ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-02
    Description: Noscapine is an antitumor alkaloid from opium poppy that binds tubulin, arrests metaphase, and induces apoptosis in dividing human cells. Elucidation of the biosynthetic pathway will enable improvement in the commercial production of noscapine and related bioactive molecules. Transcriptomic analysis revealed the exclusive expression of 10 genes encoding five distinct enzyme classes in a high noscapine-producing poppy variety, HN1. Analysis of an F(2) mapping population indicated that these genes are tightly linked in HN1, and bacterial artificial chromosome sequencing confirmed that they exist as a complex gene cluster for plant alkaloids. Virus-induced gene silencing resulted in accumulation of pathway intermediates, allowing gene function to be linked to noscapine synthesis and a novel biosynthetic pathway to be proposed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzer, Thilo -- Gazda, Valeria -- He, Zhesi -- Kaminski, Filip -- Kern, Marcelo -- Larson, Tony R -- Li, Yi -- Meade, Fergus -- Teodor, Roxana -- Vaistij, Fabian E -- Walker, Carol -- Bowser, Tim A -- Graham, Ian A -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1704-8. doi: 10.1126/science.1220757. Epub 2012 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22653730" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents, Phytogenic/*biosynthesis ; *Genes, Plant ; Molecular Sequence Data ; *Multigene Family ; Noscapine/*metabolism ; Papaver/enzymology/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-27
    Description: Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winzer, Thilo -- Kern, Marcelo -- King, Andrew J -- Larson, Tony R -- Teodor, Roxana I -- Donninger, Samantha L -- Li, Yi -- Dowle, Adam A -- Cartwright, Jared -- Bates, Rachel -- Ashford, David -- Thomas, Jerry -- Walker, Carol -- Bowser, Tim A -- Graham, Ian A -- BB/K018809/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):309-12. doi: 10.1126/science.aab1852. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK. ; Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK. ; GlaxoSmithKline, 1061 Mountain Highway, Post Office Box 168, Boronia, Victoria 3155, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113639" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Benzylisoquinolines/chemistry/*metabolism ; Cytochrome P-450 Enzyme System/genetics/*metabolism ; Genetic Loci ; Isoquinolines/chemistry/*metabolism ; Molecular Sequence Data ; Morphinans/chemistry/*metabolism ; Mutation ; Oxidation-Reduction ; Papaver/*enzymology/genetics ; Plant Proteins/genetics/*metabolism ; Quaternary Ammonium Compounds/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018
    Description: 〈p〉Morphinan-based painkillers are derived from opium poppy (〈i〉Papaver somniferum〈/i〉 L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the 〈i〉STORR〈/i〉 gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-19
    Description: Morphinan-based painkillers are derived from opium poppy ( Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the STORR gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy.
    Keywords: Botany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...