaldo, Brian J -- Chang, Joy -- Charoen, Kristie -- Choi, Woo Jin -- Deng, Peter -- DiCarlo, James E -- Doong, Judy -- Dunn, Jessilyn -- Feinberg, Jason I -- Fernandez, Christopher -- Floria, Charlotte E -- Gladowski, David -- Hadidi, Pasha -- Ishizuka, Isabel -- Jabbari, Javaneh -- Lau, Calvin Y L -- Lee, Pablo A -- Li, Sean -- Lin, Denise -- Linder, Matthias E -- Ling, Jonathan -- Liu, Jaime -- Liu, Jonathan -- London, Mariya -- Ma, Henry -- Mao, Jessica -- McDade, Jessica E -- McMillan, Alexandra -- Moore, Aaron M -- Oh, Won Chan -- Ouyang, Yu -- Patel, Ruchi -- Paul, Marina -- Paulsen, Laura C -- Qiu, Judy -- Rhee, Alex -- Rubashkin, Matthew G -- Soh, Ina Y -- Sotuyo, Nathaniel E -- Srinivas, Venkatesh -- Suarez, Allison -- Wong, Andy -- Wong, Remus -- Xie, Wei Rose -- Xu, Yijie -- Yu, Allen T -- Koszul, Romain -- Bader, Joel S -- Boeke, Jef D -- Chandrasegaran, Srinivasan -- 092076/Wellcome Trust/United Kingdom -- GM077291/GM/NIGMS NIH HHS/ -- R01 GM077291/GM/NIGMS NIH HHS/ -- R01 GM090192/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):55-8. doi: 10.1126/science.1249252. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Environmental Health Sciences, Johns Hopkins University (JHU) School of Public Health, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674868" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Chromosomes, Fungal/genetics/metabolism ; DNA, Fungal/genetics ; Genes, Fungal ; Genetic Fitness ; Genome, Fungal ; Genomic Instability ; Introns ; Molecular Sequence Data ; Mutation ; Polymerase Chain Reaction ; RNA, Fungal/genetics ; RNA, Transfer/genetics ; Saccharomyces cerevisiae/cytology/*genetics/physiology ; Sequence Analysis, DNA ; Sequence Deletion ; Synthetic Biology/*methods ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-02-22
    Description: Robustness, the maintenance of a character in the presence of genetic change, can help preserve adaptive traits but also may hinder evolvability, the ability to bring forth novel adaptations. We used genotype networks to analyze the binding site repertoires of 193 transcription factors from mice and yeast, providing empirical evidence that robustness and evolvability need not be conflicting properties. Network vertices represent binding sites where two sites are connected if they differ in a single nucleotide. We show that the binding sites of larger genotype networks are not only more robust, but the sequences adjacent to such networks can also bind more transcription factors, thus demonstrating that robustness can facilitate evolvability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Payne, Joshua L -- Wagner, Andreas -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):875-7. doi: 10.1126/science.1249046.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24558158" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites/genetics ; Gene Regulatory Networks ; Mice ; Mutation ; Saccharomyces cerevisiae Proteins/chemistry ; Transcription Factors/*chemistry ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-11-15
    Description: In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell's transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase-binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720521/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mansour, Marc R -- Abraham, Brian J -- Anders, Lars -- Berezovskaya, Alla -- Gutierrez, Alejandro -- Durbin, Adam D -- Etchin, Julia -- Lawton, Lee -- Sallan, Stephen E -- Silverman, Lewis B -- Loh, Mignon L -- Hunger, Stephen P -- Sanda, Takaomi -- Young, Richard A -- Look, A Thomas -- 1R01CA176746-01/CA/NCI NIH HHS/ -- 5P01CA109901-08/CA/NCI NIH HHS/ -- 5P01CA68484/CA/NCI NIH HHS/ -- CA114766/CA/NCI NIH HHS/ -- CA120215/CA/NCI NIH HHS/ -- CA167124/CA/NCI NIH HHS/ -- CA29139/CA/NCI NIH HHS/ -- CA30969/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P01 CA109901/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 HG002668/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1373-7. doi: 10.1126/science.1259037. Epub 2014 Nov 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, UK. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. ; Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, CA 94143, USA. ; Pediatric Hematology/Oncology/BMT, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, USA. ; Cancer Science Institute of Singapore, National University of Singapore, and Department of Medicine, Yong Loo Lin School of Medicine, 117599, Singapore. ; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu. ; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA. Division of Pediatric Hematology-Oncology, Boston Children's Hospital, MA 02115, USA. thomas_look@dfci.harvard.edu young@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25394790" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Base Sequence ; Basic Helix-Loop-Helix Transcription Factors/*genetics ; Binding Sites ; Cell Line, Tumor ; *DNA, Intergenic ; *Enhancer Elements, Genetic ; *Gene Expression Regulation, Neoplastic ; Histones/metabolism ; Humans ; *INDEL Mutation ; Molecular Sequence Data ; *Mutation ; Oncogenes ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/*genetics ; Protein Interaction Domains and Motifs ; Proto-Oncogene Proteins/*genetics ; Proto-Oncogene Proteins c-myb/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-02-01
    Description: Plant floral stem cells divide a limited number of times before they stop and terminally differentiate, but the mechanisms that control this timing remain unclear. The precise temporal induction of the Arabidopsis zinc finger repressor KNUCKLES (KNU) is essential for the coordinated growth and differentiation of floral stem cells. We identify an epigenetic mechanism in which the floral homeotic protein AGAMOUS (AG) induces KNU at ~2 days of delay. AG binding sites colocalize with a Polycomb response element in the KNU upstream region. AG binding to the KNU promoter causes the eviction of the Polycomb group proteins from the locus, leading to cell division-dependent induction. These analyses demonstrate that floral stem cells measure developmental timing by a division-dependent epigenetic timer triggered by Polycomb eviction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Bo -- Looi, Liang-Sheng -- Guo, Siyi -- He, Zemiao -- Gan, Eng-Seng -- Huang, Jiangbo -- Xu, Yifeng -- Wee, Wan-Yi -- Ito, Toshiro -- New York, N.Y. -- Science. 2014 Jan 31;343(6170):1248559. doi: 10.1126/science.1248559.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24482483" target="_blank"〉PubMed〈/a〉
    Keywords: AGAMOUS Protein, Arabidopsis/genetics/*metabolism ; Arabidopsis/cytology/genetics/*growth & development ; Arabidopsis Proteins/genetics/*metabolism ; Base Sequence ; Carrier Proteins/genetics/*metabolism ; Cell Division/genetics/*physiology ; Epigenesis, Genetic ; Flowers/cytology/genetics/*growth & development ; Gene Expression Regulation, Plant ; Meristem/*cytology ; Molecular Sequence Data ; Plants, Genetically Modified/cytology/growth & development ; Polycomb-Group Proteins/genetics/*metabolism ; Promoter Regions, Genetic ; Stem Cells/*cytology ; Time Factors ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-06-28
    Description: Epistatic interactions between mutations can make evolutionary trajectories contingent on the chance occurrence of initial mutations. We used experimental evolution in Saccharomyces cerevisiae to quantify this contingency, finding differences in adaptability among 64 closely related genotypes. Despite these differences, sequencing of 104 evolved clones showed that initial genotype did not constrain future mutational trajectories. Instead, reconstructed combinations of mutations revealed a pattern of diminishing-returns epistasis: Beneficial mutations have consistently smaller effects in fitter backgrounds. Taken together, these results show that beneficial mutations affecting a variety of biological processes are globally coupled; they interact strongly, but only through their combined effect on fitness. As a consequence, fitness evolution follows a predictable trajectory even though sequence-level adaptation is stochastic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314286/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314286/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kryazhimskiy, Sergey -- Rice, Daniel P -- Jerison, Elizabeth R -- Desai, Michael M -- GM104239/GM/NIGMS NIH HHS/ -- R01 GM104239/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1519-22. doi: 10.1126/science.1250939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. skryazhi@oeb.harvard.edu mdesai@oeb.harvard.edu. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Physics, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA. FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA. skryazhi@oeb.harvard.edu mdesai@oeb.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970088" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Base Sequence ; Directed Molecular Evolution ; *Epistasis, Genetic ; *Evolution, Molecular ; Genes, Fungal ; *Genetic Fitness ; Genome, Fungal ; Genotype ; Models, Genetic ; Molecular Sequence Annotation ; Mutation ; Saccharomyces cerevisiae/*genetics/*physiology ; Sequence Analysis, DNA ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-10-04
    Description: Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lam, Felix H -- Ghaderi, Adel -- Fink, Gerald R -- Stephanopoulos, Gregory -- R01 GM035010/GM/NIGMS NIH HHS/ -- R01-GM035010/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):71-5. doi: 10.1126/science.1257859. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. Whitehead Institute for Biomedical Research, Cambridge, MA, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. ; Whitehead Institute for Biomedical Research, Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu. ; Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA. gfink@wi.mit.edu gregstep@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278607" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Cation Transport Proteins/genetics ; Cell Culture Techniques ; Cell Membrane/metabolism ; Chemical Engineering ; *Drug Resistance, Fungal/genetics ; Ethanol/*metabolism/pharmacology ; Fermentation ; Genetic Engineering ; Glucose/metabolism ; Hydrogen-Ion Concentration ; Phosphates/*metabolism ; Potassium Compounds/*metabolism ; Proton Pumps/genetics ; Proton-Translocating ATPases/genetics ; Saccharomyces cerevisiae/drug effects/genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Up-Regulation ; Xylose/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-12-06
    Description: During differentiation, thousands of genes are repositioned toward or away from the nuclear envelope. These movements correlate with changes in transcription and replication timing. Using synthetic (TALE) transcription factors, we found that transcriptional activation of endogenous genes by a viral trans-activator is sufficient to induce gene repositioning toward the nuclear interior in embryonic stem cells. However, gene relocation was also induced by recruitment of an acidic peptide that decondenses chromatin without affecting transcription, indicating that nuclear reorganization is driven by chromatin remodeling rather than transcription. We identified an epigenetic inheritance of chromatin decondensation that maintained central nuclear positioning through mitosis even after the TALE transcription factor was lost. Our results also demonstrate that transcriptional activation, but not chromatin decondensation, is sufficient to change replication timing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Therizols, Pierre -- Illingworth, Robert S -- Courilleau, Celine -- Boyle, Shelagh -- Wood, Andrew J -- Bickmore, Wendy A -- 102560/Wellcome Trust/United Kingdom -- MC_PC_U127527202/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2014 Dec 5;346(6214):1238-42. doi: 10.1126/science.1259587.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. ; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK. wendy.bickmore@igmm.ed.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25477464" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Line ; Cell Nucleus/*genetics/metabolism/ultrastructure ; Chromatin/*metabolism ; *Chromatin Assembly and Disassembly ; DNA Replication ; Embryonic Stem Cells/*cytology/metabolism ; *Epigenesis, Genetic ; Mice ; Nuclear Envelope/genetics/metabolism/ultrastructure ; Trans-Activators/*metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-10-04
    Description: Cancer genome characterization has revealed driver mutations in genes that govern ubiquitylation; however, the mechanisms by which these alterations promote tumorigenesis remain incompletely characterized. Here, we analyzed changes in the ubiquitin landscape induced by prostate cancer-associated mutations of SPOP, an E3 ubiquitin ligase substrate-binding protein. SPOP mutants impaired ubiquitylation of a subset of proteins in a dominant-negative fashion. Of these, DEK and TRIM24 emerged as effector substrates consistently up-regulated by SPOP mutants. We highlight DEK as a SPOP substrate that exhibited decreases in ubiquitylation and proteasomal degradation resulting from heteromeric complexes of wild-type and mutant SPOP protein. DEK stabilization promoted prostate epithelial cell invasion, which implicated DEK as an oncogenic effector. More generally, these results provide a framework to decipher tumorigenic mechanisms linked to dysregulated ubiquitylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257137/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4257137/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theurillat, Jean-Philippe P -- Udeshi, Namrata D -- Errington, Wesley J -- Svinkina, Tanya -- Baca, Sylvan C -- Pop, Marius -- Wild, Peter J -- Blattner, Mirjam -- Groner, Anna C -- Rubin, Mark A -- Moch, Holger -- Prive, Gilbert G -- Carr, Steven A -- Garraway, Levi A -- T32 GM007753/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 3;346(6205):85-9. doi: 10.1126/science.1250255. Epub 2014 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada. ; Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Institute of Surgical Pathology, University Hospital Zurich, ZH 8091 Zurich, Switzerland. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA. Institute for Precision Medicine of Weill Cornell and New York Presbyterian Hospital, New York, NY 10065, USA. ; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. Harvard Medical School, Boston, MA 02115, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA 02115, USA. levi_garraway@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25278611" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites/genetics ; Carcinogenesis/genetics/metabolism/pathology ; Carrier Proteins/metabolism ; Cell Line, Tumor ; Chromosomal Proteins, Non-Histone/metabolism ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Neoplasm Invasiveness ; Nuclear Proteins/*genetics/metabolism ; Oncogene Proteins/metabolism ; Prostatic Neoplasms/genetics/*metabolism/pathology ; Proteasome Endopeptidase Complex/metabolism ; Repressor Proteins/*genetics/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Langer, Robert S -- Gura, Trisha -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1146. doi: 10.1126/science.346.6213.1146.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Trisha Gura is a freelance writer who lives in Boston. For more on life and careers visit www.sciencecareers.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430772" target="_blank"〉PubMed〈/a〉
    Keywords: Biotechnology ; *Career Choice ; Chemical Engineering ; *Entrepreneurship ; *Science
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-05-24
    Description: The evolution of the ratite birds has been widely attributed to vicariant speciation, driven by the Cretaceous breakup of the supercontinent Gondwana. The early isolation of Africa and Madagascar implies that the ostrich and extinct Madagascan elephant birds (Aepyornithidae) should be the oldest ratite lineages. We sequenced the mitochondrial genomes of two elephant birds and performed phylogenetic analyses, which revealed that these birds are the closest relatives of the New Zealand kiwi and are distant from the basal ratite lineage of ostriches. This unexpected result strongly contradicts continental vicariance and instead supports flighted dispersal in all major ratite lineages. We suggest that convergence toward gigantism and flightlessness was facilitated by early Tertiary expansion into the diurnal herbivory niche after the extinction of the dinosaurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Kieren J -- Llamas, Bastien -- Soubrier, Julien -- Rawlence, Nicolas J -- Worthy, Trevor H -- Wood, Jamie -- Lee, Michael S Y -- Cooper, Alan -- New York, N.Y. -- Science. 2014 May 23;344(6186):898-900. doi: 10.1126/science.1251981.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. ; School of Biological Sciences, Flinders University, South Australia 5001, Australia. ; Landcare Research, Post Office Box 40, Lincoln 7640, New Zealand. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. South Australian Museum, North Terrace, South Australia 5000, Australia. ; Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, North Terrace Campus, South Australia 5005, Australia. alan.cooper@adelaide.edu.au.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; DNA/*genetics ; Flight, Animal ; Fossils ; Molecular Sequence Data ; New Zealand ; Palaeognathae/*classification/genetics ; Phylogeny ; Struthioniformes/*classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-05-03
    Description: Transcription by RNA polymerase (RNAP) is interrupted by pauses that play diverse regulatory roles. Although individual pauses have been studied in vitro, the determinants of pauses in vivo and their distribution throughout the bacterial genome remain unknown. Using nascent transcript sequencing, we identified a 16-nucleotide consensus pause sequence in Escherichia coli that accounts for known regulatory pause sites as well as ~20,000 new in vivo pause sites. In vitro single-molecule and ensemble analyses demonstrate that these pauses result from RNAP-nucleic acid interactions that inhibit next-nucleotide addition. The consensus sequence also leads to pausing by RNAPs from diverse lineages and is enriched at translation start sites in both E. coli and Bacillus subtilis. Our results thus reveal a conserved mechanism unifying known and newly identified pause events.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108260/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108260/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Larson, Matthew H -- Mooney, Rachel A -- Peters, Jason M -- Windgassen, Tricia -- Nayak, Dhananjaya -- Gross, Carol A -- Block, Steven M -- Greenleaf, William J -- Landick, Robert -- Weissman, Jonathan S -- F32 GM100611/GM/NIGMS NIH HHS/ -- F32 GM108222/GM/NIGMS NIH HHS/ -- P50 GM102706/GM/NIGMS NIH HHS/ -- R01 GM038660/GM/NIGMS NIH HHS/ -- R01 GM102790/GM/NIGMS NIH HHS/ -- R37 GM057035/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 May 30;344(6187):1042-7. doi: 10.1126/science.1251871. Epub 2014 May 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. ; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA. ; Department of Biological Sciences, Stanford University, Stanford, CA 94025, USA. Department of Applied Physics; Stanford University, Stanford, CA 94025, USA. ; Department of Genetics, Stanford University, Stanford, CA 94025, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu. ; Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA. Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu. ; Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences, Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA. wjg@stanford.edu landick@biochem.wisc.edu weissman@cmp.ucsf.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24789973" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Codon, Initiator/*genetics ; Consensus Sequence ; DNA-Directed RNA Polymerases/metabolism ; Escherichia coli/*genetics/*metabolism ; *Gene Expression Regulation, Bacterial ; Peptide Chain Initiation, Translational/*genetics ; *Regulatory Elements, Transcriptional ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-11-02
    Description: MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313529/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schirle, Nicole T -- Sheu-Gruttadauria, Jessica -- MacRae, Ian J -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 GM104475/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):608-13. doi: 10.1126/science.1258040.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. macrae@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359968" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*chemistry/genetics ; Base Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; *Gene Expression Regulation ; Humans ; Magnesium/chemistry ; MicroRNAs/*chemistry/genetics ; Models, Molecular ; Nucleic Acid Conformation ; Protein Structure, Secondary ; RNA, Guide/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-11-21
    Description: To study the evolutionary dynamics of regulatory DNA, we mapped 〉1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vierstra, Jeff -- Rynes, Eric -- Sandstrom, Richard -- Zhang, Miaohua -- Canfield, Theresa -- Hansen, R Scott -- Stehling-Sun, Sandra -- Sabo, Peter J -- Byron, Rachel -- Humbert, Richard -- Thurman, Robert E -- Johnson, Audra K -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Giste, Erika -- Haugen, Eric -- Dunn, Douglas -- Wilken, Matthew S -- Josefowicz, Steven -- Samstein, Robert -- Chang, Kai-Hsin -- Eichler, Evan E -- De Bruijn, Marella -- Reh, Thomas A -- Skoultchi, Arthur -- Rudensky, Alexander -- Orkin, Stuart H -- Papayannopoulou, Thalia -- Treuting, Piper M -- Selleri, Licia -- Kaul, Rajinder -- Groudine, Mark -- Bender, M A -- Stamatoyannopoulos, John A -- 1RC2HG005654/HG/NHGRI NIH HHS/ -- 2R01HD04399709/HD/NICHD NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 HD043997/HD/NICHD NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R37DK44746/DK/NIDDK NIH HHS/ -- RC2 HG005654/HG/NHGRI NIH HHS/ -- U54 HG007010/HG/NHGRI NIH HHS/ -- U54HG007010/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Nov 21;346(6212):1007-12. doi: 10.1126/science.1246426.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. ; Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute. ; Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. ; Howard Hughes Medical Institute. Division of Hematology/Oncology, Children's Hospital Boston and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA. ; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA. ; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Radiation Oncology, University of Washington, Seattle, WA 98109, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. Department of Pediatrics, University of Washington, Seattle, WA 98195, USA. ; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Division of Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA. jstam@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25411453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA/*genetics ; Deoxyribonuclease I ; *Evolution, Molecular ; Genome, Human ; Humans ; Mice ; Regulatory Sequences, Nucleic Acid/*genetics ; Restriction Mapping ; Transcription Factors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-04-20
    Description: Flaviviruses are emerging human pathogens and worldwide health threats. During infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) are produced by resisting degradation by the 5'--〉3' host cell exonuclease Xrn1 through an unknown RNA structure-based mechanism. Here, we present the crystal structure of a complete Xrn1-resistant flaviviral RNA, which contains interwoven pseudoknots within a compact structure that depends on highly conserved nucleotides. The RNA's three-dimensional topology creates a ringlike conformation, with the 5' end of the resistant structure passing through the ring from one side of the fold to the other. Disruption of this structure prevents formation of sfRNA during flaviviral infection. Thus, sfRNA formation results from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a structure that confounds its helicase activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Erich G -- Costantino, David A -- Rabe, Jennifer L -- Moon, Stephanie L -- Wilusz, Jeffrey -- Nix, Jay C -- Kieft, Jeffrey S -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- U54 AI-065357/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):307-10. doi: 10.1126/science.1250897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744377" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Crystallography, X-Ray ; Encephalitis Virus, Murray Valley/*genetics/pathogenicity ; Exoribonucleases/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA, Viral/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-06-07
    Description: Phospholipids are asymmetrically distributed in the plasma membrane. This asymmetrical distribution is disrupted during apoptosis, exposing phosphatidylserine (PtdSer) on the cell surface. Using a haploid genetic screen in human cells, we found that ATP11C (adenosine triphosphatase type 11C) and CDC50A (cell division cycle protein 50A) are required for aminophospholipid translocation from the outer to the inner plasma membrane leaflet; that is, they display flippase activity. ATP11C contained caspase recognition sites, and mutations at these sites generated caspase-resistant ATP11C without affecting its flippase activity. Cells expressing caspase-resistant ATP11C did not expose PtdSer during apoptosis and were not engulfed by macrophages, which suggests that inactivation of the flippase activity is required for apoptotic PtdSer exposure. CDC50A-deficient cells displayed PtdSer on their surface and were engulfed by macrophages, indicating that PtdSer is sufficient as an "eat me" signal.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Segawa, Katsumori -- Kurata, Sachiko -- Yanagihashi, Yuichi -- Brummelkamp, Thijn R -- Matsuda, Fumihiko -- Nagata, Shigekazu -- New York, N.Y. -- Science. 2014 Jun 6;344(6188):1164-8. doi: 10.1126/science.1252809.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands. ; Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. ; Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Kyoto 606-8501, Japan. Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Kyoto 606-8501, Japan. snagata@mfour.med.kyoto-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24904167" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/genetics/*metabolism ; *Apoptosis ; Caspases/*metabolism ; Cell Line ; Cell Membrane/*enzymology ; Genetic Testing ; Humans ; Membrane Proteins/*metabolism ; Membrane Transport Proteins ; Phosphatidylserines/*metabolism ; Phospholipid Transfer Proteins/genetics/*metabolism ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-12-17
    Description: Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyzed the ability of temporal signal modulation--that is, dynamics--to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca(2+)), and nuclear factor kappa-B (NF-kappaB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to nondynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise levels confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise-induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Selimkhanov, Jangir -- Taylor, Brooks -- Yao, Jason -- Pilko, Anna -- Albeck, John -- Hoffmann, Alexander -- Tsimring, Lev -- Wollman, Roy -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50-GM085764/GM/NIGMS NIH HHS/ -- R01 GM089976/GM/NIGMS NIH HHS/ -- R01-GM071573/GM/NIGMS NIH HHS/ -- R01-GM089976/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1370-3. doi: 10.1126/science.1254933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Molecular and Cellular Biology, University of California-Davis, Davis 95616, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90025, USA. ; San Diego Center for Systems Biology, La Jolla, CA 92093, USA. BioCircuits Institute, University of California-San Diego, La Jolla, CA 92093, USA. ; Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA. San Diego Center for Systems Biology, La Jolla, CA 92093, USA. Cell and Developmental Biology Section, Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA. rwollman@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504722" target="_blank"〉PubMed〈/a〉
    Keywords: *Calcium Signaling ; Cell Line ; Computer Simulation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; NF-kappa B/*metabolism ; *Signal Transduction ; Signal-To-Noise Ratio ; Single-Cell Analysis ; Systems Biology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-05-17
    Description: Because of differences in craniofacial morphology and dentition between the earliest American skeletons and modern Native Americans, separate origins have been postulated for them, despite genetic evidence to the contrary. We describe a near-complete human skeleton with an intact cranium and preserved DNA found with extinct fauna in a submerged cave on Mexico's Yucatan Peninsula. This skeleton dates to between 13,000 and 12,000 calendar years ago and has Paleoamerican craniofacial characteristics and a Beringian-derived mitochondrial DNA (mtDNA) haplogroup (D1). Thus, the differences between Paleoamericans and Native Americans probably resulted from in situ evolution rather than separate ancestry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chatters, James C -- Kennett, Douglas J -- Asmerom, Yemane -- Kemp, Brian M -- Polyak, Victor -- Blank, Alberto Nava -- Beddows, Patricia A -- Reinhardt, Eduard -- Arroyo-Cabrales, Joaquin -- Bolnick, Deborah A -- Malhi, Ripan S -- Culleton, Brendan J -- Erreguerena, Pilar Luna -- Rissolo, Dominique -- Morell-Hart, Shanti -- Stafford, Thomas W Jr -- New York, N.Y. -- Science. 2014 May 16;344(6185):750-4. doi: 10.1126/science.1252619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Applied Paleoscience and DirectAMS, 10322 NE 190th Street, Bothell, WA 98011, USA. paleosci@gmail.com. ; Department of Anthropology and Institutes of Energy and the Environment, Pennsylvania State University, University Park, PA 16802, USA. ; Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA. ; Department of Anthropology and School of Biological Sciences, Washington State University, Pullman, WA 99164, USA. ; Bay Area Underwater Explorers, Berkeley, CA, USA. ; Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL 60208, USA. ; School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada. ; Instituto Nacional Antropologia e Historia, Colonia Centro Historico, 06060, Mexico City, DF, Mexico. ; Department of Anthropology and Population Research Center, University of Texas at Austin, Austin, TX 78712, USA. ; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801, USA. ; Subdireccion de Arqueologia Subacuatica, Instituto Nacional de Antropologia e Historia, 06070 Mexico City, Mexico. ; Waitt Institute, La Jolla, CA 92038-1948, USA. ; Department of Anthropology, Stanford University, Stanford, CA 94305, USA. ; Centre for AMS C, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark, and Centre for GeoGenetics, Natural History Museum of Denmark, Geological Museum, Copenhagen, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833392" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Biological Evolution ; DNA, Mitochondrial/genetics ; Haplotypes ; Humans ; Indians, North American/*genetics ; Mexico ; Molecular Sequence Data ; Paleontology ; Radiometric Dating ; *Skeleton ; Skull/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-06-28
    Description: Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor alpha-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239993/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Herbert, Andrew S -- Kuehne, Ana I -- Wirchnianski, Ariel S -- Soh, Timothy K -- Stubbs, Sarah H -- Janssen, Hans -- Damme, Markus -- Saftig, Paul -- Whelan, Sean P -- Dye, John M -- Brummelkamp, Thijn R -- AI081842/AI/NIAID NIH HHS/ -- AI109740/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- T32 AI007245/AI/NIAID NIH HHS/ -- U19 AI109740/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 27;344(6191):1506-10. doi: 10.1126/science.1252480.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. ; Biochemisches Institut, Christian Albrechts-Universitat Kiel, 24118 Kiel, Germany. ; Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. Cancer Genomics Center (CGC.nl), Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. t.brummelkamp@nki.nl john.m.dye1.civ@mail.mil sean_whelan@hms.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24970085" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/metabolism/virology ; Cells, Cultured ; Chickens ; Dystroglycans/genetics/metabolism ; Glycosylation ; Humans ; Hydrogen-Ion Concentration ; Lassa Fever/virology ; Lassa virus/*physiology ; Lysosomal-Associated Membrane Protein 1/chemistry/*metabolism ; Lysosomes/metabolism/virology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Protein Binding ; Receptors, Virus/*metabolism ; Sialyltransferases/metabolism ; Viral Envelope Proteins/*metabolism ; *Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-07-12
    Description: Antiretroviral treatment (ART) of HIV infection suppresses viral replication. Yet if ART is stopped, virus reemerges because of the persistence of infected cells. We evaluated the contribution of infected-cell proliferation and sites of proviral integration to HIV persistence. A total of 534 HIV integration sites (IS) and 63 adjacent HIV env sequences were derived from three study participants over 11.3 to 12.7 years of ART. Each participant had identical viral sequences integrated at the same position in multiple cells, demonstrating infected-cell proliferation. Integrations were overrepresented in genes associated with cancer and favored in 12 genes across multiple participants. Over time on ART, a greater proportion of persisting proviruses were in proliferating cells. HIV integration into specific genes may promote proliferation of HIV-infected cells, slowing viral decay during ART.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230336/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230336/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Thor A -- McLaughlin, Sherry -- Garg, Kavita -- Cheung, Charles Y K -- Larsen, Brendan B -- Styrchak, Sheila -- Huang, Hannah C -- Edlefsen, Paul T -- Mullins, James I -- Frenkel, Lisa M -- 201311CVI-322424-244686/Canadian Institutes of Health Research/Canada -- K23 AI077357/AI/NIAID NIH HHS/ -- K23AI077357/AI/NIAID NIH HHS/ -- P30 AI027757/AI/NIAID NIH HHS/ -- R01 AI091550/AI/NIAID NIH HHS/ -- R01 AI111806/AI/NIAID NIH HHS/ -- R01AI091550/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):570-3. doi: 10.1126/science.1256304. Epub 2014 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. University of Washington, Seattle, WA, USA. ; Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; University of Washington, Seattle, WA, USA. ; Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. ; University of Washington, Seattle, WA, USA. Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; Seattle Children's Research Institute, 1900 9th Avenue, Seattle, WA 98101, USA. University of Washington, Seattle, WA, USA. lfrenkel@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25011556" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-HIV Agents/therapeutic use ; Base Sequence ; Basic-Leucine Zipper Transcription Factors/genetics ; Cell Proliferation ; Chromosomes, Human, Pair 6/genetics ; *Genes, Neoplasm ; Genetic Loci ; HIV Infections/drug therapy/*virology ; HIV-1/genetics/*physiology ; Humans ; Jurkat Cells ; Molecular Sequence Data ; Phylogeny ; *Virus Integration ; *Virus Latency ; Virus Replication ; env Gene Products, Human Immunodeficiency Virus/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-02-22
    Description: Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-alpha treatment can clear HBV but is limited by systemic side effects. We describe how interferon-alpha can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-beta receptor activation as a therapeutic alternative. Interferon-alpha and lymphotoxin-beta receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-beta receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lucifora, Julie -- Xia, Yuchen -- Reisinger, Florian -- Zhang, Ke -- Stadler, Daniela -- Cheng, Xiaoming -- Sprinzl, Martin F -- Koppensteiner, Herwig -- Makowska, Zuzanna -- Volz, Tassilo -- Remouchamps, Caroline -- Chou, Wen-Min -- Thasler, Wolfgang E -- Huser, Norbert -- Durantel, David -- Liang, T Jake -- Munk, Carsten -- Heim, Markus H -- Browning, Jeffrey L -- Dejardin, Emmanuel -- Dandri, Maura -- Schindler, Michael -- Heikenwalder, Mathias -- Protzer, Ulrike -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1221-8. doi: 10.1126/science.1243462. Epub 2014 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Virology, Technische Universitat Munchen-Helmholtz Zentrum Munchen, 81675 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24557838" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; Antiviral Agents/*pharmacology/therapeutic use ; Cell Line ; Cell Nucleus/virology ; Cytidine/metabolism ; Cytidine Deaminase/biosynthesis ; DNA, Circular/*metabolism ; DNA, Viral/*metabolism ; Hepatitis B/*drug therapy ; Hepatitis B virus/*drug effects/metabolism ; Hepatocytes/*drug effects/metabolism/virology ; Humans ; Interferon-alpha/*pharmacology/therapeutic use ; Liver/drug effects/metabolism/virology ; Lymphotoxin beta Receptor/*agonists/antagonists & inhibitors ; Mice, SCID ; Proteins ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-12-17
    Description: To better determine the history of modern birds, we performed a genome-scale phylogenetic analysis of 48 species representing all orders of Neoaves using phylogenomic methods created to handle genome-scale data. We recovered a highly resolved tree that confirms previously controversial sister or close relationships. We identified the first divergence in Neoaves, two groups we named Passerea and Columbea, representing independent lineages of diverse and convergently evolved land and water bird species. Among Passerea, we infer the common ancestor of core landbirds to have been an apex predator and confirm independent gains of vocal learning. Among Columbea, we identify pigeons and flamingoes as belonging to sister clades. Even with whole genomes, some of the earliest branches in Neoaves proved challenging to resolve, which was best explained by massive protein-coding sequence convergence and high levels of incomplete lineage sorting that occurred during a rapid radiation after the Cretaceous-Paleogene mass extinction event about 66 million years ago.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405904/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jarvis, Erich D -- Mirarab, Siavash -- Aberer, Andre J -- Li, Bo -- Houde, Peter -- Li, Cai -- Ho, Simon Y W -- Faircloth, Brant C -- Nabholz, Benoit -- Howard, Jason T -- Suh, Alexander -- Weber, Claudia C -- da Fonseca, Rute R -- Li, Jianwen -- Zhang, Fang -- Li, Hui -- Zhou, Long -- Narula, Nitish -- Liu, Liang -- Ganapathy, Ganesh -- Boussau, Bastien -- Bayzid, Md Shamsuzzoha -- Zavidovych, Volodymyr -- Subramanian, Sankar -- Gabaldon, Toni -- Capella-Gutierrez, Salvador -- Huerta-Cepas, Jaime -- Rekepalli, Bhanu -- Munch, Kasper -- Schierup, Mikkel -- Lindow, Bent -- Warren, Wesley C -- Ray, David -- Green, Richard E -- Bruford, Michael W -- Zhan, Xiangjiang -- Dixon, Andrew -- Li, Shengbin -- Li, Ning -- Huang, Yinhua -- Derryberry, Elizabeth P -- Bertelsen, Mads Frost -- Sheldon, Frederick H -- Brumfield, Robb T -- Mello, Claudio V -- Lovell, Peter V -- Wirthlin, Morgan -- Schneider, Maria Paula Cruz -- Prosdocimi, Francisco -- Samaniego, Jose Alfredo -- Vargas Velazquez, Amhed Missael -- Alfaro-Nunez, Alonzo -- Campos, Paula F -- Petersen, Bent -- Sicheritz-Ponten, Thomas -- Pas, An -- Bailey, Tom -- Scofield, Paul -- Bunce, Michael -- Lambert, David M -- Zhou, Qi -- Perelman, Polina -- Driskell, Amy C -- Shapiro, Beth -- Xiong, Zijun -- Zeng, Yongli -- Liu, Shiping -- Li, Zhenyu -- Liu, Binghang -- Wu, Kui -- Xiao, Jin -- Yinqi, Xiong -- Zheng, Qiuemei -- Zhang, Yong -- Yang, Huanming -- Wang, Jian -- Smeds, Linnea -- Rheindt, Frank E -- Braun, Michael -- Fjeldsa, Jon -- Orlando, Ludovic -- Barker, F Keith -- Jonsson, Knud Andreas -- Johnson, Warren -- Koepfli, Klaus-Peter -- O'Brien, Stephen -- Haussler, David -- Ryder, Oliver A -- Rahbek, Carsten -- Willerslev, Eske -- Graves, Gary R -- Glenn, Travis C -- McCormack, John -- Burt, Dave -- Ellegren, Hans -- Alstrom, Per -- Edwards, Scott V -- Stamatakis, Alexandros -- Mindell, David P -- Cracraft, Joel -- Braun, Edward L -- Warnow, Tandy -- Jun, Wang -- Gilbert, M Thomas P -- Zhang, Guojie -- DP1 OD000448/OD/NIH HHS/ -- DP1OD000448/OD/NIH HHS/ -- R24 GM092842/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Dec 12;346(6215):1320-31. doi: 10.1126/science.1253451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. College of Medicine and Forensics, Xi'an Jiaotong University Xi'an 710061, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia. ; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; CNRS UMR 5554, Institut des Sciences de l'Evolution de Montpellier, Universite Montpellier II Montpellier, France. ; Department of Neurobiology, Howard Hughes Medical Institute (HHMI), and Duke University Medical Center, Durham, NC 27710, USA. ; Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala Sweden. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Onna-son, Okinawa 904-0495, Japan. ; Department of Statistics and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA. ; Laboratoire de Biometrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Universite de Lyon, F-69622 Villeurbanne, France. ; Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avancats, Barcelona, Spain. ; Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Dr. Aiguader 88, 08003 Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain. ; Joint Institute for Computational Sciences, The University of Tennessee, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Bioinformatics Research Centre, Aarhus University, DK-8000 Aarhus C, Denmark. ; The Genome Institute, Washington University School of Medicine, St Louis, MI 63108, USA. ; Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA. Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA. Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA. ; Department of Ecology and Evolutionary Biology, University of California Santa Cruz (UCSC), Santa Cruz, CA 95064, USA. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. ; Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University Cardiff CF10 3AX, Wales, UK. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; International Wildlife Consultants, Carmarthen SA33 5YL, Wales, UK. ; College of Medicine and Forensics, Xi'an Jiaotong University Xi'an, 710061, China. ; State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, China. ; Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA. Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Center for Zoo and Wild Animal Health, Copenhagen Zoo Roskildevej 38, DK-2000 Frederiksberg, Denmark. ; Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. ; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Biological Sciences, Federal University of Para, Belem, Para, Brazil. ; Brazilian Avian Genome Consortium (CNPq/FAPESPA-SISBIO Aves), Federal University of Para, Belem, Para, Brazil. Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil. ; Centre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark Kemitorvet 208, 2800 Kgs Lyngby, Denmark. ; Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates. ; Dubai Falcon Hospital, Dubai, United Arab Emirates. ; Canterbury Museum Rolleston Avenue, Christchurch 8050, New Zealand. ; Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. ; Department of Integrative Biology, University of California, Berkeley, CA 94720, USA. ; Laboratory of Genomic Diversity, National Cancer Institute Frederick, MD 21702, USA. Institute of Molecular and Cellular Biology, SB RAS and Novosibirsk State University, Novosibirsk, Russia. ; Smithsonian Institution National Museum of Natural History, Washington, DC 20013, USA. ; BGI-Shenzhen, Shenzhen 518083, China. ; Department of Biological Sciences, National University of Singapore, Republic of Singapore. ; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Suitland, MD 20746, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. ; Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA. ; Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA. ; Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia 199004. Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33004, USA. ; Center for Biomolecular Science and Engineering, UCSC, Santa Cruz, CA 95064, USA. ; San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. ; Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark. Department of Vertebrate Zoology, MRC-116, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA. ; Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA. ; Moore Laboratory of Zoology and Department of Biology, Occidental College, Los Angeles, CA 90041, USA. ; Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK. ; Swedish Species Information Centre, Swedish University of Agricultural Sciences Box 7007, SE-750 07 Uppsala, Sweden. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. ; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. ; Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany. Institute of Theoretical Informatics, Department of Informatics, Karlsruhe Institute of Technology, D- 76131 Karlsruhe, Germany. ; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA. ; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA. ; Department of Biology and Genetics Institute, University of Florida, Gainesville, FL 32611, USA. ; Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA. Departments of Bioengineering and Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; BGI-Shenzhen, Shenzhen 518083, China. Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark. Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China. Department of Medicine, University of Hong Kong, Hong Kong. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Oster Voldgade 5-7, 1350 Copenhagen, Denmark. Trace and Environmental DNA Laboratory Department of Environment and Agriculture, Curtin University, Perth, Western Australia 6102, Australia. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn. ; China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China. Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark. jarvis@neuro.duke.edu tandywarnow@gmail.com mtpgilbert@gmail.com wangj@genomics.cn zhanggj@genomics.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25504713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avian Proteins/genetics ; Base Sequence ; Biological Evolution ; Birds/classification/*genetics ; DNA Transposable Elements ; Genes ; Genetic Speciation ; *Genome ; INDEL Mutation ; Introns ; *Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-06-14
    Description: Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Afonso, Olga -- Matos, Irina -- Pereira, Antonio J -- Aguiar, Paulo -- Lampson, Michael A -- Maiato, Helder -- New York, N.Y. -- Science. 2014 Jul 18;345(6194):332-6. doi: 10.1126/science.1251121. Epub 2014 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Center for Mathematics, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal. ; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernani Monteiro, 4200-319 Porto, Portugal. maiato@ibmc.up.pt.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24925910" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Animals ; Aurora Kinase B/antagonists & inhibitors/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Chromosome Segregation/genetics/*physiology ; Drosophila ; *Feedback, Physiological ; Humans ; Nuclear Envelope/genetics/*metabolism ; Protein Phosphatase 1/metabolism ; Protein Phosphatase 2/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-06-21
    Description: Mammalian tissue size is maintained by slow replacement of de-differentiating and dying cells. For adipocytes, key regulators of glucose and lipid metabolism, the renewal rate is only 10% per year. We used computational modeling, quantitative mass spectrometry, and single-cell microscopy to show that cell-to-cell variability, or noise, in protein abundance acts within a network of more than six positive feedbacks to permit pre-adipocytes to differentiate at very low rates. This reconciles two fundamental opposing requirements: High cell-to-cell signal variability is needed to generate very low differentiation rates, whereas low signal variability is needed to prevent differentiated cells from de-differentiating. Higher eukaryotes can thus control low rates of near irreversible cell fate decisions through a balancing act between noise and ultrahigh feedback connectivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4733388/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahrends, Robert -- Ota, Asuka -- Kovary, Kyle M -- Kudo, Takamasa -- Park, Byung Ouk -- Teruel, Mary N -- P50 GM107615/GM/NIGMS NIH HHS/ -- P50GM107615/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jun 20;344(6190):1384-9. doi: 10.1126/science.1252079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. ; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA. mteruel@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24948735" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/*cytology ; *Adipogenesis ; Animals ; CCAAT-Enhancer-Binding Proteins/genetics/metabolism ; Cell Communication ; Cell Differentiation ; Cell Line ; Computer Simulation ; Feedback, Physiological ; Mass Spectrometry ; Mice ; *Models, Biological ; PPAR gamma/genetics/metabolism ; RNA, Small Interfering/genetics ; Single-Cell Analysis ; Stem Cells/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-11-02
    Description: In plants, multiple lineages have evolved sex chromosomes independently, providing a powerful comparative framework, but few specific determinants controlling the expression of a specific sex have been identified. We investigated sex determinants in the Caucasian persimmon, Diospyros lotus, a dioecious plant with heterogametic males (XY). Male-specific short nucleotide sequences were used to define a male-determining region. A combination of transcriptomics and evolutionary approaches detected a Y-specific sex-determinant candidate, OGI, that displays male-specific conservation among Diospyros species. OGI encodes a small RNA targeting the autosomal MeGI gene, a homeodomain transcription factor regulating anther fertility in a dosage-dependent fashion. This identification of a feminizing gene suppressed by a Y-chromosome-encoded small RNA contributes to our understanding of the evolution of sex chromosome systems in higher plants.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akagi, Takashi -- Henry, Isabelle M -- Tao, Ryutaro -- Comai, Luca -- New York, N.Y. -- Science. 2014 Oct 31;346(6209):646-50. doi: 10.1126/science.1257225. Epub 2014 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. ; Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. ; Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. rtao@kais.kyoto-u.ac.jp lcomai@ucdavis.edu. ; Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA. rtao@kais.kyoto-u.ac.jp lcomai@ucdavis.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25359977" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Plant/*genetics ; Diospyros/*genetics/*physiology ; Molecular Sequence Data ; RNA, Plant/genetics/*physiology ; RNA, Small Interfering/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-11-08
    Description: The cell tropism of human noroviruses and the development of an in vitro infection model remain elusive. Although susceptibility to individual human norovirus strains correlates with an individual's histo-blood group antigen (HBGA) profile, the biological basis of this restriction is unknown. We demonstrate that human and mouse noroviruses infected B cells in vitro and likely in vivo. Human norovirus infection of B cells required the presence of HBGA-expressing enteric bacteria. Furthermore, mouse norovirus replication was reduced in vivo when the intestinal microbiota was depleted by means of oral antibiotic administration. Thus, we have identified B cells as a cellular target of noroviruses and enteric bacteria as a stimulatory factor for norovirus infection, leading to the development of an in vitro infection model for human noroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401463/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Melissa K -- Watanabe, Makiko -- Zhu, Shu -- Graves, Christina L -- Keyes, Lisa R -- Grau, Katrina R -- Gonzalez-Hernandez, Mariam B -- Iovine, Nicole M -- Wobus, Christiane E -- Vinje, Jan -- Tibbetts, Scott A -- Wallet, Shannon M -- Karst, Stephanie M -- R01 AI080611/AI/NIAID NIH HHS/ -- R21 AI103961/AI/NIAID NIH HHS/ -- T90 DE021990/DE/NIDCR NIH HHS/ -- T90 DE021990-02/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2014 Nov 7;346(6210):755-9. doi: 10.1126/science.1257147.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. ; Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA. Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA. ; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA. ; Department of Medicine, Division of Infectious Diseases, University of Florida, Gainesville, FL, USA. ; Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA. ; Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL, USA. skarst@ufl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25378626" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/pharmacology ; B-Lymphocytes/immunology/*virology ; Caliciviridae Infections/*immunology/microbiology/virology ; Cell Line ; Enterobacteriaceae/drug effects/*physiology ; Gastroenteritis/*immunology/microbiology/virology ; Genome, Viral/genetics/physiology ; Homeodomain Proteins/genetics ; Humans ; Intestines/immunology/*microbiology ; Mice ; Mice, Mutant Strains ; Norovirus/*physiology ; Peyer's Patches/immunology/virology ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-11-29
    Description: Cucurbitacins are triterpenoids that confer a bitter taste in cucurbits such as cucumber, melon, watermelon, squash, and pumpkin. These compounds discourage most pests on the plant and have also been shown to have antitumor properties. With genomics and biochemistry, we identified nine cucumber genes in the pathway for biosynthesis of cucurbitacin C and elucidated four catalytic steps. We discovered transcription factors Bl (Bitter leaf) and Bt (Bitter fruit) that regulate this pathway in leaves and fruits, respectively. Traces in genomic signatures indicated that selection imposed on Bt during domestication led to derivation of nonbitter cucurbits from their bitter ancestors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shang, Yi -- Ma, Yongshuo -- Zhou, Yuan -- Zhang, Huimin -- Duan, Lixin -- Chen, Huiming -- Zeng, Jianguo -- Zhou, Qian -- Wang, Shenhao -- Gu, Wenjia -- Liu, Min -- Ren, Jinwei -- Gu, Xingfang -- Zhang, Shengping -- Wang, Ye -- Yasukawa, Ken -- Bouwmeester, Harro J -- Qi, Xiaoquan -- Zhang, Zhonghua -- Lucas, William J -- Huang, Sanwen -- New York, N.Y. -- Science. 2014 Nov 28;346(6213):1084-8. doi: 10.1126/science.1259215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. ; Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China. ; Horticulture and Landscape College, Hunan Agricultural University, National Chinese Medicinal Herbs Technology Center, Changsha 410128, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. College of Life Sciences, Wuhan University, Wuhan 430072, China. ; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China. ; School of Pharmacy, Nihon University, Tokyo 101-8308, Japan. ; Laboratory of Plant Physiology, Wageningen University, Wageningen 6700, Netherlands. ; Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA. ; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Beijing 100081, China. Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China. huangsanwen@caas.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25430763" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cucumis sativus/genetics/*metabolism ; Fruit/genetics/*metabolism ; Gene Expression Regulation, Plant ; Genome, Plant ; Molecular Sequence Data ; Plant Leaves/genetics/*metabolism ; Plant Proteins/genetics/*metabolism ; *Taste ; Transcription Factors/genetics/*metabolism ; Triterpenes/chemical synthesis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-10-12
    Description: Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang -- Lu, Jinfeng -- Han, Yanhong -- Fan, Xiaoxu -- Ding, Shou-Wei -- AI52447/AI/NIAID NIH HHS/ -- GM94396/GM/NIGMS NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):231-4. doi: 10.1126/science.1241911.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Mice ; Nodaviridae/genetics/*pathogenicity ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Small Interfering/*immunology ; RNA, Viral/genetics/*immunology ; Viral Nonstructural Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-03-23
    Description: Glycosylated alpha-dystroglycan (alpha-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate alpha-DG, but many genes mutated in WWS remain unknown. To identify modifiers of alpha-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated alpha-DG to enter cells. In complementary screens, we profiled cells for absence of alpha-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of alpha-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Riemersma, Moniek -- van Beusekom, Ellen -- Blomen, Vincent A -- Velds, Arno -- Kerkhoven, Ron M -- Carette, Jan E -- Topaloglu, Haluk -- Meinecke, Peter -- Wessels, Marja W -- Lefeber, Dirk J -- Whelan, Sean P -- van Bokhoven, Hans -- Brummelkamp, Thijn R -- AI057159/AI/NIAID NIH HHS/ -- AI081842/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):479-83. doi: 10.1126/science.1233675. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Dystroglycans/*metabolism ; Female ; Glycosylation ; Haploidy ; Host-Pathogen Interactions/*genetics ; Humans ; Infant ; Lassa Fever/*genetics/virology ; Lassa virus/*physiology ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteome/*metabolism ; *Virus Internalization ; Walker-Warburg Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-05-21
    Description: Evidence for transcriptional feedback in circadian timekeeping is abundant, yet little is known about the mechanisms underlying translational control. We found that ATAXIN-2 (ATX2), an RNA-associated protein involved in neurodegenerative disease, is a translational activator of the rate-limiting clock component PERIOD (PER) in Drosophila. ATX2 specifically interacted with TWENTY-FOUR (TYF), an activator of PER translation. RNA interference-mediated depletion of Atx2 or the expression of a mutant ATX2 protein that does not associate with polyadenylate-binding protein (PABP) suppressed behavioral rhythms and decreased abundance of PER. Although ATX2 can repress translation, depletion of Atx2 from Drosophila S2 cells inhibited translational activation by RNA-tethered TYF and disrupted the association between TYF and PABP. Thus, ATX2 coordinates an active translation complex important for PER expression and circadian rhythms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Chunghun -- Allada, Ravi -- R01NS059042/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):875-9. doi: 10.1126/science.1234785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxins ; Cell Line ; *Circadian Rhythm ; Drosophila Proteins/*biosynthesis/genetics/metabolism ; Drosophila melanogaster/metabolism/*physiology ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Period Circadian Proteins/*biosynthesis ; Poly(A)-Binding Proteins/metabolism ; Protein Biosynthesis ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-03
    Description: An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Susan -- Aiello, Daniel -- Atianand, Maninjay K -- Ricci, Emiliano P -- Gandhi, Pallavi -- Hall, Lisa L -- Byron, Meg -- Monks, Brian -- Henry-Bezy, Meabh -- Lawrence, Jeanne B -- O'Neill, Luke A J -- Moore, Melissa J -- Caffrey, Daniel R -- Fitzgerald, Katherine A -- AI067497/AI/NIAID NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 AI067497/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Cyclooxygenase 2/genetics ; Cytokines/genetics/metabolism ; Cytosol/metabolism ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Mice ; Models, Immunological ; RNA Interference ; RNA, Long Noncoding/*genetics/metabolism ; Toll-Like Receptors/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-12-18
    Description: An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ryan, Joseph F -- Pang, Kevin -- Schnitzler, Christine E -- Nguyen, Anh-Dao -- Moreland, R Travis -- Simmons, David K -- Koch, Bernard J -- Francis, Warren R -- Havlak, Paul -- NISC Comparative Sequencing Program -- Smith, Stephen A -- Putnam, Nicholas H -- Haddock, Steven H D -- Dunn, Casey W -- Wolfsberg, Tyra G -- Mullikin, James C -- Martindale, Mark Q -- Baxevanis, Andreas D -- ZIA HG000140-13/Intramural NIH HHS/ -- ZIA HG000140-14/Intramural NIH HHS/ -- ZIA HG000140-15/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1242592. doi: 10.1126/science.1242592.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24337300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Biological Evolution ; Cell Lineage/*genetics ; Ctenophora/classification/*cytology/*genetics ; *Genome ; Mesoderm/cytology ; Molecular Sequence Data ; Muscle Development/genetics ; Neurogenesis/genetics ; Phylogeny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1436. doi: 10.1126/science.342.6165.1436-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation ; Cloning, Organism/*methods ; Female ; Humans ; *Induced Pluripotent Stem Cells ; Nuclear Transfer Techniques ; Pregnancy ; *Research Embryo Creation ; Surrogate Mothers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-07-06
    Description: DNA methylation is implicated in mammalian brain development and plasticity underlying learning and memory. We report the genome-wide composition, patterning, cell specificity, and dynamics of DNA methylation at single-base resolution in human and mouse frontal cortex throughout their lifespan. Widespread methylome reconfiguration occurs during fetal to young adult development, coincident with synaptogenesis. During this period, highly conserved non-CG methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of methylation in the human neuronal genome. Moreover, we found an mCH signature that identifies genes escaping X-chromosome inactivation. Last, whole-genome single-base resolution 5-hydroxymethylcytosine (hmC) maps revealed that hmC marks fetal brain cell genomes at putative regulatory regions that are CG-demethylated and activated in the adult brain and that CG demethylation at these hmC-poised loci depends on Tet2 activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785061/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lister, Ryan -- Mukamel, Eran A -- Nery, Joseph R -- Urich, Mark -- Puddifoot, Clare A -- Johnson, Nicholas D -- Lucero, Jacinta -- Huang, Yun -- Dwork, Andrew J -- Schultz, Matthew D -- Yu, Miao -- Tonti-Filippini, Julian -- Heyn, Holger -- Hu, Shijun -- Wu, Joseph C -- Rao, Anjana -- Esteller, Manel -- He, Chuan -- Haghighi, Fatemeh G -- Sejnowski, Terrence J -- Behrens, M Margarita -- Ecker, Joseph R -- AI44432/AI/NIAID NIH HHS/ -- CA151535/CA/NCI NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- HG006827/HG/NHGRI NIH HHS/ -- K99NS080911/NS/NINDS NIH HHS/ -- MH094670/MH/NIMH NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 HG006827/HG/NHGRI NIH HHS/ -- R01 MH094670/MH/NIMH NIH HHS/ -- R01 MH094774/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 9;341(6146):1237905. doi: 10.1126/science.1237905. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA. ryan.lister@uwa.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828890" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Adult ; Animals ; Base Sequence ; Conserved Sequence ; Cytosine/*analogs & derivatives/metabolism ; *DNA Methylation ; *Epigenesis, Genetic ; Epigenomics ; Frontal Lobe/*growth & development ; *Gene Expression Regulation, Developmental ; Genome-Wide Association Study ; Humans ; Longevity ; Mice ; Mice, Inbred C57BL ; X Chromosome Inactivation/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-07-03
    Description: Gene expression in organisms involves many factors and is tightly controlled. Although much is known about the initial phase of transcription by RNA polymerase III (Pol III), the enzyme that synthesizes the majority of RNA molecules in eukaryotic cells, termination is poorly understood. Here, we show that the extensive structure of Pol III-synthesized transcripts dictates the release of elongation complexes at the end of genes. The poly-T termination signal, which does not cause termination in itself, causes catalytic inactivation and backtracking of Pol III, thus committing the enzyme to termination and transporting it to the nearest RNA secondary structure, which facilitates Pol III release. Similarity between termination mechanisms of Pol III and bacterial RNA polymerase suggests that hairpin-dependent termination may date back to the common ancestor of multisubunit RNA polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Soren -- Yuzenkova, Yulia -- Zenkin, Nikolay -- 202994/European Research Council/International -- BB/F013558/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/J006378/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2013 Jun 28;340(6140):1577-80. doi: 10.1126/science.1237934.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812715" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Molecular Sequence Data ; Nucleic Acid Conformation ; Poly T/metabolism ; Poly U/metabolism ; RNA Polymerase III/*metabolism ; RNA, Ribosomal, 5S/chemistry/genetics ; RNA, Transfer, Tyr/chemistry/genetics ; Saccharomyces cerevisiae/*enzymology/genetics ; *Transcription Termination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-03-09
    Description: RNA chaperones are ubiquitous, heterogeneous proteins essential for RNA structural biogenesis and function. We investigated the mechanism of chaperone-mediated RNA folding by following the time-resolved dimerization of the packaging domain of a retroviral RNA at nucleotide resolution. In the absence of the nucleocapsid (NC) chaperone, dimerization proceeded through multiple, slow-folding intermediates. In the presence of NC, dimerization occurred rapidly through a single structural intermediate. The RNA binding domain of heterogeneous nuclear ribonucleoprotein A1 protein, a structurally unrelated chaperone, also accelerated dimerization. Both chaperones interacted primarily with guanosine residues. Replacing guanosine with more weakly pairing inosine yielded an RNA that folded rapidly without a facilitating chaperone. These results show that RNA chaperones can simplify RNA folding landscapes by weakening intramolecular interactions involving guanosine and explain many RNA chaperone activities.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grohman, Jacob K -- Gorelick, Robert J -- Lickwar, Colin R -- Lieb, Jason D -- Bower, Brian D -- Znosko, Brent M -- Weeks, Kevin M -- GM031819/GM/NIGMS NIH HHS/ -- GM064803/GM/NIGMS NIH HHS/ -- GM072518/GM/NIGMS NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM064803/GM/NIGMS NIH HHS/ -- T32 GM007092/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 12;340(6129):190-5. doi: 10.1126/science.1230715. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470731" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Dimerization ; Guanosine/chemistry/*metabolism ; Heterogeneous-Nuclear Ribonucleoprotein Group A-B/chemistry/metabolism ; Inosine/chemistry/metabolism ; Kinetics ; Models, Molecular ; Molecular Chaperones/chemistry/*metabolism ; Moloney murine leukemia virus/genetics/*metabolism ; Nucleic Acid Conformation ; Nucleocapsid Proteins/chemistry/*metabolism ; Protein Binding ; RNA, Viral/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-07
    Description: Organofluorines represent a rapidly expanding proportion of molecules that are used in pharmaceuticals, diagnostics, agrochemicals, and materials. Despite the prevalence of fluorine in synthetic compounds, the known biological scope is limited to a single pathway that produces fluoroacetate. Here, we demonstrate that this pathway can be exploited as a source of fluorinated building blocks for introduction of fluorine into natural-product scaffolds. Specifically, we have constructed pathways involving two polyketide synthase systems, and we show that fluoroacetate can be used to incorporate fluorine into the polyketide backbone in vitro. We further show that fluorine can be inserted site-selectively and introduced into polyketide products in vivo. These results highlight the prospects for the production of complex fluorinated natural products using synthetic biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057101/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Mark C -- Thuronyi, Benjamin W -- Charkoudian, Louise K -- Lowry, Brian -- Khosla, Chaitan -- Chang, Michelle C Y -- 1 DP2 OD008696/OD/NIH HHS/ -- 1 T32 GMO66698/PHS HHS/ -- 1S10RR023679-01/RR/NCRR NIH HHS/ -- F32 CA137994/CA/NCI NIH HHS/ -- R01 GM087934/GM/NIGMS NIH HHS/ -- S10 RR16634-01/RR/NCRR NIH HHS/ -- T32 GM066698/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Sep 6;341(6150):1089-94. doi: 10.1126/science.1242345.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-1460, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24009388" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/genetics/metabolism ; Base Sequence ; Biological Products/chemistry/*metabolism ; Burkholderia/enzymology ; Coenzyme A Ligases/chemistry/genetics/metabolism ; Escherichia coli ; Fluoroacetates/chemistry/*metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Polyketide Synthases/chemistry/genetics/*metabolism ; Polyketides/chemistry/*metabolism ; Protein Engineering ; Protein Structure, Tertiary ; Streptomyces coelicolor/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-02-16
    Description: Allostery is well documented for proteins but less recognized for DNA-protein interactions. Here, we report that specific binding of a protein on DNA is substantially stabilized or destabilized by another protein bound nearby. The ternary complex's free energy oscillates as a function of the separation between the two proteins with a periodicity of ~10 base pairs, the helical pitch of B-form DNA, and a decay length of ~15 base pairs. The binding affinity of a protein near a DNA hairpin is similarly dependent on their separation, which-together with molecular dynamics simulations-suggests that deformation of the double-helical structure is the origin of DNA allostery. The physiological relevance of this phenomenon is illustrated by its effect on gene expression in live bacteria and on a transcription factor's affinity near nucleosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Sangjin -- Brostromer, Erik -- Xing, Dong -- Jin, Jianshi -- Chong, Shasha -- Ge, Hao -- Wang, Siyuan -- Gu, Chan -- Yang, Lijiang -- Gao, Yi Qin -- Su, Xiao-dong -- Sun, Yujie -- Xie, X Sunney -- DP1 OD000277/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 Feb 15;339(6121):816-9. doi: 10.1126/science.1229223.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413354" target="_blank"〉PubMed〈/a〉
    Keywords: *Allosteric Regulation ; Base Sequence ; Binding Sites ; DNA, B-Form/*chemistry ; DNA-Binding Proteins/*chemistry ; DNA-Directed RNA Polymerases/chemistry ; Escherichia coli/genetics/metabolism ; Gene Expression ; *Gene Expression Regulation, Bacterial ; Lac Repressors/chemistry ; Molecular Dynamics Simulation ; Nucleosomes/chemistry ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Glucocorticoid/chemistry ; Transcription Factors/*chemistry ; Viral Proteins/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-01-26
    Description: The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majumdar, Sharmistha -- Singh, Anita -- Rio, Donald C -- R01 GM048862/GM/NIGMS NIH HHS/ -- R01 GM094890/GM/NIGMS NIH HHS/ -- R01 GM097352/GM/NIGMS NIH HHS/ -- R01 GM104385/GM/NIGMS NIH HHS/ -- R01GM094890/GM/NIGMS NIH HHS/ -- R01GM104385/GM/NIGMS NIH HHS/ -- R01GM48862/GM/NIGMS NIH HHS/ -- R01GM61987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):446-8. doi: 10.1126/science.1231789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *DNA Transposable Elements ; Drosophila/genetics ; Genome, Human ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Transfection ; Transposases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-07-23
    Description: Ten years ago, the discovery of Mimivirus, a virus infecting Acanthamoeba, initiated a reappraisal of the upper limits of the viral world, both in terms of particle size (〉0.7 micrometers) and genome complexity (〉1000 genes), dimensions typical of parasitic bacteria. The diversity of these giant viruses (the Megaviridae) was assessed by sampling a variety of aquatic environments and their associated sediments worldwide. We report the isolation of two giant viruses, one off the coast of central Chile, the other from a freshwater pond near Melbourne (Australia), without morphological or genomic resemblance to any previously defined virus families. Their micrometer-sized ovoid particles contain DNA genomes of at least 2.5 and 1.9 megabases, respectively. These viruses are the first members of the proposed "Pandoravirus" genus, a term reflecting their lack of similarity with previously described microorganisms and the surprises expected from their future study.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Philippe, Nadege -- Legendre, Matthieu -- Doutre, Gabriel -- Coute, Yohann -- Poirot, Olivier -- Lescot, Magali -- Arslan, Defne -- Seltzer, Virginie -- Bertaux, Lionel -- Bruley, Christophe -- Garin, Jerome -- Claverie, Jean-Michel -- Abergel, Chantal -- New York, N.Y. -- Science. 2013 Jul 19;341(6143):281-6. doi: 10.1126/science.1239181.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Genomic Information Laboratory, UMR 7256 CNRS Aix-Marseille Universite, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23869018" target="_blank"〉PubMed〈/a〉
    Keywords: Amoeba/*virology ; Base Sequence ; *Evolution, Molecular ; Fresh Water/virology ; *Genome, Viral ; Mimiviridae/*classification/*genetics/isolation & purification/ultrastructure ; Molecular Sequence Data ; Phylogeny ; Proteomics ; Seawater/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-05-25
    Description: The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruki, Hirohito -- Pedersen, Miriam Gronlund -- Gorska, Katarzyna Irena -- Pojer, Florence -- Johnsson, Kai -- New York, N.Y. -- Science. 2013 May 24;340(6135):987-91. doi: 10.1126/science.1232972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EPFL, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research in Chemical Biology, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704574" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/biosynthesis ; Adult ; Alcohol Oxidoreductases/*antagonists & inhibitors/*chemistry ; Anti-Infective Agents/adverse effects/*pharmacology/therapeutic use ; Biopterin/*analogs & derivatives/biosynthesis ; Cell Line ; Central Nervous System/drug effects ; Crystallography, X-Ray ; Fibroblasts/drug effects/metabolism ; Humans ; Levodopa/biosynthesis ; NADP/chemistry ; Nausea/chemically induced ; Pneumonia, Pneumocystis/drug therapy ; Protein Conformation ; Structure-Activity Relationship ; Sulfamethoxazole/adverse effects/*pharmacology/therapeutic use ; Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology/therapeutic use ; Vomiting/chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-10-12
    Description: The processes that shaped modern European mitochondrial DNA (mtDNA) variation remain unclear. The initial peopling by Palaeolithic hunter-gatherers ~42,000 years ago and the immigration of Neolithic farmers into Europe ~8000 years ago appear to have played important roles but do not explain present-day mtDNA diversity. We generated mtDNA profiles of 364 individuals from prehistoric cultures in Central Europe to perform a chronological study, spanning the Early Neolithic to the Early Bronze Age (5500 to 1550 calibrated years before the common era). We used this transect through time to identify four marked shifts in genetic composition during the Neolithic period, revealing a key role for Late Neolithic cultures in shaping modern Central European genetic diversity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039305/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brandt, Guido -- Haak, Wolfgang -- Adler, Christina J -- Roth, Christina -- Szecsenyi-Nagy, Anna -- Karimnia, Sarah -- Moller-Rieker, Sabine -- Meller, Harald -- Ganslmeier, Robert -- Friederich, Susanne -- Dresely, Veit -- Nicklisch, Nicole -- Pickrell, Joseph K -- Sirocko, Frank -- Reich, David -- Cooper, Alan -- Alt, Kurt W -- Genographic Consortium -- R01 GM100233/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):257-61. doi: 10.1126/science.1241844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Anthropology, Johannes Gutenberg University of Mainz, Mainz, Germany. brandtg@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115443" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/history ; Base Sequence ; DNA, Mitochondrial/*genetics/history ; Europe ; *Genetic Drift ; *Genetic Variation ; History, Ancient ; Humans ; Molecular Sequence Data ; Population/*genetics ; Transients and Migrants
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-02-16
    Description: Instances in which natural selection maintains genetic variation in a population over millions of years are thought to be extremely rare. We conducted a genome-wide scan for long-lived balancing selection by looking for combinations of SNPs shared between humans and chimpanzees. In addition to the major histocompatibility complex, we identified 125 regions in which the same haplotypes are segregating in the two species, all but two of which are noncoding. In six cases, there is evidence for an ancestral polymorphism that persisted to the present in humans and chimpanzees. Regions with shared haplotypes are significantly enriched for membrane glycoproteins, and a similar trend is seen among shared coding polymorphisms. These findings indicate that ancient balancing selection has shaped human variation and point to genes involved in host-pathogen interactions as common targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leffler, Ellen M -- Gao, Ziyue -- Pfeifer, Susanne -- Segurel, Laure -- Auton, Adam -- Venn, Oliver -- Bowden, Rory -- Bontrop, Ronald -- Wall, Jeffrey D -- Sella, Guy -- Donnelly, Peter -- McVean, Gilean -- Przeworski, Molly -- 075491/Z/04/B/Wellcome Trust/United Kingdom -- 086084/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 095552/Z/11/Z/Wellcome Trust/United Kingdom -- GM72861/GM/NIGMS NIH HHS/ -- HG005226/HG/NHGRI NIH HHS/ -- R01 GM072861/GM/NIGMS NIH HHS/ -- T32 GM007197/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Mar 29;339(6127):1578-82. doi: 10.1126/science.1234070. Epub 2013 Feb 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA. emleffler@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23413192" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Genetic Association Studies ; Genome, Human/*genetics ; Haplotypes ; Host-Pathogen Interactions/*genetics ; Humans ; Molecular Sequence Data ; Pan troglodytes/*genetics ; Pedigree ; Polymorphism, Single Nucleotide ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-03-09
    Description: Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shilagardi, Khurts -- Li, Shuo -- Luo, Fengbao -- Marikar, Faiz -- Duan, Rui -- Jin, Peng -- Kim, Ji Hoon -- Murnen, Katherine -- Chen, Elizabeth H -- R01 GM098816/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):359-63. doi: 10.1126/science.1234781. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470732" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Communication ; Cell Culture Techniques ; *Cell Fusion ; Cell Line ; Cell Surface Extensions/metabolism/physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology ; Immunoglobulins/genetics/metabolism ; Membrane Glycoproteins/genetics/*metabolism ; Membrane Proteins/genetics/metabolism ; Muscle Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-04-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marshall, Eliot -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):421. doi: 10.1126/science.340.6131.421.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23620028" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breast Neoplasms/*diagnosis/genetics ; *Early Detection of Cancer ; Female ; *Genes, BRCA1 ; *Genes, BRCA2 ; Humans ; Ovarian Neoplasms/*diagnosis/genetics ; Patents as Topic/*legislation & jurisprudence ; Risk ; *Supreme Court Decisions ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...