ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-06
    Description: Analytical Chemistry DOI: 10.1021/ac302149g
    Print ISSN: 0003-2700
    Electronic ISSN: 1520-6882
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-26
    Description: In physiological settings, nucleic-acid translocases must act on substrates occupied by other proteins, and an increasingly appreciated role of translocases is to catalyse protein displacement from RNA and DNA. However, little is known regarding the inevitable collisions that must occur, and the fate of protein obstacles and the mechanisms by which they are evicted from DNA remain unexplored. Here we sought to establish the mechanistic basis for protein displacement from DNA using RecBCD as a model system. Using nanofabricated curtains of DNA and multicolour single-molecule microscopy, we visualized collisions between a model translocase and different DNA-bound proteins in real time. We show that the DNA translocase RecBCD can disrupt core RNA polymerase, holoenzymes, stalled elongation complexes and transcribing RNA polymerases in either head-to-head or head-to-tail orientations, as well as EcoRI(E111Q), lac repressor and even nucleosomes. RecBCD did not pause during collisions and often pushed proteins thousands of base pairs before evicting them from DNA. We conclude that RecBCD overwhelms obstacles through direct transduction of chemomechanical force with no need for specific protein-protein interactions, and that proteins can be removed from DNA through active disruption mechanisms that act on a transition state intermediate as they are pushed from one nonspecific site to the next.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3230117/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finkelstein, Ilya J -- Visnapuu, Mari-Liis -- Greene, Eric C -- F32GM80864/GM/NIGMS NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- GM082848/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01 GM074739-01A1/GM/NIGMS NIH HHS/ -- R01 GM074739-05/GM/NIGMS NIH HHS/ -- R01 GM082848/GM/NIGMS NIH HHS/ -- R01 GM082848-01A1/GM/NIGMS NIH HHS/ -- R01 GM082848-04/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 16;468(7326):983-7. doi: 10.1038/nature09561. Epub 2010 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21107319" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophage lambda/genetics ; Biocatalysis ; DNA/genetics/*metabolism ; DNA, Viral/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Deoxyribonuclease EcoRI/metabolism ; Escherichia coli/enzymology ; Exodeoxyribonuclease V/*metabolism ; Holoenzymes/chemistry/metabolism ; Lac Repressors/metabolism ; Microscopy, Fluorescence ; *Movement ; Nucleosomes/metabolism ; Promoter Regions, Genetic/genetics ; Protein Binding ; Quantum Dots ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-31
    Description: The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106473/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106473/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sternberg, Samuel H -- Redding, Sy -- Jinek, Martin -- Greene, Eric C -- Doudna, Jennifer A -- GM074739/GM/NIGMS NIH HHS/ -- R01 GM073794/GM/NIGMS NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- T32 GM066698/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Mar 6;507(7490):62-7. doi: 10.1038/nature13011. Epub 2014 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Chemistry, University of California, Berkeley, California 94720, USA [2]. ; 1] Department of Chemistry, Columbia University, New York, New York 10032, USA [2]. ; 1] Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA [2] Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland. ; Department of Biochemistry and Molecular Biophysics and Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA. ; 1] Department of Chemistry, University of California, Berkeley, California 94720, USA [2] Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA [3] Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA [4] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24476820" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/metabolism ; *Base Pairing ; Base Sequence ; Biocatalysis ; CRISPR-Associated Proteins/*metabolism ; *CRISPR-Cas Systems ; Clustered Regularly Interspaced Short Palindromic Repeats/*genetics ; DNA/chemistry/genetics/metabolism ; *DNA Cleavage ; Diffusion ; Endonucleases/*metabolism ; Enzyme Activation ; Genetic Engineering/methods ; Genome/genetics ; Nucleic Acid Denaturation ; Nucleic Acid Heteroduplexes/chemistry/genetics/metabolism ; Nucleotide Motifs ; RNA/chemistry/*genetics/metabolism ; Streptococcus pyogenes/enzymology/immunology ; Substrate Specificity ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-01
    Description: DNA strand exchange plays a central role in genetic recombination across all kingdoms of life, but the physical basis for these reactions remains poorly defined. Using single-molecule imaging, we found that bacterial RecA and eukaryotic Rad51 and Dmc1 all stabilize strand exchange intermediates in precise three-nucleotide steps. Each step coincides with an energetic signature (0.3 kBT) that is conserved from bacteria to humans. Triplet recognition is strictly dependent on correct Watson-Crick pairing. Rad51, RecA, and Dmc1 can all step over mismatches, but only Dmc1 can stabilize mismatched triplets. This finding provides insight into why eukaryotes have evolved a meiosis-specific recombinase. We propose that canonical Watson-Crick base triplets serve as the fundamental unit of pairing interactions during DNA recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ja Yil -- Terakawa, Tsuyoshi -- Qi, Zhi -- Steinfeld, Justin B -- Redding, Sy -- Kwon, YoungHo -- Gaines, William A -- Zhao, Weixing -- Sung, Patrick -- Greene, Eric C -- CA146940/CA/NCI NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 ES015252/ES/NIEHS NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01ES015252/ES/NIEHS NIH HHS/ -- T32 GM007367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):977-81. doi: 10.1126/science.aab2666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Department of Biophysics, Kyoto University, Sakyo, Kyoto, Japan. ; Department of Chemistry, Columbia University, New York, NY, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Howard Hughes Medical Institute, Columbia University, New York, NY, USA. ecg2108@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315438" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Cell Cycle Proteins/chemistry/metabolism ; DNA/*chemistry/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Evolution, Molecular ; *Homologous Recombination ; Humans ; Meiosis ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Rad51 Recombinase/chemistry/*metabolism ; Rec A Recombinases/chemistry/*metabolism ; Recombinases/chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-09
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-28
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-01-23
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-07-21
    Description: Histone modifications can redistribute along the genome in a sequence-independent manner, giving rise to chromatin position effects and epigenetic memory. The underlying mechanisms shape the endogenous chromatin landscape and determine its response to ectopically targeted histone modifiers. Here, we simulate linear and looping-driven spreading of histone modifications and compare both...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-12
    Description: Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-07-21
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...