ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-02
    Description: Internal ribosome entry site (IRES) RNAs are elements of viral or cellular mRNAs that bypass steps of canonical eukaryotic cap-dependent translation initiation. Understanding of the structural basis of IRES mechanisms is limited, partially due to a lack of high-resolution structures of IRES RNAs bound to their cellular targets. Prompted by the universal phylogenetic conservation of the ribosomal P site, we solved the crystal structures of proposed P site binding domains from two intergenic region IRES RNAs bound to bacterial 70S ribosomes. The structures show that these IRES domains nearly perfectly mimic a tRNA•mRNA interaction. However, there are clear differences in the global shape and position of this IRES domain in the intersubunit space compared to those of tRNA, supporting a mechanism for IRES action that invokes hybrid state mimicry to drive a noncanonical mode of translocation. These structures suggest how relatively small structured RNAs can manipulate complex biological machines.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-10
    Description: RNA is arguably the most functionally diverse biological macromolecule. In some cases a single discrete RNA sequence performs multiple roles, and this can be conferred by a complex three-dimensional structure. Such multifunctionality can also be driven or enhanced by the ability of a given RNA to assume different conformational (and therefore functional) states. Despite its biological importance, a detailed structural understanding of the paradigm of RNA structure-driven multifunctionality is lacking. To address this gap it is useful to study examples from single-stranded positive-sense RNA viruses, a prototype being the tRNA-like structure (TLS) found at the 3' end of the turnip yellow mosaic virus (TYMV). This TLS not only acts like a tRNA to drive aminoacylation of the viral genomic (g)RNA, but also interacts with other structures in the 3' untranslated region of the gRNA, contains the promoter for negative-strand synthesis, and influences several infection-critical processes. TLS RNA can provide a glimpse into the structural basis of RNA multifunctionality and plasticity, but for decades its high-resolution structure has remained elusive. Here we present the crystal structure of the complete TYMV TLS to 2.0 A resolution. Globally, the RNA adopts a shape that mimics tRNA, but it uses a very different set of intramolecular interactions to achieve this shape. These interactions also allow the TLS to readily switch conformations. In addition, the TLS structure is 'two faced': one face closely mimics tRNA and drives aminoacylation, the other face diverges from tRNA and enables additional functionality. The TLS is thus structured to perform several functions and interact with diverse binding partners, and we demonstrate its ability to specifically bind to ribosomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136544/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Hammond, John A -- Ruehle, Grant M -- Nix, Jay C -- Kieft, Jeffrey S -- GM081346/GM/NIGMS NIH HHS/ -- GM097333/GM/NIGMS NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- R01 GM081346/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 17;511(7509):366-9. doi: 10.1038/nature13378. Epub 2014 Jun 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [3] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; 1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA (T.M.C.); Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037, USA (J.A.H.). ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24909993" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Amino Acyl-tRNA Synthetases/metabolism ; Aminoacylation ; Base Sequence ; Crystallography, X-Ray ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Protein Binding ; RNA Folding ; RNA, Guide/genetics/metabolism ; RNA, Transfer/*chemistry/genetics/metabolism ; RNA, Viral/*chemistry/genetics/*metabolism ; Ribosomes/chemistry/metabolism ; Tymovirus/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-06
    Description: The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 A resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352134/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colussi, Timothy M -- Costantino, David A -- Zhu, Jianyu -- Donohue, John Paul -- Korostelev, Andrei A -- Jaafar, Zane A -- Plank, Terra-Dawn M -- Noller, Harry F -- Kieft, Jeffrey S -- GM-103105/GM/NIGMS NIH HHS/ -- GM-17129/GM/NIGMS NIH HHS/ -- GM-59140/GM/NIGMS NIH HHS/ -- GM-81346/GM/NIGMS NIH HHS/ -- GM-97333/GM/NIGMS NIH HHS/ -- R01 GM097333/GM/NIGMS NIH HHS/ -- R01 GM106105/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Mar 5;519(7541):110-3. doi: 10.1038/nature14219. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA [2] Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA. ; Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, Sinsheimer Labs, University of California at Santa Cruz, Santa Cruz, California 95064, USA. ; Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652826" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*genetics ; Base Sequence ; Conserved Sequence/genetics ; Crystallography, X-Ray ; Dicistroviridae/genetics ; Eukaryota/*genetics ; Models, Molecular ; *Nucleic Acid Conformation ; Peptide Chain Initiation, Translational/genetics ; Protein Biosynthesis/*genetics ; RNA/*chemistry/*genetics/metabolism ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Viral/chemistry/genetics/metabolism ; Ribosomes/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-11-25
    Description: Canonical cap-dependent translation initiation requires a large number of protein factors that act in a stepwise assembly process. In contrast, internal ribosomal entry sites (IRESs) are cis-acting RNAs that in some cases completely supplant these factors by recruiting and activating the ribosome using a single structured RNA. Here we present the crystal structures of the ribosome-binding domain from a Dicistroviridae intergenic region IRES at 3.1 angstrom resolution, providing a view of the prefolded architecture of an all-RNA translation initiation apparatus. Docking of the structure into cryo-electron microscopy reconstructions of an IRES-ribosome complex suggests a model for ribosome manipulation by a dynamic IRES RNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669756/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669756/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pfingsten, Jennifer S -- Costantino, David A -- Kieft, Jeffrey S -- R01 GM072560/GM/NIGMS NIH HHS/ -- R01 GM072560-01/GM/NIGMS NIH HHS/ -- R01 GM072560-02/GM/NIGMS NIH HHS/ -- R01 GM072560-03/GM/NIGMS NIH HHS/ -- R01 GM072560-04/GM/NIGMS NIH HHS/ -- R01 GM072560-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 1;314(5804):1450-4. Epub 2006 Nov 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado at Denver and Health Sciences Center, Mail Stop 8101, Post Office Box 6511, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124290" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cryoelectron Microscopy ; Crystallization ; Crystallography, X-Ray ; Models, Molecular ; Mutation ; Nucleic Acid Conformation ; *Protein Biosynthesis ; RNA Viruses/*genetics ; RNA, Viral/*chemistry/genetics/metabolism ; *Regulatory Sequences, Ribonucleic Acid/genetics ; Ribosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-20
    Description: Flaviviruses are emerging human pathogens and worldwide health threats. During infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) are produced by resisting degradation by the 5'--〉3' host cell exonuclease Xrn1 through an unknown RNA structure-based mechanism. Here, we present the crystal structure of a complete Xrn1-resistant flaviviral RNA, which contains interwoven pseudoknots within a compact structure that depends on highly conserved nucleotides. The RNA's three-dimensional topology creates a ringlike conformation, with the 5' end of the resistant structure passing through the ring from one side of the fold to the other. Disruption of this structure prevents formation of sfRNA during flaviviral infection. Thus, sfRNA formation results from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a structure that confounds its helicase activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4163914/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Erich G -- Costantino, David A -- Rabe, Jennifer L -- Moon, Stephanie L -- Wilusz, Jeffrey -- Nix, Jay C -- Kieft, Jeffrey S -- P30 CA046934/CA/NCI NIH HHS/ -- P30CA046934/CA/NCI NIH HHS/ -- U54 AI-065357/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 18;344(6181):307-10. doi: 10.1126/science.1250897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24744377" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Crystallography, X-Ray ; Encephalitis Virus, Murray Valley/*genetics/pathogenicity ; Exoribonucleases/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA, Viral/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-11-10
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...