ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (813)
  • Cells, Cultured
  • American Association for the Advancement of Science (AAAS)  (976)
  • Cell Press
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019  (57)
  • 1990-1994  (919)
  • 1965-1969
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (976)
  • Cell Press
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Nature Publishing Group (NPG)  (48)
Years
Year
  • 1
    Publication Date: 2016-01-23
    Description: Mono-ubiquitination of Fancd2 is essential for repairing DNA interstrand cross-links (ICLs), but the underlying mechanisms are unclear. The Fan1 nuclease, also required for ICL repair, is recruited to ICLs by ubiquitinated (Ub) Fancd2. This could in principle explain how Ub-Fancd2 promotes ICL repair, but we show that recruitment of Fan1 by Ub-Fancd2 is dispensable for ICL repair. Instead, Fan1 recruitment--and activity--restrains DNA replication fork progression and prevents chromosome abnormalities from occurring when DNA replication forks stall, even in the absence of ICLs. Accordingly, Fan1 nuclease-defective knockin mice are cancer-prone. Moreover, we show that a Fan1 variant in high-risk pancreatic cancers abolishes recruitment by Ub-Fancd2 and causes genetic instability without affecting ICL repair. Therefore, Fan1 recruitment enables processing of stalled forks that is essential for genome stability and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4770513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lachaud, Christophe -- Moreno, Alberto -- Marchesi, Francesco -- Toth, Rachel -- Blow, J Julian -- Rouse, John -- WT096598MA/Wellcome Trust/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):846-9. doi: 10.1126/science.aad5634. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. ; Centre for Gene Regulation and Expression, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. ; School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK. ; Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, UK. j.rouse@dundee.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797144" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Chromosome Aberrations ; DNA Repair ; *DNA Replication ; Endodeoxyribonucleases/genetics/*metabolism ; Fanconi Anemia Complementation Group D2 Protein/genetics/*metabolism ; Female ; Gene Knock-In Techniques ; Genetic Predisposition to Disease ; Genomic Instability/*genetics ; Liver Neoplasms/genetics/pathology ; Lung Neoplasms/genetics/pathology ; Lymphoma/genetics/pathology ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Pancreatic Neoplasms/*genetics ; *Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-26
    Description: Voltage-gated CaV1.2 channels (L-type calcium channel alpha1C subunits) are critical mediators of transcription-dependent neural plasticity. Whether these channels signal via the influx of calcium ion (Ca(2+)), voltage-dependent conformational change (VDeltaC), or a combination of the two has thus far been equivocal. We fused CaV1.2 to a ligand-gated Ca(2+)-permeable channel, enabling independent control of localized Ca(2+) and VDeltaC signals. This revealed an unexpected dual requirement: Ca(2+) must first mobilize actin-bound Ca(2+)/calmodulin-dependent protein kinase II, freeing it for subsequent VDeltaC-mediated accumulation. Neither signal alone sufficed to activate transcription. Signal order was crucial: Efficiency peaked when Ca(2+) preceded VDeltaC by 10 to 20 seconds. CaV1.2 VDeltaC synergistically augmented signaling by N-methyl-d-aspartate receptors. Furthermore, VDeltaC mistuning correlated with autistic symptoms in Timothy syndrome. Thus, nonionic VDeltaC signaling is vital to the function of CaV1.2 in synaptic and neuropsychiatric processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Boxing -- Tadross, Michael R -- Tsien, Richard W -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):863-7. doi: 10.1126/science.aad3647.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. ; Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA. Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. tadrossm@janelia.hhmi.org. ; Department of Neuroscience and Physiology and New York University Neuroscience Institute, New York, NY 10016, USA. Department of Molecular and Cellular Physiology, Beckman Center, School of Medicine, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912895" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics/metabolism ; Calcium Channel Blockers/pharmacology ; Calcium Channels, L-Type/chemistry/*metabolism ; *Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/*metabolism ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein/metabolism ; *Gene Expression Regulation ; HEK293 Cells ; Hippocampus/cytology ; Humans ; Long QT Syndrome/genetics/metabolism ; Neuronal Plasticity/*genetics ; Neurons/drug effects/*metabolism ; Nimodipine/pharmacology ; Protein Conformation/drug effects ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/metabolism ; Syndactyly/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-02
    Description: The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sirohi, Devika -- Chen, Zhenguo -- Sun, Lei -- Klose, Thomas -- Pierson, Theodore C -- Rossmann, Michael G -- Kuhn, Richard J -- R01 AI073755/AI/NIAID NIH HHS/ -- R01 AI076331/AI/NIAID NIH HHS/ -- R01AI073755/AI/NIAID NIH HHS/ -- R01AI076331/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):467-70. doi: 10.1126/science.aaf5316. Epub 2016 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. ; Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27033547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Glycosylation ; Humans ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; Zika Virus/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-16
    Description: The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Daniel H -- Stuwe, Tobias -- Schilbach, Sandra -- Rundlet, Emily J -- Perriches, Thibaud -- Mobbs, George -- Fan, Yanbin -- Thierbach, Karsten -- Huber, Ferdinand M -- Collins, Leslie N -- Davenport, Andrew M -- Jeon, Young E -- Hoelz, Andre -- 5 T32 GM07616/GM/NIGMS NIH HHS/ -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- R01 GM111461/GM/NIGMS NIH HHS/ -- R01-GM111461/GM/NIGMS NIH HHS/ -- T32 GM007616/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 15;352(6283):aaf1015. doi: 10.1126/science.aaf1015. Epub 2016 Apr 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. ; Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA. hoelz@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27081075" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Amino Acid Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Cytoplasm/metabolism ; Electron Microscope Tomography ; Fungal Proteins/chemistry/genetics/metabolism ; Humans ; Molecular Sequence Data ; Nuclear Pore/chemistry/*metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/chemistry/genetics/*metabolism ; *Protein Interaction Maps ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-23
    Description: Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soucie, Erinn L -- Weng, Ziming -- Geirsdottir, Laufey -- Molawi, Kaaweh -- Maurizio, Julien -- Fenouil, Romain -- Mossadegh-Keller, Noushine -- Gimenez, Gregory -- VanHille, Laurent -- Beniazza, Meryam -- Favret, Jeremy -- Berruyer, Carole -- Perrin, Pierre -- Hacohen, Nir -- Andrau, J-C -- Ferrier, Pierre -- Dubreuil, Patrice -- Sidow, Arend -- Sieweke, Michael H -- P01AG036695/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):aad5510. doi: 10.1126/science.aad5510. Epub 2016 Jan 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. ; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Institut de Genetique Moleculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende, 34293 Montpellier, France. ; Centre de Recherche en Cancerologie de Marseille, INSERM (U1068), CNRS (U7258), Universite Aix-Marseille (UM105), Marseille, France. ; Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA. Department of Genetics, Stanford University, Stanford, CA 94305, USA. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu. ; Centre d'Immunologie de Marseille-Luminy, Universite Aix-Marseille, UM2, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France. INSERM, U1104, Marseille, France. CNRS, UMR 7280, Marseille, France. Max-Delbruck-Centrum fur Molekulare Medizin in der Helmholtz-Gemeinschaft, 10 Robert-Rossle-Strasse, 13125 Berlin, Germany. sieweke@ciml.univ-mrs.fr erinn.soucie@inserm.fr arend@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26797145" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation/*genetics ; Cell Lineage/*genetics ; Cell Proliferation ; Cells, Cultured ; Down-Regulation ; Embryonic Stem Cells/*cytology ; Enhancer Elements, Genetic/*physiology ; *Gene Expression Regulation ; Gene Regulatory Networks ; Macrophages/*cytology ; MafB Transcription Factor/metabolism ; Mice ; Proto-Oncogene Proteins c-maf/metabolism ; Single-Cell Analysis ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: T cell-mediated destruction of insulin-producing beta cells in the pancreas causes type 1 diabetes (T1D). CD4 T cell responses play a central role in beta cell destruction, but the identity of the epitopes recognized by pathogenic CD4 T cells remains unknown. We found that diabetes-inducing CD4 T cell clones isolated from nonobese diabetic mice recognize epitopes formed by covalent cross-linking of proinsulin peptides to other peptides present in beta cell secretory granules. These hybrid insulin peptides (HIPs) are antigenic for CD4 T cells and can be detected by mass spectrometry in beta cells. CD4 T cells from the residual pancreatic islets of two organ donors who had T1D also recognize HIPs. Autoreactive T cells targeting hybrid peptides may explain how immune tolerance is broken in T1D.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delong, Thomas -- Wiles, Timothy A -- Baker, Rocky L -- Bradley, Brenda -- Barbour, Gene -- Reisdorph, Richard -- Armstrong, Michael -- Powell, Roger L -- Reisdorph, Nichole -- Kumar, Nitesh -- Elso, Colleen M -- DeNicola, Megan -- Bottino, Rita -- Powers, Alvin C -- Harlan, David M -- Kent, Sally C -- Mannering, Stuart I -- Haskins, Kathryn -- 1K01DK094941/DK/NIDDK NIH HHS/ -- 1R01DK081166/DK/NIDDK NIH HHS/ -- 5U01DK89572/DK/NIDDK NIH HHS/ -- DK104211/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 12;351(6274):711-4. doi: 10.1126/science.aad2791.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA. thomas.delong@ucdenver.edu katie.haskins@ucdenver.edu. ; Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, Anschutz Medical Campus, Aurora, CO 80045, USA. ; Pharmaceutical Sciences, University of Colorado School of Medicine, Aurora, CO 80045, USA. ; Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. ; Department of Medicine, Diabetes Division, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA. ; Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, PA, USA. ; Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA. VA Tennessee Valley Healthcare System, Nashville, TN, USA. ; Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia. University of Melbourne, Department of Medicine, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912858" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; C-Peptide/chemistry/*immunology ; CD4-Positive T-Lymphocytes/*immunology ; Clone Cells ; Diabetes Mellitus, Experimental/*immunology/pathology ; Diabetes Mellitus, Type 1/*immunology/pathology ; Epitopes/*immunology ; Immune Tolerance ; Insulin-Secreting Cells/*immunology/pathology ; Mice ; Mice, Inbred NOD ; Molecular Sequence Data ; Peptides/chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-02-26
    Description: With functions that range from cell envelope structure to signal transduction and transport, lipoproteins constitute 2 to 3% of bacterial genomes and play critical roles in bacterial physiology, pathogenicity, and antibiotic resistance. Lipoproteins are synthesized with a signal peptide securing them to the cytoplasmic membrane with the lipoprotein domain in the periplasm or outside the cell. Posttranslational processing requires a signal peptidase II (LspA) that removes the signal peptide. Here, we report the crystal structure of LspA from Pseudomonas aeruginosa complexed with the antimicrobial globomycin at 2.8 angstrom resolution. Mutagenesis studies identify LspA as an aspartyl peptidase. In an example of molecular mimicry, globomycin appears to inhibit by acting as a noncleavable peptide that sterically blocks the active site. This structure should inform rational antibiotic drug discovery.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vogeley, Lutz -- El Arnaout, Toufic -- Bailey, Jonathan -- Stansfeld, Phillip J -- Boland, Coilin -- Caffrey, Martin -- BB/I019855/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 Feb 19;351(6275):876-80. doi: 10.1126/science.aad3747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. ; Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK. ; School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland. martin.caffrey@tcd.ie.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912896" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Anti-Bacterial Agents/*chemistry/pharmacology ; Aspartic Acid Endopeptidases/*antagonists & inhibitors/*chemistry/genetics ; Bacterial Proteins/*antagonists & inhibitors/*chemistry/genetics ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Mutagenesis ; Peptides/*chemistry/pharmacology ; Protein Conformation ; Protein Processing, Post-Translational ; Pseudomonas aeruginosa/*enzymology ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-03-12
    Description: Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshida, Shosuke -- Hiraga, Kazumi -- Takehana, Toshihiko -- Taniguchi, Ikuo -- Yamaji, Hironao -- Maeda, Yasuhito -- Toyohara, Kiyotsuna -- Miyamoto, Kenji -- Kimura, Yoshiharu -- Oda, Kohei -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1196-9. doi: 10.1126/science.aad6359.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan. ; Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. ; Life Science Materials Laboratory, ADEKA, 7-2-34 Higashiogu, Arakawa-ku, Tokyo 116-8553, Japan. ; Department of Polymer Science, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. ; Ecology-Related Material Group Innovation Research Institute, Teijin, Hinode-cho 2-1, Iwakuni, Yamaguchi 740-8511, Japan. ; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26965627" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Betaproteobacteria/*enzymology ; Environmental Restoration and Remediation ; Enzymes/classification/genetics/metabolism ; Hydrolysis ; Microbial Consortia ; Molecular Sequence Data ; Phthalic Acids/metabolism ; Phylogeny ; Plastics/*metabolism ; Polyethylene Terephthalates/*metabolism ; Recycling
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-02-06
    Description: SH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56beta, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2). Pharmacological and genetic activation of Akt or inhibition of CLK2 relieved synaptic deficits in Shank3-deficient and PMDS patient-derived neurons. CLK2 inhibition also restored normal sociability in a Shank3-deficient mouse model. Our study thereby provides a novel mechanistic and potentially therapeutic understanding of deregulated signaling downstream of Shank3 deficiency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bidinosti, Michael -- Botta, Paolo -- Kruttner, Sebastian -- Proenca, Catia C -- Stoehr, Natacha -- Bernhard, Mario -- Fruh, Isabelle -- Mueller, Matthias -- Bonenfant, Debora -- Voshol, Hans -- Carbone, Walter -- Neal, Sarah J -- McTighe, Stephanie M -- Roma, Guglielmo -- Dolmetsch, Ricardo E -- Porter, Jeffrey A -- Caroni, Pico -- Bouwmeester, Tewis -- Luthi, Andreas -- Galimberti, Ivan -- New York, N.Y. -- Science. 2016 Mar 11;351(6278):1199-203. doi: 10.1126/science.aad5487. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Friedrich Miescher Institute, Basel, Switzerland. ; Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland. ; Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, USA. ; Developmental Molecular Pathways, Novartis Institutes for Biomedical Research, Basel, Switzerland. ivan.galimberti@novartis.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847545" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Autism Spectrum Disorder/*drug therapy/enzymology/genetics ; Chromosome Deletion ; Chromosome Disorders/genetics ; Chromosomes, Human, Pair 22/genetics ; Disease Models, Animal ; Down-Regulation ; Gene Knockdown Techniques ; Humans ; Insulin-Like Growth Factor I/metabolism ; Mice ; Molecular Sequence Data ; Multiprotein Complexes/metabolism ; Nerve Tissue Proteins/*genetics ; Neurons/enzymology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases/*antagonists & inhibitors/metabolism ; Proteomics ; Proto-Oncogene Proteins c-akt/genetics/metabolism ; Rats ; Signal Transduction ; TOR Serine-Threonine Kinases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-26
    Description: Induction of broadly neutralizing antibodies (bnAbs) is a major HIV vaccine goal. Germline-targeting immunogens aim to initiate bnAb induction by activating bnAb germline precursor B cells. Critical unmet challenges are to determine whether bnAb precursor naive B cells bind germline-targeting immunogens and occur at sufficient frequency in humans for reliable vaccine responses. Using deep mutational scanning and multitarget optimization, we developed a germline-targeting immunogen (eOD-GT8) for diverse VRC01-class bnAbs. We then used the immunogen to isolate VRC01-class precursor naive B cells from HIV-uninfected donors. Frequencies of true VRC01-class precursors, their structures, and their eOD-GT8 affinities support this immunogen as a candidate human vaccine prime. These methods could be applied to germline targeting for other classes of HIV bnAbs and for Abs to other pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph G -- Kulp, Daniel W -- Havenar-Daughton, Colin -- Sarkar, Anita -- Briney, Bryan -- Sok, Devin -- Sesterhenn, Fabian -- Ereno-Orbea, June -- Kalyuzhniy, Oleksandr -- Deresa, Isaiah -- Hu, Xiaozhen -- Spencer, Skye -- Jones, Meaghan -- Georgeson, Erik -- Adachi, Yumiko -- Kubitz, Michael -- deCamp, Allan C -- Julien, Jean-Philippe -- Wilson, Ian A -- Burton, Dennis R -- Crotty, Shane -- Schief, William R -- P01 AI094419/AI/NIAID NIH HHS/ -- P01 AI110657/AI/NIAID NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Mar 25;351(6280):1458-63. doi: 10.1126/science.aad9195.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Vaccine and Infectious Disease Division, Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Program in Molecular Structure and Function, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada. Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. ; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA. schief@scripps.edu shane@lji.org. ; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA. IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA. Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA. schief@scripps.edu shane@lji.org.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27013733" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Amino Acid Sequence ; Antibodies, Monoclonal/chemistry/*immunology/isolation & purification ; Antibodies, Neutralizing/chemistry/*immunology/isolation & purification ; Antibody Affinity ; B-Lymphocytes/immunology ; Cell Separation ; Combinatorial Chemistry Techniques ; Epitopes, B-Lymphocyte/chemistry/genetics/*immunology ; Germ Cells/*immunology ; HIV Antibodies/chemistry/*immunology/isolation & purification ; HIV-1/*immunology ; Humans ; Molecular Sequence Data ; Mutation ; Peptide Library ; Precursor Cells, B-Lymphoid/*immunology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-04-11
    Description: Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo. Sephin1 selectively bound and inhibited the stress-induced PPP1R15A, but not the related and constitutive PPP1R15B, to prolong the benefit of an adaptive phospho-signaling pathway, protecting cells from otherwise lethal protein misfolding stress. In vivo, Sephin1 safely prevented the motor, morphological, and molecular defects of two otherwise unrelated protein-misfolding diseases in mice, Charcot-Marie-Tooth 1B, and amyotrophic lateral sclerosis. Thus, regulatory subunits of phosphatases are drug targets, a property exploited here to safely prevent two protein misfolding diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490275/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Das, Indrajit -- Krzyzosiak, Agnieszka -- Schneider, Kim -- Wrabetz, Lawrence -- D'Antonio, Maurizio -- Barry, Nicholas -- Sigurdardottir, Anna -- Bertolotti, Anne -- 309516/European Research Council/International -- MC_U105185860/Medical Research Council/United Kingdom -- R01-NS55256/NS/NINDS NIH HHS/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Apr 10;348(6231):239-42. doi: 10.1126/science.aaa4484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. ; Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy. ; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. aberto@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25859045" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/drug therapy/metabolism/pathology ; Animals ; Cells, Cultured ; Charcot-Marie-Tooth Disease/drug therapy/metabolism/pathology ; Disease Models, Animal ; Endoplasmic Reticulum Stress/drug effects ; Enzyme Inhibitors/metabolism/pharmacokinetics/*pharmacology/toxicity ; Guanabenz/*analogs & derivatives/chemical ; synthesis/metabolism/pharmacology/toxicity ; HeLa Cells ; Humans ; Mice ; Mice, Transgenic ; Molecular Targeted Therapy ; Phosphorylation ; Protein Folding ; Protein Phosphatase 1/*antagonists & inhibitors ; Proteostasis Deficiencies/*drug therapy/*prevention & control ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-05-23
    Description: Extremophiles, microorganisms thriving in extreme environmental conditions, must have proteins and nucleic acids that are stable at extremes of temperature and pH. The nonenveloped, rod-shaped virus SIRV2 (Sulfolobus islandicus rod-shaped virus 2) infects the hyperthermophilic acidophile Sulfolobus islandicus, which lives at 80 degrees C and pH 3. We have used cryo-electron microscopy to generate a three-dimensional reconstruction of the SIRV2 virion at ~4 angstrom resolution, which revealed a previously unknown form of virion organization. Although almost half of the capsid protein is unstructured in solution, this unstructured region folds in the virion into a single extended alpha helix that wraps around the DNA. The DNA is entirely in the A-form, which suggests a common mechanism with bacterial spores for protecting DNA in the most adverse environments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DiMaio, Frank -- Yu, Xiong -- Rensen, Elena -- Krupovic, Mart -- Prangishvili, David -- Egelman, Edward H -- GM035269/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 22;348(6237):914-7. doi: 10.1126/science.aaa4181.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA. ; Institut Pasteur, Department of Microbiology, 25 rue du Dr. Roux, Paris 75015, France. ; Institut Pasteur, Department of Microbiology, 25 rue du Dr. Roux, Paris 75015, France. egelman@virginia.edu david.prangishvili@pasteur.fr. ; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA. egelman@virginia.edu david.prangishvili@pasteur.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999507" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; DNA, A-Form/*metabolism ; Molecular Sequence Data ; Protein Multimerization ; Protein Structure, Secondary ; Rudiviridae/*metabolism/ultrastructure ; Spores, Bacterial/genetics/virology ; Sulfolobus/*genetics/*virology ; Virion/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-10-10
    Description: Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Toh, Shigeo -- Holbrook-Smith, Duncan -- Stogios, Peter J -- Onopriyenko, Olena -- Lumba, Shelley -- Tsuchiya, Yuichiro -- Savchenko, Alexei -- McCourt, Peter -- New York, N.Y. -- Science. 2015 Oct 9;350(6257):203-7. doi: 10.1126/science.aac9476.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada. ; Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, 200 College Street, Toronto M5S 3E5, Canada. Center for Structural Genomics of Infectious Diseases, contracted by National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; Department of Chemical Engineering and Applied Chemistry, Banting and Best Department of Medical Research, University of Toronto, 200 College Street, Toronto M5S 3E5, Canada. ; Institute of Transformative Bio-Molecules, Nagoya University, Japan, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. ; Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto M5S 3B2, Canada. peter.mccourt@utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26450211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/genetics/metabolism ; Catalytic Domain ; Germination/drug effects ; Heterocyclic Compounds, 3-Ring/*metabolism/pharmacology ; Lactones/*metabolism/pharmacology ; Molecular Sequence Data ; Phylogeny ; Plant Growth Regulators/*metabolism/pharmacology ; Plant Proteins/*chemistry/classification/genetics ; Protein Structure, Secondary ; Receptors, Cell Surface/*chemistry/classification/genetics ; Seeds/genetics/growth & development/metabolism ; Striga/genetics/growth & development/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-06-20
    Description: The inactive X chromosome (Xi) serves as a model to understand gene silencing on a global scale. Here, we perform "identification of direct RNA interacting proteins" (iDRiP) to isolate a comprehensive protein interactome for Xist, an RNA required for Xi silencing. We discover multiple classes of interactors-including cohesins, condensins, topoisomerases, RNA helicases, chromatin remodelers, and modifiers-that synergistically repress Xi transcription. Inhibiting two or three interactors destabilizes silencing. Although Xist attracts some interactors, it repels architectural factors. Xist evicts cohesins from the Xi and directs an Xi-specific chromosome conformation. Upon deleting Xist, the Xi acquires the cohesin-binding and chromosomal architecture of the active X. Our study unveils many layers of Xi repression and demonstrates a central role for RNA in the topological organization of mammalian chromosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minajigi, Anand -- Froberg, John E -- Wei, Chunyao -- Sunwoo, Hongjae -- Kesner, Barry -- Colognori, David -- Lessing, Derek -- Payer, Bernhard -- Boukhali, Myriam -- Haas, Wilhelm -- Lee, Jeannie T -- R01-DA-38695/DA/NIDA NIH HHS/ -- R03-MH97478/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 17;349(6245). pii: aab2276. doi: 10.1126/science.aab2276. Epub 2015 Jun 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. ; Massachusetts General Hospital Cancer Center, Charlestown, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA, USA. ; Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA. lee@molbio.mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26089354" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Animals ; Cell Cycle Proteins/*metabolism ; Cells, Cultured ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; DNA-Binding Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Fibroblasts/metabolism ; Gene Knockdown Techniques ; Gene Silencing ; Mice ; Multiprotein Complexes/metabolism ; Nucleic Acid Conformation ; Proteomics ; RNA Helicases/metabolism ; RNA, Long Noncoding/*metabolism ; X Chromosome/chemistry/genetics/*metabolism ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-03-15
    Description: TREK-2 (KCNK10/K2P10), a two-pore domain potassium (K2P) channel, is gated by multiple stimuli such as stretch, fatty acids, and pH and by several drugs. However, the mechanisms that control channel gating are unclear. Here we present crystal structures of the human TREK-2 channel (up to 3.4 angstrom resolution) in two conformations and in complex with norfluoxetine, the active metabolite of fluoxetine (Prozac) and a state-dependent blocker of TREK channels. Norfluoxetine binds within intramembrane fenestrations found in only one of these two conformations. Channel activation by arachidonic acid and mechanical stretch involves conversion between these states through movement of the pore-lining helices. These results provide an explanation for TREK channel mechanosensitivity, regulation by diverse stimuli, and possible off-target effects of the serotonin reuptake inhibitor Prozac.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Yin Yao -- Pike, Ashley C W -- Mackenzie, Alexandra -- McClenaghan, Conor -- Aryal, Prafulla -- Dong, Liang -- Quigley, Andrew -- Grieben, Mariana -- Goubin, Solenne -- Mukhopadhyay, Shubhashish -- Ruda, Gian Filippo -- Clausen, Michael V -- Cao, Lishuang -- Brennan, Paul E -- Burgess-Brown, Nicola A -- Sansom, Mark S P -- Tucker, Stephen J -- Carpenter, Elisabeth P -- 084655/Wellcome Trust/United Kingdom -- 092809/Z/10/Z/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1256-9. doi: 10.1126/science.1261512.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. ; Pfizer Neusentis, Granta Park, Cambridge CB21 6GS, UK. ; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. ; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk. ; Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, UK. OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PN, UK. liz.carpenter@sgc.ox.ac.uk stephen.tucker@physics.ox.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766236" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arachidonic Acid/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Fluoxetine/analogs & derivatives/chemistry/metabolism/pharmacology ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Potassium/metabolism ; Potassium Channels, Tandem Pore Domain/antagonists & ; inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-11-07
    Description: Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boualem, Adnane -- Troadec, Christelle -- Camps, Celine -- Lemhemdi, Afef -- Morin, Halima -- Sari, Marie-Agnes -- Fraenkel-Zagouri, Rina -- Kovalski, Irina -- Dogimont, Catherine -- Perl-Treves, Rafael -- Bendahmane, Abdelhafid -- New York, N.Y. -- Science. 2015 Nov 6;350(6261):688-91. doi: 10.1126/science.aac8370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. ; Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Universite Rene Descartes, Paris, France. ; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel. ; INRA, UR 1052, Unite de Genetique et d'Amelioration des Fruits et Legumes, BP 94, F-84143 Montfavet, France. ; Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay, CNRS, Universite Paris-Sud, Universite d'Evry, Universite Paris-Diderot, Batiment 630, 91405, Orsay, France. bendahm@evry.inra.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26542573" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; *Biological Evolution ; Cucumis sativus/enzymology/genetics/growth & development ; Cucurbitaceae/enzymology/genetics/*growth & development ; Ethylenes/biosynthesis ; Flowers/enzymology/genetics/*growth & development ; Genes, Plant/genetics/physiology ; Lyases/genetics/*physiology ; Molecular Sequence Data ; Phloem/enzymology/genetics/growth & development ; Plant Proteins/genetics/*physiology ; Sex Determination Processes/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-05-09
    Description: Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465434/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Elizabeth S -- Jiang, Rays H Y -- Moechtar, Mischka A -- Barteneva, Natasha S -- Weekes, Michael P -- Nobre, Luis V -- Gygi, Steven P -- Paulo, Joao A -- Frantzreb, Charles -- Tani, Yoshihiko -- Takahashi, Junko -- Watanabe, Seishi -- Goldberg, Jonathan -- Paul, Aditya S -- Brugnara, Carlo -- Root, David E -- Wiegand, Roger C -- Doench, John G -- Duraisingh, Manoj T -- 100140/Wellcome Trust/United Kingdom -- 1K08AI103034-01A1/AI/NIAID NIH HHS/ -- K01 DK098285/DK/NIDDK NIH HHS/ -- K01DK098285/DK/NIDDK NIH HHS/ -- K08 AI103034/AI/NIAID NIH HHS/ -- K12-HD000850/HD/NICHD NIH HHS/ -- R01AI091787/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 May 8;348(6235):711-4. doi: 10.1126/science.aaa3526.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. ; Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. ; Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. ; Department of Cell Biology, Harvard Medical School, Boston, MA, USA. ; Japanese Red Cross Kinki Block Blood Center, Osaka, Japan. ; Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan. ; Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA. ; The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. ; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA. mduraisi@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25954012" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD44/genetics ; Antigens, CD55/*genetics ; Cell Differentiation/genetics ; Cells, Cultured ; Erythrocytes/cytology/metabolism/*parasitology ; Genetic Testing ; Hematopoietic Stem Cells/cytology ; Host-Parasite Interactions/*genetics ; Humans ; Malaria, Falciparum/*genetics/*parasitology ; Plasmodium falciparum/*pathogenicity ; RNA, Small Interfering/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-09-26
    Description: Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) detects intracellular DNA and signals through the adapter protein STING to initiate the antiviral response to DNA viruses. Whether DNA viruses can prevent activation of the cGAS-STING pathway remains largely unknown. Here, we identify the oncogenes of the DNA tumor viruses, including E7 from human papillomavirus (HPV) and E1A from adenovirus, as potent and specific inhibitors of the cGAS-STING pathway. We show that the LXCXE motif of these oncoproteins, which is essential for blockade of the retinoblastoma tumor suppressor, is also important for antagonizing DNA sensing. E1A and E7 bind to STING, and silencing of these oncogenes in human tumor cells restores the cGAS-STING pathway. Our findings reveal a host-virus conflict that may have shaped the evolution of viral oncogenes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, Laura -- Gray, Elizabeth E -- Brunette, Rebecca L -- Stetson, Daniel B -- New York, N.Y. -- Science. 2015 Oct 30;350(6260):568-71. doi: 10.1126/science.aab3291. Epub 2015 Sep 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA. ; Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA. stetson@uw.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26405230" target="_blank"〉PubMed〈/a〉
    Keywords: Adenovirus E1A Proteins/chemistry/genetics/*metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; DNA Tumor Viruses/*immunology ; DNA, Neoplasm/immunology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Evolution, Molecular ; HEK293 Cells ; HeLa Cells ; Host-Pathogen Interactions ; Humans ; Membrane Proteins/*antagonists & inhibitors ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Nucleotides, Cyclic/*antagonists & inhibitors ; Oncogene Proteins, Viral/chemistry/genetics/*metabolism ; Retinoblastoma Protein/antagonists & inhibitors ; *Tumor Escape
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-09-12
    Description: Podophyllotoxin is the natural product precursor of the chemotherapeutic etoposide, yet only part of its biosynthetic pathway is known. We used transcriptome mining in Podophyllum hexandrum (mayapple) to identify biosynthetic genes in the podophyllotoxin pathway. We selected 29 candidate genes to combinatorially express in Nicotiana benthamiana (tobacco) and identified six pathway enzymes, including an oxoglutarate-dependent dioxygenase that closes the core cyclohexane ring of the aryltetralin scaffold. By coexpressing 10 genes in tobacco-these 6 plus 4 previously discovered-we reconstitute the pathway to (-)-4'-desmethylepipodophyllotoxin (the etoposide aglycone), a naturally occurring lignan that is the immediate precursor of etoposide and, unlike podophyllotoxin, a potent topoisomerase inhibitor. Our results enable production of the etoposide aglycone in tobacco and circumvent the need for cultivation of mayapple and semisynthetic epimerization and demethylation of podophyllotoxin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, Warren -- Sattely, Elizabeth S -- DP2 AT008321/AT/NCCIH NIH HHS/ -- R00 GM089985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Sep 11;349(6253):1224-8. doi: 10.1126/science.aac7202.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA. ; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA. sattely@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26359402" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biosynthetic Pathways/genetics ; Etoposide/*metabolism ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; *Genetic Engineering ; Methylation ; Mixed Function Oxygenases/genetics/*metabolism ; Molecular Sequence Data ; Podophyllotoxin/*analogs & derivatives/biosynthesis/*metabolism ; Podophyllum peltatum/*enzymology/genetics ; Tobacco/genetics/*metabolism ; Topoisomerase Inhibitors/*metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-09-01
    Description: Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and beta-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618316/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hinson, John T -- Chopra, Anant -- Nafissi, Navid -- Polacheck, William J -- Benson, Craig C -- Swist, Sandra -- Gorham, Joshua -- Yang, Luhan -- Schafer, Sebastian -- Sheng, Calvin C -- Haghighi, Alireza -- Homsy, Jason -- Hubner, Norbert -- Church, George -- Cook, Stuart A -- Linke, Wolfgang A -- Chen, Christopher S -- Seidman, J G -- Seidman, Christine E -- EB017103/EB/NIBIB NIH HHS/ -- HG005550/HG/NHGRI NIH HHS/ -- HL007374/HL/NHLBI NIH HHS/ -- HL115553/HL/NHLBI NIH HHS/ -- HL125807/HL/NHLBI NIH HHS/ -- K08 HL125807/HL/NHLBI NIH HHS/ -- T32 HL007208/HL/NHLBI NIH HHS/ -- Department of Health/United Kingdom -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):982-6. doi: 10.1126/science.aaa5458.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu. ; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA. The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. ; Department of Cardiovascular Physiology, Ruhr University Bochum, MA 3/56 D-44780, Bochum, Germany. ; The Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. ; Cardiovascular and Metabolic Sciences, Max Delbruck Center for Molecular Medicine, Berlin, Germany. DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany. ; National Institute for Health Research (NIHR) Biomedical Research Unit in Cardiovascular Disease at Royal Brompton and Harefield National Health Service (NHS) Foundation Trust, Imperial College London, London, UK. National Heart Centre and Duke-National University, Singapore, Singapore. ; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. jthinson@partners.org cseidman@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315439" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-Agonists/pharmacology ; Cardiomyopathy, Dilated/*genetics/pathology/*physiopathology ; Cells, Cultured ; Connectin/chemistry/*genetics/*physiology ; Heart Rate ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Isoproterenol/pharmacology ; Mutant Proteins/chemistry/physiology ; *Mutation, Missense ; Myocardial Contraction ; Myocytes, Cardiac/*physiology ; RNA/genetics/metabolism ; Sarcomeres/*physiology/ultrastructure ; Sequence Analysis, RNA ; Signal Transduction ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-09-01
    Description: DNA strand exchange plays a central role in genetic recombination across all kingdoms of life, but the physical basis for these reactions remains poorly defined. Using single-molecule imaging, we found that bacterial RecA and eukaryotic Rad51 and Dmc1 all stabilize strand exchange intermediates in precise three-nucleotide steps. Each step coincides with an energetic signature (0.3 kBT) that is conserved from bacteria to humans. Triplet recognition is strictly dependent on correct Watson-Crick pairing. Rad51, RecA, and Dmc1 can all step over mismatches, but only Dmc1 can stabilize mismatched triplets. This finding provides insight into why eukaryotes have evolved a meiosis-specific recombinase. We propose that canonical Watson-Crick base triplets serve as the fundamental unit of pairing interactions during DNA recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580133/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Ja Yil -- Terakawa, Tsuyoshi -- Qi, Zhi -- Steinfeld, Justin B -- Redding, Sy -- Kwon, YoungHo -- Gaines, William A -- Zhao, Weixing -- Sung, Patrick -- Greene, Eric C -- CA146940/CA/NCI NIH HHS/ -- GM074739/GM/NIGMS NIH HHS/ -- R01 CA146940/CA/NCI NIH HHS/ -- R01 ES015252/ES/NIEHS NIH HHS/ -- R01 GM074739/GM/NIGMS NIH HHS/ -- R01ES015252/ES/NIEHS NIH HHS/ -- T32 GM007367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Aug 28;349(6251):977-81. doi: 10.1126/science.aab2666.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Department of Biophysics, Kyoto University, Sakyo, Kyoto, Japan. ; Department of Chemistry, Columbia University, New York, NY, USA. ; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA. Howard Hughes Medical Institute, Columbia University, New York, NY, USA. ecg2108@cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26315438" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Pairing ; Base Sequence ; Cell Cycle Proteins/chemistry/metabolism ; DNA/*chemistry/*metabolism ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Escherichia coli Proteins/chemistry/metabolism ; Evolution, Molecular ; *Homologous Recombination ; Humans ; Meiosis ; Molecular Dynamics Simulation ; Molecular Sequence Data ; Rad51 Recombinase/chemistry/*metabolism ; Rec A Recombinases/chemistry/*metabolism ; Recombinases/chemistry/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-06-06
    Description: Aneuploidy in human eggs is the leading cause of pregnancy loss and several genetic disorders such as Down syndrome. Most aneuploidy results from chromosome segregation errors during the meiotic divisions of an oocyte, the egg's progenitor cell. The basis for particularly error-prone chromosome segregation in human oocytes is not known. We analyzed meiosis in more than 100 live human oocytes and identified an error-prone chromosome-mediated spindle assembly mechanism as a major contributor to chromosome segregation defects. Human oocytes assembled a meiotic spindle independently of either centrosomes or other microtubule organizing centers. Instead, spindle assembly was mediated by chromosomes and the small guanosine triphosphatase Ran in a process requiring ~16 hours. This unusually long spindle assembly period was marked by intrinsic spindle instability and abnormal kinetochore-microtubule attachments, which favor chromosome segregation errors and provide a possible explanation for high rates of aneuploidy in human eggs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477045/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Holubcova, Zuzana -- Blayney, Martyn -- Elder, Kay -- Schuh, Melina -- MC_U105192711/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jun 5;348(6239):1143-7. doi: 10.1126/science.aaa9529.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK. ; Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. mschuh@mrc-lmb.cam.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26045437" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; *Aneuploidy ; Animals ; Cells, Cultured ; *Chromosome Segregation ; Female ; Green Fluorescent Proteins/genetics/metabolism ; Humans ; Kinetochores/metabolism ; *Meiosis ; Mice ; Microtubule-Associated Proteins/genetics/metabolism ; Microtubule-Organizing Center/metabolism ; Oocytes/*pathology ; Spindle Apparatus/*metabolism ; ran GTP-Binding Protein/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-09-05
    Description: Growing up on a dairy farm protects children from allergy, hay fever, and asthma. A mechanism linking exposure to this endotoxin (bacterial lipopolysaccharide)-rich environment with protection has remained elusive. Here we show that chronic exposure to low-dose endotoxin or farm dust protects mice from developing house dust mite (HDM)-induced asthma. Endotoxin reduced epithelial cell cytokines that activate dendritic cells (DCs), thus suppressing type 2 immunity to HDMs. Loss of the ubiquitin-modifying enzyme A20 in lung epithelium abolished the protective effect. A single-nucleotide polymorphism in the gene encoding A20 was associated with allergy and asthma risk in children growing up on farms. Thus, the farming environment protects from allergy by modifying the communication between barrier epithelial cells and DCs through A20 induction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuijs, Martijn J -- Willart, Monique A -- Vergote, Karl -- Gras, Delphine -- Deswarte, Kim -- Ege, Markus J -- Madeira, Filipe Branco -- Beyaert, Rudi -- van Loo, Geert -- Bracher, Franz -- von Mutius, Erika -- Chanez, Pascal -- Lambrecht, Bart N -- Hammad, Hamida -- New York, N.Y. -- Science. 2015 Sep 4;349(6252):1106-10. doi: 10.1126/science.aac6623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. ; Department of Respiratory Medicine, Assistance Publique Hopitaux de Marseille, UMR INSERM U1067 CNRS 7333, Aix Marseille University, Marseille, France. ; Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universitat, Munich, Germany. ; Unit of Molecular Signal Transduction, VIB Inflammation Research Center, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. ; Center for Drug Research, Department of Pharmacy, Ludwig Maximilians University, Butenandtstrasse 5-13, D-81377 Munich, Germany. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, Netherlands. hamida.hammad@ugent.be bart.lambrecht@ugent.be. ; Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium. Department of Internal Medicine, Ghent University, Ghent, Belgium. hamida.hammad@ugent.be bart.lambrecht@ugent.be.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Asthma/immunology/prevention & control ; Cells, Cultured ; Child ; DNA-Binding Proteins/*biosynthesis ; Dairying ; Dendritic Cells/immunology ; Dust/*immunology ; Female ; Humans ; Hygiene Hypothesis ; Hypersensitivity/enzymology/immunology/*prevention & control ; Inhalation Exposure ; Intracellular Signaling Peptides and Proteins/*biosynthesis ; Lipopolysaccharides/*immunology ; Lung/*enzymology/immunology ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/*biosynthesis ; Pyroglyphidae/*immunology ; Respiratory Mucosa/*enzymology/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-01-13
    Description: NADPH/NADP(+) (the reduced form of NADP(+)/nicotinamide adenine dinucleotide phosphate) homeostasis is critical for countering oxidative stress in cells. Nicotinamide nucleotide transhydrogenase (TH), a membrane enzyme present in both bacteria and mitochondria, couples the proton motive force to the generation of NADPH. We present the 2.8 A crystal structure of the transmembrane proton channel domain of TH from Thermus thermophilus and the 6.9 A crystal structure of the entire enzyme (holo-TH). The membrane domain crystallized as a symmetric dimer, with each protomer containing a putative proton channel. The holo-TH is a highly asymmetric dimer with the NADP(H)-binding domain (dIII) in two different orientations. This unusual arrangement suggests a catalytic mechanism in which the two copies of dIII alternatively function in proton translocation and hydride transfer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479213/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479213/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, Josephine H -- Schurig-Briccio, Lici A -- Yamaguchi, Mutsuo -- Moeller, Arne -- Speir, Jeffrey A -- Gennis, Robert B -- Stout, Charles D -- 1R01GM103838-01A1/GM/NIGMS NIH HHS/ -- 5R01GM061545/GM/NIGMS NIH HHS/ -- GM073197/GM/NIGMS NIH HHS/ -- GM095600/GM/NIGMS NIH HHS/ -- P41 GM103310/GM/NIGMS NIH HHS/ -- P41GM103310/GM/NIGMS NIH HHS/ -- R01 GM061545/GM/NIGMS NIH HHS/ -- R01 GM095600/GM/NIGMS NIH HHS/ -- R01 GM103838/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):178-81. doi: 10.1126/science.1260451.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA. ; National Resource for Automated Molecular Microscopy, The Scripps Research Institute, La Jolla, CA 92037, USA. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA. dave@scripps.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25574024" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; Molecular Sequence Data ; NADP Transhydrogenases/*chemistry ; Protein Multimerization ; Protein Structure, Tertiary ; *Protons ; Thermus thermophilus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-01-31
    Description: The 18-kilodalton translocator protein (TSPO), proposed to be a key player in cholesterol transport into mitochondria, is highly expressed in steroidogenic tissues, metastatic cancer, and inflammatory and neurological diseases such as Alzheimer's and Parkinson's. TSPO ligands, including benzodiazepine drugs, are implicated in regulating apoptosis and are extensively used in diagnostic imaging. We report crystal structures (at 1.8, 2.4, and 2.5 angstrom resolution) of TSPO from Rhodobacter sphaeroides and a mutant that mimics the human Ala(147)--〉Thr(147) polymorphism associated with psychiatric disorders and reduced pregnenolone production. Crystals obtained in the lipidic cubic phase reveal the binding site of an endogenous porphyrin ligand and conformational effects of the mutation. The three crystal structures show the same tightly interacting dimer and provide insights into the controversial physiological role of TSPO and how the mutation affects cholesterol binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fei -- Liu, Jian -- Zheng, Yi -- Garavito, R Michael -- Ferguson-Miller, Shelagh -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- GM094625/GM/NIGMS NIH HHS/ -- GM26916/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):555-8. doi: 10.1126/science.1260590.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. ; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. fergus20@msu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Cholesterol/metabolism ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry ; Polymorphism, Single Nucleotide ; Porphyrins/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protoporphyrins/metabolism ; Receptors, GABA/chemistry/genetics ; Rhodobacter sphaeroides/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-06-06
    Description: Retroviruses depend on self-assembly of their capsid proteins (core particle) to yield infectious mature virions. Despite the essential role of the retroviral core, its high polymorphism has hindered high-resolution structural analyses. Here, we report the x-ray structure of the native capsid (CA) protein from bovine leukemia virus. CA is organized as hexamers that deviate substantially from sixfold symmetry, yet adjust to make two-dimensional pseudohexagonal arrays that mimic mature retroviral cores. Intra- and interhexameric quasi-equivalent contacts are uncovered, with flexible trimeric lateral contacts among hexamers, yet preserving very similar dimeric interfaces making the lattice. The conformation of each capsid subunit in the hexamer is therefore dictated by long-range interactions, revealing how the hexamers can also assemble into closed core particles, a relevant feature of retrovirus biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Obal, G -- Trajtenberg, F -- Carrion, F -- Tome, L -- Larrieux, N -- Zhang, X -- Pritsch, O -- Buschiazzo, A -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):95-8. doi: 10.1126/science.aaa5182. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. ; Institut Pasteur, Unite de Virologie Structurale, Departement de Virologie and CNRS Unite Mixte de Recherche 3569, 28, Rue du Docteur Roux, 75015, Paris, France. ; Institut Pasteur de Montevideo, Unit of Protein Biophysics, Mataojo 2020, 11400, Montevideo, Uruguay. Departamento de Inmunobiologia, Facultad de Medicina, Universidad de la Republica, Avenida General Flores 2125, 11800, Montevideo, Uruguay. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy. ; Institut Pasteur de Montevideo, Unit of Protein Crystallography, Mataojo 2020, 11400, Montevideo, Uruguay. Institut Pasteur, Department of Structural Biology and Chemistry, 25, Rue du Dr Roux, 75015, Paris, France. pritsch@pasteur.edu.uy alebus@pasteur.edu.uy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044299" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Capsid/*chemistry ; Capsid Proteins/*chemistry/genetics ; Cattle ; Crystallography, X-Ray ; Leukemia Virus, Bovine/*chemistry/genetics ; Molecular Sequence Data ; Mutation ; Protein Multimerization ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-08
    Description: Cytoplasmic aggregation of TDP-43, accompanied by its nuclear clearance, is a key common pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, a limited understanding of this RNA-binding protein (RBP) impedes the clarification of pathogenic mechanisms underlying TDP-43 proteinopathy. In contrast to RBPs that regulate splicing of conserved exons, we found that TDP-43 repressed the splicing of nonconserved cryptic exons, maintaining intron integrity. When TDP-43 was depleted from mouse embryonic stem cells, these cryptic exons were spliced into messenger RNAs, often disrupting their translation and promoting nonsense-mediated decay. Moreover, enforced repression of cryptic exons prevented cell death in TDP-43-deficient cells. Furthermore, repression of cryptic exons was impaired in ALS-FTD cases, suggesting that this splicing defect could potentially underlie TDP-43 proteinopathy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ling, Jonathan P -- Pletnikova, Olga -- Troncoso, Juan C -- Wong, Philip C -- P50AG05146/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):650-5. doi: 10.1126/science.aab0983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. ; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA. wong@jhmi.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26250685" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/*genetics ; Animals ; Base Sequence ; Cells, Cultured ; Cysteine Endopeptidases/genetics ; DNA-Binding Proteins/genetics/*physiology ; Embryonic Stem Cells ; Exons/*genetics ; Frontotemporal Dementia/*genetics ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Mice ; Molecular Sequence Data ; Protein Isoforms/genetics ; *RNA Splicing ; RNA Stability ; RNA, Messenger/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-06-27
    Description: Cardiac progenitor cells are multipotent and give rise to cardiac endothelium, smooth muscle, and cardiomyocytes. Here, we define and characterize the cardiomyoblast intermediate that is committed to the cardiomyocyte fate, and we characterize the niche signals that regulate commitment. Cardiomyoblasts express Hopx, which functions to coordinate local Bmp signals to inhibit the Wnt pathway, thus promoting cardiomyogenesis. Hopx integrates Bmp and Wnt signaling by physically interacting with activated Smads and repressing Wnt genes. The identification of the committed cardiomyoblast that retains proliferative potential will inform cardiac regenerative therapeutics. In addition, Bmp signals characterize adult stem cell niches in other tissues where Hopx-mediated inhibition of Wnt is likely to contribute to stem cell quiescence and to explain the role of Hopx as a tumor suppressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jain, Rajan -- Li, Deqiang -- Gupta, Mudit -- Manderfield, Lauren J -- Ifkovits, Jamie L -- Wang, Qiaohong -- Liu, Feiyan -- Liu, Ying -- Poleshko, Andrey -- Padmanabhan, Arun -- Raum, Jeffrey C -- Li, Li -- Morrisey, Edward E -- Lu, Min Min -- Won, Kyoung-Jae -- Epstein, Jonathan A -- 5-T32-GM-007170/GM/NIGMS NIH HHS/ -- K08 HL119553/HL/NHLBI NIH HHS/ -- K08 HL119553-02/HL/NHLBI NIH HHS/ -- R01 HL071546/HL/NHLBI NIH HHS/ -- U01 HL100405/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):aaa6071. doi: 10.1126/science.aaa6071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute of Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. epsteinj@upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113728" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Bone Morphogenetic Proteins/genetics/*metabolism ; Cell Lineage/genetics ; Gene Expression ; *Gene Expression Regulation, Developmental ; Heart/*embryology ; Homeodomain Proteins/genetics/*metabolism ; Mice ; Mice, Mutant Strains ; Molecular Sequence Data ; Muscle, Smooth/cytology/metabolism ; Myoblasts, Cardiac/cytology/*metabolism ; Organogenesis/*genetics ; Stem Cell Niche/genetics/physiology ; Tumor Suppressor Proteins/genetics/*metabolism ; Wnt Signaling Pathway/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-01-09
    Description: The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that responds to multiple environmental cues. Amino acids stimulate, in a Rag-, Ragulator-, and vacuolar adenosine triphosphatase-dependent fashion, the translocation of mTORC1 to the lysosomal surface, where it interacts with its activator Rheb. Here, we identify SLC38A9, an uncharacterized protein with sequence similarity to amino acid transporters, as a lysosomal transmembrane protein that interacts with the Rag guanosine triphosphatases (GTPases) and Ragulator in an amino acid-sensitive fashion. SLC38A9 transports arginine with a high Michaelis constant, and loss of SLC38A9 represses mTORC1 activation by amino acids, particularly arginine. Overexpression of SLC38A9 or just its Ragulator-binding domain makes mTORC1 signaling insensitive to amino acid starvation but not to Rag activity. Thus, SLC38A9 functions upstream of the Rag GTPases and is an excellent candidate for being an arginine sensor for the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Shuyu -- Tsun, Zhi-Yang -- Wolfson, Rachel L -- Shen, Kuang -- Wyant, Gregory A -- Plovanich, Molly E -- Yuan, Elizabeth D -- Jones, Tony D -- Chantranupong, Lynne -- Comb, William -- Wang, Tim -- Bar-Peled, Liron -- Zoncu, Roberto -- Straub, Christoph -- Kim, Choah -- Park, Jiwon -- Sabatini, Bernardo L -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA180754/CA/NCI NIH HHS/ -- F31 AG044064/AG/NIA NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Harvard Medical School, 260 Longwood Avenue, Boston, MA 02115, USA. ; Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA. ; Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25567906" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/chemistry/genetics/*metabolism ; Arginine/deficiency/*metabolism ; HEK293 Cells ; Humans ; Lysosomes/*enzymology ; Molecular Sequence Data ; Monomeric GTP-Binding Proteins/*metabolism ; Multiprotein Complexes/*metabolism ; Protein Structure, Tertiary ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-02-01
    Description: During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Siqi -- Cai, Xin -- Wu, Jiaxi -- Cong, Qian -- Chen, Xiang -- Li, Tuo -- Du, Fenghe -- Ren, Junyao -- Wu, You-Tong -- Grishin, Nick V -- Chen, Zhijian J -- AI-93967/AI/NIAID NIH HHS/ -- GM-094575/GM/NIGMS NIH HHS/ -- GM-63692/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):aaa2630. doi: 10.1126/science.aaa2630. Epub 2015 Jan 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. ; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. zhijian.chen@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25636800" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/chemistry/*metabolism ; Adaptor Proteins, Vesicular Transport/chemistry/*metabolism ; Amino Acid Sequence ; Animals ; Cell Line ; Humans ; I-kappa B Kinase/metabolism ; Interferon Regulatory Factor-3/chemistry/*metabolism ; Interferon-alpha/biosynthesis ; Interferon-beta/biosynthesis ; Membrane Proteins/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/metabolism ; Sendai virus/physiology ; Serine/metabolism ; Signal Transduction ; Ubiquitination ; Vesiculovirus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-07-18
    Description: Secretion of the cytokine interleukin-1beta (IL-1beta) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1beta, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1beta for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1beta transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1beta production. Cholesterol crystals triggered neutrophils to release neutrophil extracellular traps (NETs). NETs primed macrophages for cytokine release, activating T helper 17 (TH17) cells that amplify immune cell recruitment in atherosclerotic plaques. Therefore, danger signals may drive sterile inflammation, such as that seen in atherosclerosis, through their interactions with neutrophils.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warnatsch, Annika -- Ioannou, Marianna -- Wang, Qian -- Papayannopoulos, Venizelos -- MC_UP_1202/13/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2015 Jul 17;349(6245):316-20. doi: 10.1126/science.aaa8064. Epub 2015 Jul 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. ; Mill Hill Laboratory, Francis Crick Institute, London NW7 1AA, UK. veni.p@crick.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26185250" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*immunology ; Cells, Cultured ; Cholesterol/chemistry/immunology ; Disease Models, Animal ; Extracellular Traps/*immunology ; Humans ; Inflammasomes/immunology ; Inflammation/immunology ; Interleukin-1beta/*biosynthesis/genetics ; Macrophages/*immunology ; Mice ; Mice, Mutant Strains ; Neutrophils/*immunology ; Signal Transduction ; Th17 Cells/immunology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-12-19
    Description: Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahuja, Shivani -- Mukund, Susmith -- Deng, Lunbin -- Khakh, Kuldip -- Chang, Elaine -- Ho, Hoangdung -- Shriver, Stephanie -- Young, Clint -- Lin, Sophia -- Johnson, J P Jr -- Wu, Ping -- Li, Jun -- Coons, Mary -- Tam, Christine -- Brillantes, Bobby -- Sampang, Honorio -- Mortara, Kyle -- Bowman, Krista K -- Clark, Kevin R -- Estevez, Alberto -- Xie, Zhiwei -- Verschoof, Henry -- Grimwood, Michael -- Dehnhardt, Christoph -- Andrez, Jean-Christophe -- Focken, Thilo -- Sutherlin, Daniel P -- Safina, Brian S -- Starovasnik, Melissa A -- Ortwine, Daniel F -- Franke, Yvonne -- Cohen, Charles J -- Hackos, David H -- Koth, Christopher M -- Payandeh, Jian -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aac5464. doi: 10.1126/science.aac5464.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biology, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Chemistry, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com. ; Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization/methods ; Crystallography, X-Ray ; DNA Mutational Analysis ; Humans ; Models, Molecular ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/*chemistry/genetics ; Pain Perception/drug effects ; Protein Engineering ; Protein Isoforms/antagonists & inhibitors/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium Channel Blockers/*chemistry/*pharmacology ; Sulfonamides/*chemistry/*pharmacology ; Thiadiazoles/*chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-06-13
    Description: The spindle checkpoint of the cell division cycle senses kinetochores that are not attached to microtubules and prevents precocious onset of anaphase, which can lead to aneuploidy. The nuclear division cycle 80 complex (Ndc80C) is a major microtubule receptor at the kinetochore. Ndc80C also mediates the kinetochore recruitment of checkpoint proteins. We found that the checkpoint protein kinase monopolar spindle 1 (Mps1) directly bound to Ndc80C through two independent interactions. Both interactions involved the microtubule-binding surfaces of Ndc80C and were directly inhibited in the presence of microtubules. Elimination of one such interaction in human cells caused checkpoint defects expected from a failure to detect unattached kinetochores. Competition between Mps1 and microtubules for Ndc80C binding thus constitutes a direct mechanism for the detection of unattached kinetochores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ji, Zhejian -- Gao, Haishan -- Yu, Hongtao -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jun 12;348(6240):1260-4. doi: 10.1126/science.aaa4029.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 74390, USA. ; Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 74390, USA. hongtao.yu@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26068854" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding, Competitive ; *Cell Cycle ; Cell Cycle Proteins/genetics/*metabolism ; HeLa Cells ; Humans ; Kinetochores/*metabolism ; Microtubules/*metabolism ; Molecular Sequence Data ; Nuclear Proteins/*metabolism ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-07-25
    Description: Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638224/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638224/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Jeeyun -- Torta, Federico -- Masai, Kaori -- Lucast, Louise -- Czapla, Heather -- Tanner, Lukas B -- Narayanaswamy, Pradeep -- Wenk, Markus R -- Nakatsu, Fubito -- De Camilli, Pietro -- DA018343/DA/NIDA NIH HHS/ -- DK082700/DK/NIDDK NIH HHS/ -- DK45735/DK/NIDDK NIH HHS/ -- P30 DA018343/DA/NIDA NIH HHS/ -- P30 DK045735/DK/NIDDK NIH HHS/ -- R01 DK082700/DK/NIDDK NIH HHS/ -- R37 NS036251/NS/NINDS NIH HHS/ -- R37NS036251/NS/NINDS NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Jul 24;349(6246):428-32. doi: 10.1126/science.aab1370.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA. ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117456 Singapore. ; Department of Cell Biology, Howard Hughes Medical Institute, Kavli Institute for Neuroscience, and Program for Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06520, USA. pietro.decamilli@yale.edu nakatsu@med.niigata-u.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26206935" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/*metabolism ; Endoplasmic Reticulum/*metabolism ; Gene Knockout Techniques ; HeLa Cells ; Humans ; Molecular Sequence Data ; Phosphatidylinositol Phosphates/*metabolism ; Phosphatidylserines/*metabolism ; Protein Structure, Tertiary ; Receptors, Steroid/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-03-15
    Description: Rgs2, a regulator of G proteins, lowers blood pressure by decreasing signaling through Galphaq. Human patients expressing Met-Leu-Rgs2 (ML-Rgs2) or Met-Arg-Rgs2 (MR-Rgs2) are hypertensive relative to people expressing wild-type Met-Gln-Rgs2 (MQ-Rgs2). We found that wild-type MQ-Rgs2 and its mutant, MR-Rgs2, were destroyed by the Ac/N-end rule pathway, which recognizes N(alpha)-terminally acetylated (Nt-acetylated) proteins. The shortest-lived mutant, ML-Rgs2, was targeted by both the Ac/N-end rule and Arg/N-end rule pathways. The latter pathway recognizes unacetylated N-terminal residues. Thus, the Nt-acetylated Ac-MX-Rgs2 (X = Arg, Gln, Leu) proteins are specific substrates of the mammalian Ac/N-end rule pathway. Furthermore, the Ac/N-degron of Ac-MQ-Rgs2 was conditional, and Teb4, an endoplasmic reticulum (ER) membrane-embedded ubiquitin ligase, was able to regulate G protein signaling by targeting Ac-MX-Rgs2 proteins for degradation through their N(alpha)-terminal acetyl group.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4748709/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Sang-Eun -- Kim, Jeong-Mok -- Seok, Ok-Hee -- Cho, Hanna -- Wadas, Brandon -- Kim, Seon-Young -- Varshavsky, Alexander -- Hwang, Cheol-Sang -- DK039520/DK/NIDDK NIH HHS/ -- GM031530/GM/NIGMS NIH HHS/ -- R01 DK039520/DK/NIDDK NIH HHS/ -- R01 GM031530/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 13;347(6227):1249-52. doi: 10.1126/science.aaa3844.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. ; Medical Genomics Research Center, KRIBB, Daejeon, South Korea. Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. cshwang@postech.ac.kr avarsh@caltech.edu. ; Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 790-784, South Korea. cshwang@postech.ac.kr avarsh@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25766235" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; GTP-Binding Protein alpha Subunits, Gq-G11/metabolism ; HEK293 Cells ; HeLa Cells ; Humans ; Membrane Proteins/genetics/metabolism ; Mutant Proteins/chemistry/metabolism ; Protein Processing, Post-Translational ; Protein Stability ; Proteolysis ; RGS Proteins/chemistry/genetics/*metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/genetics/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-10-17
    Description: Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 trimethylation (H3K27me3), a hallmark of gene silencing. Here we report the crystal structures of an active PRC2 complex of 170 kilodaltons from the yeast Chaetomium thermophilum in both basal and stimulated states, which contain Ezh2, Eed, and the VEFS domain of Suz12 and are bound to a cancer-associated inhibiting H3K27M peptide and a S-adenosyl-l-homocysteine cofactor. The stimulated complex also contains an additional stimulating H3K27me3 peptide. Eed is engulfed by a belt-like structure of Ezh2, and Suz12(VEFS) contacts both of these two subunits to confer an unusual split active SET domain for catalysis. Comparison of PRC2 in the basal and stimulated states reveals a mobile Ezh2 motif that responds to stimulation to allosterically regulate the active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiao, Lianying -- Liu, Xin -- GM114576/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):aac4383. doi: 10.1126/science.aac4383. Epub 2015 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. ; Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Research, Department of Obstetrics and Gynecology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. xin.liu@utsouthwestern.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472914" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Catalysis ; Catalytic Domain ; Chaetomium/genetics/*metabolism ; Crystallography, X-Ray ; Fungal Proteins/antagonists & inhibitors/*chemistry/metabolism ; *Gene Silencing ; Histones/*metabolism ; Humans ; Jumonji Domain-Containing Histone Demethylases/metabolism ; Methylation ; Molecular Sequence Data ; Mutation ; Neoplasms/genetics ; Polycomb Repressive Complex 2/antagonists & inhibitors/*chemistry/metabolism ; Protein Structure, Tertiary ; S-Adenosylhomocysteine/chemistry/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-06-27
    Description: Algal blooms produce large amounts of dimethyl sulfide (DMS), a volatile with a diverse signaling role in marine food webs that is emitted to the atmosphere, where it can affect cloud formation. The algal enzymes responsible for forming DMS from dimethylsulfoniopropionate (DMSP) remain unidentified despite their critical role in the global sulfur cycle. We identified and characterized Alma1, a DMSP lyase from the bloom-forming algae Emiliania huxleyi. Alma1 is a tetrameric, redox-sensitive enzyme of the aspartate racemase superfamily. Recombinant Alma1 exhibits biochemical features identical to the DMSP lyase in E. huxleyi, and DMS released by various E. huxleyi isolates correlates with their Alma1 levels. Sequence homology searches suggest that Alma1 represents a gene family present in major, globally distributed phytoplankton taxa and in other marine organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alcolombri, Uria -- Ben-Dor, Shifra -- Feldmesser, Ester -- Levin, Yishai -- Tawfik, Dan S -- Vardi, Assaf -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1466-9. doi: 10.1126/science.aab1586.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel. Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel. ; Bioinformatics and Biological Computing Unit, Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel. ; Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel. assaf.vardi@weizmann.ac.il dan.tawfik@weizmann.ac.il. ; Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel. assaf.vardi@weizmann.ac.il dan.tawfik@weizmann.ac.il.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113722" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*chemistry/classification/genetics ; Amino Acid Sequence ; Bacteria/enzymology/genetics ; Carbon-Sulfur Lyases/*chemistry/classification/genetics ; Haptophyta/*enzymology/genetics ; Molecular Sequence Data ; Phylogeny ; Phytoplankton/enzymology ; RNA, Messenger/biosynthesis ; Recombinant Proteins/chemistry ; Sulfides/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-09-26
    Description: Mitochondria fulfill central functions in cellular energetics, metabolism, and signaling. The outer membrane translocator complex (the TOM complex) imports most mitochondrial proteins, but its architecture is unknown. Using a cross-linking approach, we mapped the active translocator down to single amino acid residues, revealing different transport paths for preproteins through the Tom40 channel. An N-terminal segment of Tom40 passes from the cytosol through the channel to recruit chaperones from the intermembrane space that guide the transfer of hydrophobic preproteins. The translocator contains three Tom40 beta-barrel channels sandwiched between a central alpha-helical Tom22 receptor cluster and external regulatory Tom proteins. The preprotein-translocating trimeric complex exchanges with a dimeric isoform to assemble new TOM complexes. Dynamic coupling of alpha-helical receptors, beta-barrel channels, and chaperones generates a versatile machinery that transports about 1000 different proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shiota, Takuya -- Imai, Kenichiro -- Qiu, Jian -- Hewitt, Victoria L -- Tan, Khershing -- Shen, Hsin-Hui -- Sakiyama, Noriyuki -- Fukasawa, Yoshinori -- Hayat, Sikander -- Kamiya, Megumi -- Elofsson, Arne -- Tomii, Kentaro -- Horton, Paul -- Wiedemann, Nils -- Pfanner, Nikolaus -- Lithgow, Trevor -- Endo, Toshiya -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1544-8. doi: 10.1126/science.aac6428.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia. Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. ; Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan. ; Institut fur Biochemie und Molekularbiologie, Universitat Freiburg, 79104 Freiburg, Germany. ; Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia. ; Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden. ; Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. ; Institut fur Biochemie und Molekularbiologie, Universitat Freiburg, 79104 Freiburg, Germany. Centre for Biological Signalling Studies, Universitat Freiburg, 79104 Freiburg, Germany. ; Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cytosol/metabolism ; Mitochondrial Membrane Transport Proteins/*chemistry/metabolism ; Molecular Chaperones ; Molecular Sequence Data ; Protein Multimerization ; Protein Structure, Secondary ; Protein Transport ; Saccharomyces cerevisiae Proteins/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-02-24
    Description: Notch receptors guide mammalian cell fate decisions by engaging the proteins Jagged and Delta-like (DLL). The 2.3 angstrom resolution crystal structure of the interacting regions of the Notch1-DLL4 complex reveals a two-site, antiparallel binding orientation assisted by Notch1 O-linked glycosylation. Notch1 epidermal growth factor-like repeats 11 and 12 interact with the DLL4 Delta/Serrate/Lag-2 (DSL) domain and module at the N-terminus of Notch ligands (MNNL) domains, respectively. Threonine and serine residues on Notch1 are functionalized with O-fucose and O-glucose, which act as surrogate amino acids by making specific, and essential, contacts to residues on DLL4. The elucidation of a direct chemical role for O-glycans in Notch1 ligand engagement demonstrates how, by relying on posttranslational modifications of their ligand binding sites, Notch proteins have linked their functional capacity to developmentally regulated biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445638/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Luca, Vincent C -- Jude, Kevin M -- Pierce, Nathan W -- Nachury, Maxence V -- Fischer, Suzanne -- Garcia, K Christopher -- 1R01-GM097015/GM/NIGMS NIH HHS/ -- R01 GM097015/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):847-53. doi: 10.1126/science.1261093.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA. Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA. kcgarcia@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700513" target="_blank"〉PubMed〈/a〉
    Keywords: Alagille Syndrome/genetics ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Cell Line ; Conserved Sequence ; Crystallography, X-Ray ; Fucose/chemistry ; Glucose/chemistry ; Glycosylation ; Intracellular Signaling Peptides and Proteins/*chemistry/genetics ; Ligands ; Membrane Proteins/*chemistry/genetics/ultrastructure ; Molecular Sequence Data ; Molecular Targeted Therapy ; Polysaccharides/chemistry ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/genetics ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptor, Notch1/*chemistry/genetics/ultrastructure ; Serine/chemistry/genetics ; Threonine/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-02-14
    Description: Nucleotide analog inhibitors have shown clinical success in the treatment of hepatitis C virus (HCV) infection, despite an incomplete mechanistic understanding of NS5B, the viral RNA-dependent RNA polymerase. Here we study the details of HCV RNA replication by determining crystal structures of stalled polymerase ternary complexes with enzymes, RNA templates, RNA primers, incoming nucleotides, and catalytic metal ions during both primed initiation and elongation of RNA synthesis. Our analysis revealed that highly conserved active-site residues in NS5B position the primer for in-line attack on the incoming nucleotide. A beta loop and a C-terminal membrane-anchoring linker occlude the active-site cavity in the apo state, retract in the primed initiation assembly to enforce replication of the HCV genome from the 3' terminus, and vacate the active-site cavity during elongation. We investigated the incorporation of nucleotide analog inhibitors, including the clinically active metabolite formed by sofosbuvir, to elucidate key molecular interactions in the active site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Appleby, Todd C -- Perry, Jason K -- Murakami, Eisuke -- Barauskas, Ona -- Feng, Joy -- Cho, Aesop -- Fox, David 3rd -- Wetmore, Diana R -- McGrath, Mary E -- Ray, Adrian S -- Sofia, Michael J -- Swaminathan, S -- Edwards, Thomas E -- New York, N.Y. -- Science. 2015 Feb 13;347(6223):771-5. doi: 10.1126/science.1259210.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA. todd.appleby@gilead.com tedwards@be4.com. ; Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA. ; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA. ; Beryllium, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA. todd.appleby@gilead.com tedwards@be4.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25678663" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Catalytic Domain ; Conserved Sequence ; Crystallography, X-Ray ; Hepacivirus/enzymology/genetics/*physiology ; Molecular Sequence Data ; Protein Structure, Secondary ; RNA Replicase/*chemistry ; RNA, Viral/*biosynthesis ; Ribonucleotides/*chemistry ; Sofosbuvir ; Uridine Monophosphate/analogs & derivatives/chemistry ; Viral Nonstructural Proteins/*chemistry ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-01-24
    Description: The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment-that is, in the absence of proteotoxic stress-only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Asano, Shoh -- Fukuda, Yoshiyuki -- Beck, Florian -- Aufderheide, Antje -- Forster, Friedrich -- Danev, Radostin -- Baumeister, Wolfgang -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):439-42. doi: 10.1126/science.1261197.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. ; Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany. baumeist@biochem.mpg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613890" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Hippocampus/*cytology/enzymology ; Neurons/*enzymology/*ultrastructure ; Proteasome Endopeptidase Complex/*chemistry ; Protein Conformation ; Rats ; Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-26
    Description: Cellular senescence is a terminal stress-activated program controlled by the p53 and p16(INK4a) tumor suppressor proteins. A striking feature of senescence is the senescence-associated secretory phenotype (SASP), a pro-inflammatory response linked to tumor promotion and aging. We have identified the transcription factor GATA4 as a senescence and SASP regulator. GATA4 is stabilized in cells undergoing senescence and is required for the SASP. Normally, GATA4 is degraded by p62-mediated selective autophagy, but this regulation is suppressed during senescence, thereby stabilizing GATA4. GATA4 in turn activates the transcription factor NF-kappaB to initiate the SASP and facilitate senescence. GATA4 activation depends on the DNA damage response regulators ATM and ATR, but not on p53 or p16(INK4a). GATA4 accumulates in multiple tissues, including the aging brain, and could contribute to aging and its associated inflammation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Chanhee -- Xu, Qikai -- Martin, Timothy D -- Li, Mamie Z -- Demaria, Marco -- Aron, Liviu -- Lu, Tao -- Yankner, Bruce A -- Campisi, Judith -- Elledge, Stephen J -- AG009909/AG/NIA NIH HHS/ -- AG017242/AG/NIA NIH HHS/ -- AG046174/AG/NIA NIH HHS/ -- DP1 OD006849/OD/NIH HHS/ -- DP1OD006849/OD/NIH HHS/ -- GM44664/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):aaa5612. doi: 10.1126/science.aaa5612.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. ; Buck Institute for Research on Aging, Novato, CA 94945, USA. ; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. ; Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA. selledge@genetics.med.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404840" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/*genetics/metabolism ; Animals ; Ataxia Telangiectasia Mutated Proteins/metabolism ; Autophagy/*genetics ; Brain/metabolism ; Cell Aging/*genetics ; Cell Cycle/genetics ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; *DNA Damage ; Fibroblasts ; GATA4 Transcription Factor/genetics/*metabolism ; Gene Expression Profiling ; Humans ; Inflammation/*genetics ; Interleukin-1alpha/genetics/metabolism ; Mice ; Mice, Inbred C57BL ; MicroRNAs/genetics/metabolism ; NF-kappa B/metabolism ; Phenotype ; Promoter Regions, Genetic ; Tumor Necrosis Factor Receptor-Associated Peptides and ; Proteins/genetics/metabolism ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-12-19
    Description: The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit alpha1 and auxiliary subunits alpha2delta, beta, and gamma. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the alpha1 subunit are arranged clockwise in the extracellular view. The gamma subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic beta subunit is located adjacent to VSD(II) of alpha1. The alpha2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Jianping -- Yan, Zhen -- Li, Zhangqiang -- Yan, Chuangye -- Lu, Shan -- Dong, Mengqiu -- Yan, Nieng -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aad2395. doi: 10.1126/science.aad2395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. ; National Institute of Biological Sciences, Beijing 102206, China. ; State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China. nyan@tsinghua.edu.cn.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680202" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium Channels, L-Type/*chemistry/genetics/isolation & purification ; Cell Membrane/chemistry ; Cryoelectron Microscopy ; Molecular Sequence Data ; Muscle, Skeletal/chemistry ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits/isolation & purification ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-02-24
    Description: Pancreatic beta cells lower insulin release in response to nutrient depletion. The question of whether starved beta cells induce macroautophagy, a predominant mechanism maintaining energy homeostasis, remains poorly explored. We found that, in contrast to many mammalian cells, macroautophagy in pancreatic beta cells was suppressed upon starvation. Instead, starved beta cells induced lysosomal degradation of nascent secretory insulin granules, which was controlled by protein kinase D (PKD), a key player in secretory granule biogenesis. Starvation-induced nascent granule degradation triggered lysosomal recruitment and activation of mechanistic target of rapamycin that suppressed macroautophagy. Switching from macroautophagy to insulin granule degradation was important to keep insulin secretion low upon fasting. Thus, beta cells use a PKD-dependent mechanism to adapt to nutrient availability and couple autophagy flux to secretory function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goginashvili, Alexander -- Zhang, Zhirong -- Erbs, Eric -- Spiegelhalter, Coralie -- Kessler, Pascal -- Mihlan, Michael -- Pasquier, Adrien -- Krupina, Ksenia -- Schieber, Nicole -- Cinque, Laura -- Morvan, Joelle -- Sumara, Izabela -- Schwab, Yannick -- Settembre, Carmine -- Ricci, Romeo -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):878-82. doi: 10.1126/science.aaa2628.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. ; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. ; Dulbecco Telethon Institute and Telethon Institute of Genetics and Medicine (TIGEM), 80131 Naples, Italy. Medical Genetics, Department of Medical and Translational Science Unit, Federico II University, Via Pansini 5, 80131 Naples, Italy. ; Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM, CNRS, Universite de Strasbourg, 67404 Illkirch, France. Nouvel Hopital Civil, Laboratoire de Biochimie et de Biologie Moleculaire, Universite de Strasbourg, 67091 Strasbourg, France. romeo.ricci@igbmc.fr.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700520" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cells, Cultured ; Fasting ; Humans ; Insulin/*secretion ; Insulin-Secreting Cells/*physiology/secretion/ultrastructure ; Mice ; Mice, Mutant Strains ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 13/genetics ; Protein Kinase C/physiology ; Secretory Vesicles/*physiology/secretion
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-06-27
    Description: Light-gated rhodopsin cation channels from chlorophyte algae have transformed neuroscience research through their use as membrane-depolarizing optogenetic tools for targeted photoactivation of neuron firing. Photosuppression of neuronal action potentials has been limited by the lack of equally efficient tools for membrane hyperpolarization. We describe anion channel rhodopsins (ACRs), a family of light-gated anion channels from cryptophyte algae that provide highly sensitive and efficient membrane hyperpolarization and neuronal silencing through light-gated chloride conduction. ACRs strictly conducted anions, completely excluding protons and larger cations, and hyperpolarized the membrane of cultured animal cells with much faster kinetics at less than one-thousandth of the light intensity required by the most efficient currently available optogenetic proteins. Natural ACRs provide optogenetic inhibition tools with unprecedented light sensitivity and temporal precision.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764398/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764398/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Govorunova, Elena G -- Sineshchekov, Oleg A -- Janz, Roger -- Liu, Xiaoqin -- Spudich, John L -- R01 GM027750/GM/NIGMS NIH HHS/ -- R01GM027750/GM/NIGMS NIH HHS/ -- R21MH098288/MH/NIMH NIH HHS/ -- S10RR022531/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 7;349(6248):647-50. doi: 10.1126/science.aaa7484. Epub 2015 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA. ; Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26113638" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chloride Channels/classification/genetics/*physiology ; Cryptophyta/genetics/*metabolism ; HEK293 Cells ; Humans ; Ion Channel Gating ; Light ; Membrane Potentials/physiology/*radiation effects ; Molecular Sequence Data ; Neural Inhibition ; Neurons/physiology/*radiation effects ; Optogenetics/*methods ; Photic Stimulation ; Phylogeny ; Rhodopsins, Microbial/classification/genetics/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-02-24
    Description: Mutations in sunlight-induced melanoma arise from cyclobutane pyrimidine dimers (CPDs), DNA photoproducts that are typically created picoseconds after an ultraviolet (UV) photon is absorbed at thymine or cytosine. We found that in melanocytes, CPDs are generated for 〉3 hours after exposure to UVA, a major component of the radiation in sunlight and in tanning beds. These "dark CPDs" constitute the majority of CPDs and include the cytosine-containing CPDs that initiate UV-signature C--〉T mutations. Dark CPDs arise when UV-induced reactive oxygen and nitrogen species combine to excite an electron in fragments of the pigment melanin. This creates a quantum triplet state that has the energy of a UV photon but induces CPDs by energy transfer to DNA in a radiation-independent manner. Melanin may thus be carcinogenic as well as protective against cancer. These findings also validate the long-standing suggestion that chemically generated excited electronic states are relevant to mammalian biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Premi, Sanjay -- Wallisch, Silvia -- Mano, Camila M -- Weiner, Adam B -- Bacchiocchi, Antonella -- Wakamatsu, Kazumasa -- Bechara, Etelvino J H -- Halaban, Ruth -- Douki, Thierry -- Brash, Douglas E -- 2 P50 CA121974/CA/NCI NIH HHS/ -- P30 DK034989/DK/NIDDK NIH HHS/ -- P30 DK34989/DK/NIDDK NIH HHS/ -- P50 CA121974/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Feb 20;347(6224):842-7. doi: 10.1126/science.1256022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. ; Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan. ; Departamento de Bioquimica, Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo 05513-970 SP, Brazil. Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Diadema, Sao Paulo 09972-270 SP, Brazil. ; Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. ; INAC/LCIB UMR-E3 CEA-UJF/Commissariat a l'Energie Atomique (CEA), 38054 Grenoble Cedex 9, France. ; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA. Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA. douglas.brash@yale.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700512" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cytosine/metabolism ; DNA/chemistry/genetics/*radiation effects ; DNA Damage/*genetics ; Energy Transfer ; Humans ; Melanins/chemistry/*metabolism ; Melanocytes/metabolism/*radiation effects ; Melanoma/*genetics ; Mice ; Mice, Inbred C57BL ; Mutagenesis ; Mutation ; Neoplasms, Radiation-Induced/*genetics ; Photons ; Pyrimidine Dimers/*metabolism ; Receptor, Melanocortin, Type 1/genetics ; Skin Neoplasms/*genetics ; Sunlight/adverse effects ; Thymine/metabolism ; Ultraviolet Rays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-06-06
    Description: The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. We report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtly altering interhexamer interfaces remote to the ligand-binding site. Inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584149/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4584149/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gres, Anna T -- Kirby, Karen A -- KewalRamani, Vineet N -- Tanner, John J -- Pornillos, Owen -- Sarafianos, Stefan G -- AI076119/AI/NIAID NIH HHS/ -- AI099284/AI/NIAID NIH HHS/ -- AI100890/AI/NIAID NIH HHS/ -- AI112417/AI/NIAID NIH HHS/ -- AI120860/AI/NIAID NIH HHS/ -- GM066087/GM/NIGMS NIH HHS/ -- GM103368/GM/NIGMS NIH HHS/ -- P50 GM103368/GM/NIGMS NIH HHS/ -- R01 AI076119/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 AI100890/AI/NIAID NIH HHS/ -- R01 AI120860/AI/NIAID NIH HHS/ -- R01 GM066087/GM/NIGMS NIH HHS/ -- R21 AI112417/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 3;349(6243):99-103. doi: 10.1126/science.aaa5936. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. Department of Chemistry, University of Missouri, Columbia, MO 65211, USA. ; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA. ; Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA. ; Department of Chemistry, University of Missouri, Columbia, MO 65211, USA. Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA. ; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA. ; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA. Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA. sarafianoss@missouri.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044298" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*chemistry ; Crystallography, X-Ray ; HIV-1/*chemistry/genetics ; Molecular Sequence Data ; Protein Multimerization ; Protein Structure, Secondary ; gag Gene Products, Human Immunodeficiency Virus/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-04-25
    Description: In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, alpha-helical, and alpha/beta-core subdomains. Moreover, the timing of these events was critical; premature alpha-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying alpha-subdomain compaction, facilitating beta-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Soo Jung -- Yoon, Jae Seok -- Shishido, Hideki -- Yang, Zhongying -- Rooney, LeeAnn A -- Barral, Jose M -- Skach, William R -- P30CA069533/CA/NCI NIH HHS/ -- P30EYE010572/PHS HHS/ -- R01DK51818/DK/NIDDK NIH HHS/ -- R01GM53457/GM/NIGMS NIH HHS/ -- S10OD012246/OD/NIH HHS/ -- S10RR025571/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Apr 24;348(6233):444-8. doi: 10.1126/science.aaa3974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health and Science University (OHSU), Portland, OR 97239, USA. ; Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77550-0620, USA. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77550-0620, USA. ; Department of Biochemistry and Molecular Biology, Oregon Health and Science University (OHSU), Portland, OR 97239, USA. Cystic Fibrosis Foundation Therapeutics, Bethesda, MD 20814, USA. skachw@ohsu.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25908822" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Codon/chemistry/*metabolism ; Cystic Fibrosis Transmembrane Conductance ; Regulator/*biosynthesis/*chemistry/genetics ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Molecular Sequence Data ; *Peptide Chain Elongation, Translational ; *Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Ribosomes/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-01-24
    Description: Chemokines and their receptors control cell migration during development, immune system responses, and in numerous diseases, including inflammation and cancer. The structural basis of receptor:chemokine recognition has been a long-standing unanswered question due to the challenges of structure determination for membrane protein complexes. Here, we report the crystal structure of the chemokine receptor CXCR4 in complex with the viral chemokine antagonist vMIP-II at 3.1 angstrom resolution. The structure revealed a 1:1 stoichiometry and a more extensive binding interface than anticipated from the paradigmatic two-site model. The structure helped rationalize a large body of mutagenesis data and together with modeling provided insights into CXCR4 interactions with its endogenous ligand CXCL12, its ability to recognize diverse ligands, and the specificity of CC and CXC receptors for their respective chemokines.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362693/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362693/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qin, Ling -- Kufareva, Irina -- Holden, Lauren G -- Wang, Chong -- Zheng, Yi -- Zhao, Chunxia -- Fenalti, Gustavo -- Wu, Huixian -- Han, Gye Won -- Cherezov, Vadim -- Abagyan, Ruben -- Stevens, Raymond C -- Handel, Tracy M -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- R01 GM071872/GM/NIGMS NIH HHS/ -- R01 GM081763/GM/NIGMS NIH HHS/ -- R21 AI101687/AI/NIAID NIH HHS/ -- U01 GM094612/GM/NIGMS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 6;347(6226):1117-22. doi: 10.1126/science.1261064. Epub 2015 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA. ; University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA 92093, USA. thandel@ucsd.edu stevens@usc.edu ikufareva@ucsd.edu. ; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. ; Department of Chemistry, Bridge Institute. Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. ; Department of Chemistry, Bridge Institute. ; Department of Chemistry, Bridge Institute. Department of Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA. thandel@ucsd.edu stevens@usc.edu ikufareva@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25612609" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemokine CXCL12/chemistry ; Chemokines/*chemistry ; Crystallography, X-Ray ; Drug Design ; Humans ; Models, Chemical ; Molecular Sequence Data ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Receptors, CXCR4/agonists/antagonists & inhibitors/*chemistry ; Structural Homology, Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-01
    Description: The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1alpha (DD1alpha), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1alpha appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1alpha-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1alpha thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Kyoung Wan -- Byun, Sanguine -- Kwon, Eunjeong -- Hwang, So-Young -- Chu, Kiki -- Hiraki, Masatsugu -- Jo, Seung-Hee -- Weins, Astrid -- Hakroush, Samy -- Cebulla, Angelika -- Sykes, David B -- Greka, Anna -- Mundel, Peter -- Fisher, David E -- Mandinova, Anna -- Lee, Sam W -- CA142805/CA/NCI NIH HHS/ -- CA149477/CA/NCI NIH HHS/ -- CA80058/CA/NCI NIH HHS/ -- DK062472/DK/NIDDK NIH HHS/ -- DK091218/DK/NIDDK NIH HHS/ -- DK093378/DK/NIDDK NIH HHS/ -- DK57683/DK/NIDDK NIH HHS/ -- S10RR027673/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Jul 31;349(6247):1261669. doi: 10.1126/science.1261669.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. ; Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. ; Center for Regenerative Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. ; Department of Medicine, Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. swlee@mgh.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26228159" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/genetics/*immunology ; Autoimmune Diseases/genetics/immunology ; Cell Line, Tumor ; Female ; Humans ; Inflammation/genetics/immunology ; Macrophages/immunology ; Male ; Membrane Proteins/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Phagocytosis/*immunology ; Phosphatidylserines/*metabolism ; Signal Transduction ; Tumor Suppressor Protein p53/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-09-01
    Description: The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1*Nup49*Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT*Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stuwe, Tobias -- Bley, Christopher J -- Thierbach, Karsten -- Petrovic, Stefan -- Schilbach, Sandra -- Mayo, Daniel J -- Perriches, Thibaud -- Rundlet, Emily J -- Jeon, Young E -- Collins, Leslie N -- Huber, Ferdinand M -- Lin, Daniel H -- Paduch, Marcin -- Koide, Akiko -- Lu, Vincent -- Fischer, Jessica -- Hurt, Ed -- Koide, Shohei -- Kossiakoff, Anthony A -- Hoelz, Andre -- ACB-12002/PHS HHS/ -- AGM-12006/PHS HHS/ -- P30-CA014599/CA/NCI NIH HHS/ -- R01-GM090324/GM/NIGMS NIH HHS/ -- R01-GM111461/GM/NIGMS NIH HHS/ -- U01-GM094588/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):56-64. doi: 10.1126/science.aac9176. Epub 2015 Aug 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA. ; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA. ; Biochemistry Center of Heidelberg University, 69120 Heidelberg, Germany. ; California Institute of Technology, Division of Chemistry and Chemical Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA. hoelz@caltech.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26316600" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chaetomium/metabolism/*ultrastructure ; Fungal Proteins/chemistry/*ultrastructure ; Molecular Sequence Data ; Nuclear Pore/metabolism/*ultrastructure ; Nuclear Pore Complex Proteins/chemistry/*ultrastructure ; Nuclear Proteins/chemistry/*ultrastructure ; Protein Binding ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-09-19
    Description: A wide variety of RNAs encode small open-reading-frame (smORF/sORF) peptides, but their functions are largely unknown. Here, we show that Drosophila polished-rice (pri) sORF peptides trigger proteasome-mediated protein processing, converting the Shavenbaby (Svb) transcription repressor into a shorter activator. A genome-wide RNA interference screen identifies an E2-E3 ubiquitin-conjugating complex, UbcD6-Ubr3, which targets Svb to the proteasome in a pri-dependent manner. Upon interaction with Ubr3, Pri peptides promote the binding of Ubr3 to Svb. Ubr3 can then ubiquitinate the Svb N terminus, which is degraded by the proteasome. The C-terminal domains protect Svb from complete degradation and ensure appropriate processing. Our data show that Pri peptides control selectivity of Ubr3 binding, which suggests that the family of sORF peptides may contain an extended repertoire of protein regulators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zanet, J -- Benrabah, E -- Li, T -- Pelissier-Monier, A -- Chanut-Delalande, H -- Ronsin, B -- Bellen, H J -- Payre, F -- Plaza, S -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2015 Sep 18;349(6254):1356-8. doi: 10.1126/science.aac5677.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Biologie du Developpement, Universite de Toulouse III-Paul Sabatier, Batiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France. CNRS, UMR5547, Centre de Biologie du Developpement, F-31062 Toulouse, France. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. ; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA. Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA. ; Centre de Biologie du Developpement, Universite de Toulouse III-Paul Sabatier, Batiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France. CNRS, UMR5547, Centre de Biologie du Developpement, F-31062 Toulouse, France. francois.payre@univ-tlse3.fr serge.plaza@univ-tlse3.f.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26383956" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/enzymology/genetics/*metabolism ; Gene Expression Regulation ; Molecular Sequence Data ; Open Reading Frames ; Peptides/genetics/*metabolism ; Proteasome Endopeptidase Complex/*metabolism ; Protein Structure, Tertiary ; *Proteolysis ; RNA Interference ; Transcription Factors/chemistry/genetics/*metabolism ; Ubiquitin-Conjugating Enzymes/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-01-31
    Description: Translocator proteins (TSPOs) bind steroids and porphyrins, and they are implicated in many human diseases, for which they serve as biomarkers and therapeutic targets. TSPOs have tryptophan-rich sequences that are highly conserved from bacteria to mammals. Here we report crystal structures for Bacillus cereus TSPO (BcTSPO) down to 1.7 A resolution, including a complex with the benzodiazepine-like inhibitor PK11195. We also describe BcTSPO-mediated protoporphyrin IX (PpIX) reactions, including catalytic degradation to a previously undescribed heme derivative. We used structure-inspired mutations to investigate reaction mechanisms, and we showed that TSPOs from Xenopus and man have similar PpIX-directed activities. Although TSPOs have been regarded as transporters, the catalytic activity in PpIX degradation suggests physiological importance for TSPOs in protection against oxidative stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4341906/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Youzhong -- Kalathur, Ravi C -- Liu, Qun -- Kloss, Brian -- Bruni, Renato -- Ginter, Christopher -- Kloppmann, Edda -- Rost, Burkhard -- Hendrickson, Wayne A -- GM095315/GM/NIGMS NIH HHS/ -- GM107462/GM/NIGMS NIH HHS/ -- R01 GM107462/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 30;347(6221):551-5. doi: 10.1126/science.aaa1534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. ; The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. Department of Informatics, Bioinformatics and Computational Biology, Technische Universitat Munchen, Garching 85748, Germany. ; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA. The New York Consortium on Membrane Protein Structure (NYCOMPS), New York Structural Biology Center, 89 Convent Avenue, New York, NY 10027, USA. New York Structural Biology Center, Synchrotron Beamlines, Brookhaven National Laboratory, Upton, NY 11973, USA. Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. wayne@xtl.cumc.columbia.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25635100" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacillus cereus/*chemistry ; Bacterial Proteins/*chemistry/*metabolism ; Binding Sites ; Crystallography, X-Ray ; Isoquinolines/metabolism ; Ligands ; Membrane Transport Proteins/*chemistry/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Subunits/chemistry ; Protoporphyrins/metabolism ; Reactive Oxygen Species/metabolism ; Tryptophan/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-05-09
    Description: In the fruit fly Drosophila, head formation is driven by a single gene, bicoid, which generates head-to-tail polarity of the main embryonic axis. Bicoid deficiency results in embryos with tail-to-tail polarity and no head. However, most insects lack bicoid, and the molecular mechanism for establishing head-to-tail polarity is poorly understood. We have identified a gene that establishes head-to-tail polarity of the mosquito-like midge, Chironomus riparius. This gene, named panish, encodes a cysteine-clamp DNA binding domain and operates through a different mechanism than bicoid. This finding, combined with the observation that the phylogenetic distributions of panish and bicoid are limited to specific families of flies, reveals frequent evolutionary changes of body axis determinants and a remarkable opportunity to study gene regulatory network evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449817/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449817/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klomp, Jeff -- Athy, Derek -- Kwan, Chun Wai -- Bloch, Natasha I -- Sandmann, Thomas -- Lemke, Steffen -- Schmidt-Ott, Urs -- 1R03HD67700-01A1/HD/NICHD NIH HHS/ -- R03 HD067700/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2015 May 29;348(6238):1040-2. doi: 10.1126/science.aaa7105. Epub 2015 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA. ; Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA. uschmid@uchicago.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25953821" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Body Patterning/*genetics ; Chironomidae/*embryology/genetics ; DNA-Binding Proteins/classification/genetics/*physiology ; Embryo, Nonmammalian/*embryology ; Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks ; Homeodomain Proteins/classification/genetics/*physiology ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary/genetics ; Trans-Activators/classification/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-04-18
    Description: Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gutsche, Irina -- Desfosses, Ambroise -- Effantin, Gregory -- Ling, Wai Li -- Haupt, Melina -- Ruigrok, Rob W H -- Sachse, Carsten -- Schoehn, Guy -- New York, N.Y. -- Science. 2015 May 8;348(6235):704-7. doi: 10.1126/science.aaa5137. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. gutsche@embl.fr. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany. ; CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. ; Universite Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France. ; Institut Laue-Langevin, 38000 Grenoble, France. ; CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883315" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Humans ; Measles/*virology ; Measles virus/chemistry/*ultrastructure ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid/chemistry/*ultrastructure ; Nucleoproteins/chemistry/ultrastructure ; Protein Structure, Secondary ; RNA, Viral/chemistry/ultrastructure ; Viral Proteins/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-11-07
    Description: In a classical view of hematopoiesis, the various blood cell lineages arise via a hierarchical scheme starting with multipotent stem cells that become increasingly restricted in their differentiation potential through oligopotent and then unipotent progenitors. We developed a cell-sorting scheme to resolve myeloid (My), erythroid (Er), and megakaryocytic (Mk) fates from single CD34(+) cells and then mapped the progenitor hierarchy across human development. Fetal liver contained large numbers of distinct oligopotent progenitors with intermingled My, Er, and Mk fates. However, few oligopotent progenitor intermediates were present in the adult bone marrow. Instead, only two progenitor classes predominate, multipotent and unipotent, with Er-Mk lineages emerging from multipotent cells. The developmental shift to an adult "two-tier" hierarchy challenges current dogma and provides a revised framework to understand normal and disease states of human hematopoiesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Notta, Faiyaz -- Zandi, Sasan -- Takayama, Naoya -- Dobson, Stephanie -- Gan, Olga I -- Wilson, Gavin -- Kaufmann, Kerstin B -- McLeod, Jessica -- Laurenti, Elisa -- Dunant, Cyrille F -- McPherson, John D -- Stein, Lincoln D -- Dror, Yigal -- Dick, John E -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2016 Jan 8;351(6269):aab2116. doi: 10.1126/science.aab2116. Epub 2015 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. ; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; Wellcome Trust, Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, UK. ; Ecole Polytechnique Federale de Lausanne, LMC, Station 12, Lausanne, CH-1015, Switzerland. ; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. Ontario Institute for Cancer Research, Toronto, Ontario, Canada. ; The Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada. ; Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. jdick@uhnres.utoronto.ca.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26541609" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Antigens, CD34/analysis ; Cell Lineage/genetics/*physiology ; Cell Separation ; Cells, Cultured ; Erythroid Cells/*cytology ; Fetal Blood/cytology ; Gene Expression Profiling ; Hematopoiesis/genetics/*physiology ; Humans ; Liver/cytology/embryology ; Megakaryocyte Progenitor Cells/*cytology ; Megakaryocytes/*cytology ; Multipotent Stem Cells/cytology ; Myeloid Cells/*cytology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-11-21
    Description: Eukaryotic cells coordinate growth with the availability of nutrients through the mechanistic target of rapamycin complex 1 (mTORC1), a master growth regulator. Leucine is of particular importance and activates mTORC1 via the Rag guanosine triphosphatases and their regulators GATOR1 and GATOR2. Sestrin2 interacts with GATOR2 and is a leucine sensor. Here we present the 2.7 angstrom crystal structure of Sestrin2 in complex with leucine. Leucine binds through a single pocket that coordinates its charged functional groups and confers specificity for the hydrophobic side chain. A loop encloses leucine and forms a lid-latch mechanism required for binding. A structure-guided mutation in Sestrin2 that decreases its affinity for leucine leads to a concomitant increase in the leucine concentration required for mTORC1 activation in cells. These results provide a structural mechanism of amino acid sensing by the mTORC1 pathway.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Saxton, Robert A -- Knockenhauer, Kevin E -- Wolfson, Rachel L -- Chantranupong, Lynne -- Pacold, Michael E -- Wang, Tim -- Schwartz, Thomas U -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- F30 CA189333/CA/NCI NIH HHS/ -- F31 CA180271/CA/NCI NIH HHS/ -- F31 CA189437/CA/NCI NIH HHS/ -- P41 GM103403/GM/NIGMS NIH HHS/ -- R01 AI047389/AI/NIAID NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01CA103866/CA/NCI NIH HHS/ -- S10 RR029205/RR/NCRR NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 Jan 1;351(6268):53-8. doi: 10.1126/science.aad2087. Epub 2015 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. ; Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA. Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA. sabatini@wi.mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26586190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Leucine/*chemistry/metabolism ; Metabolic Networks and Pathways ; Molecular Sequence Data ; Multiprotein Complexes/chemistry/genetics/*metabolism ; Mutation ; Nuclear Proteins/*chemistry/metabolism ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; TOR Serine-Threonine Kinases/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 1994-02-25
    Description: Activation of the serine-threonine kinase p34cdc2 at an inappropriate time during the cell cycle leads to cell death that resembles apoptosis. Premature activation of p34cdc2 was shown to be required for apoptosis induced by a lymphocyte granule protease. The kinase was rapidly activated and tyrosine dephosphorylated at the initiation of apoptosis. DNA fragmentation and nuclear collapse could be prevented by blocking p34cdc2 activity with excess peptide substrate, or by inactivating p34cdc2 in a temperature-sensitive mutant. Premature p34cdc2 activation may be a general mechanism by which cells induced to undergo apoptosis initiate the disruption of the nucleus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, L -- Nishioka, W K -- Th'ng, J -- Bradbury, E M -- Litchfield, D W -- Greenberg, A H -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1143-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8108732" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; CDC2 Protein Kinase/*metabolism ; DNA Damage ; Deoxyribonucleases/pharmacology ; Enzyme Activation ; Enzyme Induction ; Membrane Glycoproteins/pharmacology ; Mice ; Mitosis ; Molecular Sequence Data ; Perforin ; Phosphorylation ; Pore Forming Cytotoxic Proteins ; Serine Endopeptidases/pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: An activity that severs stable microtubules is thought to be involved in microtubule reorganization during the cell cycle. Here, a 48-kilodalton microtubule-severing protein was purified from Xenopus eggs and identified as translational elongation factor 1 alpha (EF-1 alpha). Bacterially expressed human EF-1 alpha also displayed microtubule-severing activity in vitro and, when microinjected into fibroblasts, induced rapid and transient fragmentation of cytoplasmic microtubule arrays. Thus, EF-1 alpha, an essential component of the eukaryotic translational apparatus, appears to have a second role as a regulator of cytoskeletal rearrangements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shiina, N -- Gotoh, Y -- Kubomura, N -- Iwamatsu, A -- Nishida, E -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):282-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Molecular Biology, Kyoto University, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939665" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Guanosine Triphosphate/analogs & derivatives/metabolism ; Humans ; Microtubules/drug effects/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Oocytes ; Peptide Elongation Factor 1 ; Peptide Elongation Factors/chemistry/isolation & purification/*physiology ; Rats ; Recombinant Proteins/pharmacology ; Ribonucleoproteins/chemistry/isolation & purification/*physiology ; Sepharose/analogs & derivatives/metabolism ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 1994-08-19
    Description: The Xlsirts are a family of transcribed repeat sequence genes that do not code for protein. Xlsirt RNAs become localized to the vegetal cortex of Xenopus oocytes early in oogenesis, before the localization of the messenger RNA Vg1, which encodes a transforming growth factor-beta-like molecule involved in mesoderm formation, and coincident with the localization of Xcat2 transcripts, which encode a nanos-like molecule. Destruction of the localized Xlsirts by injection of antisense oligodeoxynucleotides into stage 4 oocytes resulted in the release of Vg1 transcripts but not Xcat2 transcripts from the vegetal cortex. Xlsirt RNAs, which may be a structural component of the vegetal cortex, are a crucial part of a genetic pathway necessary for the proper localization of Vg1 that leads to subsequent normal pattern formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kloc, M -- Etkin, L D -- New York, N.Y. -- Science. 1994 Aug 19;265(5175):1101-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7520603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Glycoproteins/*genetics ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Oogenesis ; RNA/*genetics ; RNA, Messenger/genetics/*metabolism ; RNA-Binding Proteins/genetics ; Repetitive Sequences, Nucleic Acid ; Transforming Growth Factor beta/genetics ; Xenopus ; *Xenopus Proteins ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 1994-11-11
    Description: The venom of the funnel-web spider Agelenopsis aperta contains several peptides that paralyze prey by blocking voltage-sensitive calcium channels. Two peptides, omega-Aga-IVB (IVB) and omega-Aga-IVC (IVC), have identical amino acid sequences, yet have opposite absolute configurations at serine 46. These toxins had similar selectivities for blocking voltage-sensitive calcium channel subtypes but different potencies for blocking P-type voltage-sensitive calcium channels in rat cerebellar Purkinje cells as well as calcium-45 influx into rat brain synaptosomes. An enzyme purified from venom converts IVC to IVB by isomerizing serine 46, which is present in the carboxyl-terminal tail, from the L to the D configuration. Unlike the carboxyl terminus of IVC, that of IVB was resistant to the major venom protease. These results show enzymatic activities in A. aperta venom being used in an unprecedented strategy for coproduction of necessary neurotoxins that possess enhanced stability and potency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heck, S D -- Siok, C J -- Krapcho, K J -- Kelbaugh, P R -- Thadeio, P F -- Welch, M J -- Williams, R D -- Ganong, A H -- Kelly, M E -- Lanzetti, A J -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1065-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NPS Pharmaceuticals Incorporated, Salt Lake City, Utah 84108.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973665" target="_blank"〉PubMed〈/a〉
    Keywords: Agatoxins ; Amino Acid Sequence ; Animals ; Base Sequence ; Calcium/metabolism ; Calcium Channel Blockers/chemistry/*metabolism/toxicity ; Calcium Channels/*metabolism ; Isomerases/metabolism ; Molecular Sequence Data ; *Protein Processing, Post-Translational ; Purkinje Cells/metabolism ; Rats ; Serine/*metabolism ; Spider Venoms/chemistry/enzymology/*metabolism/toxicity ; Stereoisomerism ; Structure-Activity Relationship ; Synaptosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 1994-03-11
    Description: The gamma chain of the interleukin-2 (IL-2) receptor is shared with the functional IL-4 receptor and is causatively related to X-linked severe combined immunodeficiency (XSCID), which is ascribed to a profound T cell defect. Studies with monoclonal antibodies specific for the IL-2 receptor gamma chain showed that the gamma chain participates in the functional high-affinity receptor complexes for IL-7 that are involved in the differentiation of T and B cells. Participation of the gamma subunit in more than one receptor may enable the elucidation of the mechanisms of XSCID development and lymphocyte differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kondo, M -- Takeshita, T -- Higuchi, M -- Nakamura, M -- Sudo, T -- Nishikawa, S -- Sugamura, K -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1453-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Tohoku University School of Medicine, Sendai, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal ; B-Lymphocytes/*immunology ; Cell Line ; Cells, Cultured ; Female ; Genetic Linkage ; Interleukin-7/*metabolism/pharmacology ; Mice ; Mice, Inbred C57BL ; Receptors, Interleukin/*metabolism ; Receptors, Interleukin-2/genetics/immunology/*metabolism ; Receptors, Interleukin-7 ; Severe Combined Immunodeficiency/genetics/immunology ; T-Lymphocytes/*immunology ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 1994-08-26
    Description: Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease that serves as an animal model for multiple sclerosis. Oral administration of myelin basic protein (MBP) suppresses EAE by inducing peripheral tolerance. T cell clones were isolated from the mesenteric lymph nodes of SJL mice that had been orally tolerized to MBP. These clones were CD4+ and were structurally identical to T helper cell type 1 (TH1) encephalitogenic CD4+ clones in T cell receptor usage, major histocompatibility complex restriction, and epitope recognition. However, they produced transforming growth factor-beta with various amounts of interleukin-4 and interleukin-10 and suppressed EAE induced with either MBP or proteolipid protein. Thus, mucosally derived TH2-like clones induced by oral antigen can actively regulate immune responses in vivo and may represent a different subset of T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Y -- Kuchroo, V K -- Inobe, J -- Hafler, D A -- Weiner, H L -- AR/A143220/AR/NIAMS NIH HHS/ -- NS29352/NS/NINDS NIH HHS/ -- NS30843/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Aug 26;265(5176):1237-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7520605" target="_blank"〉PubMed〈/a〉
    Keywords: Administration, Oral ; Amino Acid Sequence ; Animals ; CD4-Positive T-Lymphocytes/*immunology ; Clone Cells ; Encephalomyelitis, Autoimmune, Experimental/*immunology ; Epitopes/immunology ; *Immune Tolerance ; Interleukin-10/biosynthesis ; Interleukin-4/biosynthesis ; Lymph Nodes/immunology ; Major Histocompatibility Complex ; Mesentery/immunology ; Mice ; Molecular Sequence Data ; Myelin Basic Protein/administration & dosage/*immunology ; Myelin Proteins/immunology ; Myelin Proteolipid Protein ; Receptors, Antigen, T-Cell/immunology ; Transforming Growth Factor beta/biosynthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 1994-09-02
    Description: As a step toward developing poliovirus as a vaccine vector, poliovirus recombinants were constructed by fusing exogenous peptides (up to 400 amino acids) and an artificial cleavage site for viral protease 3Cpro to the amino terminus of the viral polyprotein. Viral replication proceeded normally. An extended polyprotein was produced in infected cells and proteolytically processed into the complete array of viral proteins plus the foreign peptide, which was excluded from mature virions. The recombinants retained exogenous sequences through successive rounds of replication in culture and in vivo. Infection of animals with recombinants elicited a humoral immune response to the foreign peptides.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andino, R -- Silvera, D -- Suggett, S D -- Achacoso, P L -- Miller, C J -- Baltimore, D -- Feinberg, M B -- AI22346/AI/NIAID NIH HHS/ -- AI35545/AI/NIAID NIH HHS/ -- RR00169/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 2;265(5177):1448-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, University of California, San Francisco.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8073288" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Bacterial/biosynthesis ; Antibodies, Viral/biosynthesis ; Antigens, Bacterial/genetics/immunology ; Antigens, Viral/genetics/immunology ; Base Sequence ; Cloning, Molecular ; *Genetic Engineering ; Genetic Vectors ; HeLa Cells ; Humans ; Macaca fascicularis ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Poliovirus/*genetics/immunology/physiology ; Poliovirus Vaccine, Oral/*genetics ; *Protein Biosynthesis ; Proteins/metabolism ; Recombinant Proteins/biosynthesis/metabolism ; Vaccines, Synthetic/genetics/*immunology ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 1994-11-11
    Description: For survival, embryonic motoneurons in vertebrates depend on as yet undefined neurotrophic factors present in the limb bud. Members of the neurotrophin family are currently the best candidates for such neurotrophic factors, but inactivation of their receptor genes leads to only partial loss of motoneurons, which suggests that other factors are involved. Glial cell line-derived neurotrophic factor (GDNF), originally identified as a trophic factor specific for dopaminergic neurons, was found to be 75-fold more potent than the neurotrophins in supporting the survival of purified embryonic rat motoneurons in culture. GDNF messenger RNA was found in the immediate vicinity of motoneurons during the period of cell death in development. In vivo, GDNF rescues and prevents the atrophy of facial motoneurons that have been deprived of target-derived survival factors by axotomy. GDNF may therefore be a physiological trophic factor for spinal motoneurons. Its potency and specificity in vitro and in vivo also make it a good candidate for treatment of motoneuron disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Henderson, C E -- Phillips, H S -- Pollock, R A -- Davies, A M -- Lemeulle, C -- Armanini, M -- Simmons, L -- Moffet, B -- Vandlen, R A -- Simpson LC corrected to Simmons, L -- Koliatsos, V E -- Rosenthal, A -- NS 10580/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1062-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM U.382, IBDM, Marseille, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973664" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain-Derived Neurotrophic Factor ; Cell Death ; Cell Survival/drug effects ; Cells, Cultured ; Ciliary Neurotrophic Factor ; Face/innervation ; Glial Cell Line-Derived Neurotrophic Factor ; Growth Inhibitors/pharmacology ; *Interleukin-6 ; Leukemia Inhibitory Factor ; Lymphokines/pharmacology ; Molecular Sequence Data ; Motor Neurons/*cytology/drug effects ; Muscle Fibers, Skeletal/*metabolism ; Nerve Growth Factors/analysis/biosynthesis/genetics/*pharmacology ; Nerve Tissue Proteins/*analysis/biosynthesis/genetics/*pharmacology ; Neurons, Afferent/cytology/drug effects ; Peripheral Nerves/*metabolism ; RNA, Messenger/analysis/genetics ; Rats ; Schwann Cells/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 1994-05-13
    Description: In Drosophila and human cells, the TATA binding protein (TBP) of the transcription factor IID (TFIID) complex is tightly associated with multiple subunits termed TBP-associated factors (TAFs) that are essential for mediating regulation of RNA polymerase II transcription. The Drosophila TAFII150 has now been molecularly cloned and biochemically characterized. The deduced primary amino acid sequence of dTAFII150 reveals a striking similarity to the essential yeast gene, TSM-1. Furthermore, like dTAFII150, the TSM-1 protein is found associated with the TBP in vivo, thus identifying the first yeast homolog of a TAF associated with TFIID. Both the product of TSM-1 and dTAFII150 bind directly to TBP and dTAFII250, demonstrating a functional similarity between human and yeast TAFs. Surprisingly, DNA binding studies indicate that purified recombinant dTAFII150 binds specifically to DNA sequences overlapping the start site of transcription. The data demonstrate that at least one of the TAFs is a sequence-specific DNA binding protein and that dTAFII150 together with TBP are responsible for TFIID interactions with an extended region of the core promoter.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verrijzer, C P -- Yokomori, K -- Chen, J L -- Tjian, R -- New York, N.Y. -- Science. 1994 May 13;264(5161):933-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720-3202.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178153" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; DNA/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Drosophila ; *Drosophila Proteins ; Genes, Fungal ; Genes, Insect ; Histone Acetyltransferases ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; *Promoter Regions, Genetic ; RNA Polymerase II/metabolism ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Alignment ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 1994-12-16
    Description: Representational difference analysis was used to isolate unique sequences present in more than 90 percent of Kaposi's sarcoma (KS) tissues obtained from patients with acquired immunodeficiency syndrome (AIDS). These sequences were not present in tissue DNA from non-AIDS patients, but were present in 15 percent of non-KS tissue DNA samples from AIDS patients. The sequences are homologous to, but distinct from, capsid and tegument protein genes of the Gammaherpesvirinae, herpesvirus saimiri and Epstein-Barr virus. These KS-associated herpesvirus-like (KSHV) sequences appear to define a new human herpesvirus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chang, Y -- Cesarman, E -- Pessin, M S -- Lee, F -- Culpepper, J -- Knowles, D M -- Moore, P S -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1865-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997879" target="_blank"〉PubMed〈/a〉
    Keywords: Acquired Immunodeficiency Syndrome/*complications ; Amino Acid Sequence ; Base Composition ; Base Sequence ; Blotting, Southern ; Cloning, Molecular ; DNA, Viral/*analysis/chemistry/genetics ; Female ; Herpesviridae/*genetics ; Herpesvirus 2, Saimiriine/genetics ; Herpesvirus 4, Human/genetics ; Humans ; Male ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Open Reading Frames ; Polymerase Chain Reaction ; Retrospective Studies ; Sarcoma, Kaposi/etiology/*virology ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 1994-11-11
    Description: Signals mediated by the T cell receptor (TCR) are required for thymocyte maturation and selection. To examine the role of TCR zeta chain signals in development, TCR expression was restored in zeta-deficient mice with transgenic zeta chains that partially or completely lacked sequences required for signal transduction. The zeta chain played a role in thymic development by promoting TCR surface expression, but zeta-mediated signals were not essential because TCRs that contained signaling-deficient zeta chains promoted T cell maturation and transduced signals associated with thymic selection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shores, E W -- Huang, K -- Tran, T -- Lee, E -- Grinberg, A -- Love, P E -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1047-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematologic Products, Food and Drug Administration, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7526464" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD/analysis/genetics ; Antigens, CD4/analysis ; Antigens, CD5 ; Antigens, CD8/analysis ; Antigens, Differentiation, T-Lymphocyte/analysis ; *DNA-Binding Proteins ; Down-Regulation ; Gene Expression ; *Homeodomain Proteins ; Lectins, C-Type ; Lymph Nodes/immunology ; Membrane Proteins/genetics/*physiology ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Proteins/genetics ; RNA, Messenger/genetics/metabolism ; Receptors, Antigen, T-Cell/genetics/*physiology ; Signal Transduction ; T-Lymphocytes/cytology/*immunology ; Thymus Gland/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-25
    Description: Significant opportunities and challenges exist in the creation and characterization of biomaterials. Materials have been designed for contact with blood, as replacements for soft and hard tissues, as adhesives, and as dental materials. Current methods of synthesis and characterization of these materials are outlined. Approaches for controlling the interface between tissue and biomaterials and ways in which the engineered materials may contribute to medicine are considered.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peppas, N A -- Langer, R -- GM25810/GM/NIGMS NIH HHS/ -- GM43337/GM/NIGMS NIH HHS/ -- GM45027/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1715-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-1283.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134835" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Biocompatible Materials/chemical synthesis/chemistry ; Dental Materials ; Drug Carriers ; Humans ; Materials Testing ; Molecular Sequence Data ; Prostheses and Implants ; Protein Engineering
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 1994-03-25
    Description: Fas is an apoptosis-signaling receptor molecule on the surface of a number of cell types. Molecular cloning and nucleotide sequence analysis revealed a human Fas messenger RNA variant capable of encoding a soluble Fas molecule lacking the transmembrane domain because of the deletion of an exon encoding this region. The expression of soluble Fas was confirmed by flow cytometry and immunocytochemical analysis. Supernatants from cells transfected with the variant messenger RNA blocked apoptosis induced by the antibody to Fas. Levels of soluble Fas were elevated in patients with systemic lupus erythematosus, and mice injected with soluble Fas displayed autoimmune features.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheng, J -- Zhou, T -- Liu, C -- Shapiro, J P -- Brauer, M J -- Kiefer, M C -- Barr, P J -- Mountz, J D -- P01 AR03555/AR/NIAMS NIH HHS/ -- P50 AI23694/AI/NIAID NIH HHS/ -- P60 AR20614/AR/NIAMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1759-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Alabama at Birmingham.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7510905" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies/immunology ; Antigens, CD95 ; Antigens, Surface/chemistry/genetics/immunology/*physiology ; *Apoptosis ; Arthritis, Rheumatoid/blood ; Base Sequence ; Cell Line ; Cell Membrane/chemistry ; Humans ; Lupus Erythematosus, Systemic/blood ; Mice ; Molecular Sequence Data ; RNA, Messenger/genetics ; Solubility ; T-Lymphocyte Subsets/immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 1994-03-18
    Description: Engagement of antigen receptor complexes induces rapid activation of Src-family kinases and association with phosphatidylinositol-3' kinase (PI-3 kinase). Here it was found that the Src homology 3 (SH3) domain of Lyn and Fyn bound to a proline-rich region (residues 84 to 99) within the 85-kilodalton subunit (p85) of PI-3 kinase. The binding of SH3 to the purified kinase led to a five- to sevenfold increase in the specific activity of PI-3 kinase. Ligand-induced receptor stimulation activated PI-3 kinase, and this activation was blocked by a peptide containing residues 84 to 99 of p85. These data demonstrate a mechanism for PI-3 kinase activation and show that binding of SH3 domains to proline-rich target sequences can regulate enzymatic activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pleiman, C M -- Hertz, W M -- Cambier, J C -- A120519/PHS HHS/ -- A121768/PHS HHS/ -- A129903/PHS HHS/ -- New York, N.Y. -- Science. 1994 Mar 18;263(5153):1609-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128248" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*enzymology ; Enzyme Activation ; Lymphocyte Activation ; Mice ; Molecular Sequence Data ; Peptide Fragments/pharmacology ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/chemistry/*metabolism ; Proline/chemistry ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-fyn ; *src-Family Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-05-20
    Description: A predictive rule for protein folding is presented that involves two recurrent glycine-based motifs that cap the carboxyl termini of alpha helices. In proteins, helices that terminated in glycine residues were found predominantly in one of these two motifs. These glycine structures had a characteristic pattern of polar and apolar residues. Visual inspection of known helical sequences was sufficient to distinguish the two motifs from each other and from internal glycines that fail to terminate helices. These glycine motifs--in which the local sequence selects between available structures--represent an example of a stereochemical rule for protein folding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aurora, R -- Srinivasan, R -- Rose, G D -- GM 29458/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 May 20;264(5162):1126-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8178170" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Glycine/*chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Oligopeptides/chemistry ; *Protein Folding ; *Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 1994-12-23
    Description: The chloroplast outer envelope protein OEP86 functions as a receptor in precursor protein translocation into chloroplasts. Sequence analysis suggests that the precursor of OEP86 is directed to the chloroplast outer envelope by a cleavable, negatively charged, and unusually long amino-terminal peptide. This presequence is unlike other potential targeting signals and suggests the existence of another membrane insertion pathway. Insertion of precursor OEP86 required the hydrolysis of adenosine triphosphate and the existence of surface exposed chloroplast membrane components, and it was not competed by another precursor protein destined for the internal plastid compartments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hirsch, S -- Muckel, E -- Heemeyer, F -- von Heijne, G -- Soll, J -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1989-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Botanisches Institut, Universitat Kiel, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801125" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Chloroplast Proteins ; Chloroplasts/*metabolism ; *GTP-Binding Proteins ; Hydrogen-Ion Concentration ; Intracellular Membranes/metabolism ; Molecular Sequence Data ; Molecular Weight ; Peas ; Plant Proteins/chemistry/*metabolism ; Protein Precursors/chemistry/*metabolism ; Protein Processing, Post-Translational ; Ribulose-Bisphosphate Carboxylase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 1994-06-03
    Description: Multi-wavelength anomalous diffraction (MAD) has been used to determine the structure of the regulatory enzyme of de novo synthesis of purine nucleotides, glutamine 5-phosphoribosyl-1-pyrophosphate (PRPP) amidotransferase, from Bacillus subtilis. This allosteric enzyme, a 200-kilodalton tetramer, is subject to end product regulation by purine nucleotides. The metalloenzyme from B. subtilis is a paradigm for the higher eukaryotic enzymes, which have been refractory to isolation in stable form. The two folding domains of the polypeptide are correlated with functional domains for glutamine binding and for transfer of ammonia to the substrate PRPP. Eight molecules of the feedback inhibitor adenosine monophosphate (AMP) are bound to the tetrameric enzyme in two types of binding sites: the PRPP catalytic site of each subunit and an unusual regulatory site that is immediately adjacent to each active site but is between subunits. An oxygen-sensitive [4Fe-4S] cluster in each subunit is proposed to regulate protein turnover in vivo and is distant from the catalytic site. Oxygen sensitivity of the cluster is diminished by AMP, which blocks a channel through the protein to the cluster. The structure is representative of both glutamine amidotransferases and phosphoribosyltransferases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, J L -- Zaluzec, E J -- Wery, J P -- Niu, L -- Switzer, R L -- Zalkin, H -- Satow, Y -- DK-42303/DK/NIDDK NIH HHS/ -- GM-24658/GM/NIGMS NIH HHS/ -- R37 DK042303/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1427-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8197456" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Allosteric Regulation ; Amidophosphoribosyltransferase/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Bacillus subtilis/*enzymology ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Oxygen/pharmacology ; Protein Folding ; Protein Structure, Secondary ; Saccharomyces cerevisiae
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 1994-06-24
    Description: The structure of the leech protein decorsin, a potent 39-residue antagonist of glycoprotein IIb-IIIa and inhibitor of platelet aggregation, was determined by nuclear magnetic resonance. In contrast to other disintegrins, the Arg-Gly-Asp (RGD)-containing region of decorsin is well defined. The three-dimensional structure of decorsin is similar to that of hirudin, an anticoagulant leech protein that potently inhibits thrombin. Amino acid sequence comparisons suggest that ornatin, another glycoprotein IIb-IIIa antagonist, and antistasin, a potent Factor Xa inhibitor and anticoagulant found in leeches, share the same structural motif. Although decorsin, hirudin, and antistasin all affect the blood clotting process and appear similar in structure, their mechanisms of action and epitopes important for binding to their respective targets are distinct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krezel, A M -- Wagner, G -- Seymour-Ulmer, J -- Lazarus, R A -- New York, N.Y. -- Science. 1994 Jun 24;264(5167):1944-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8009227" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Hirudins/chemistry ; Invertebrate Hormones/chemistry ; *Leeches ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Oligopeptides/chemistry ; Platelet Membrane Glycoproteins/*antagonists & inhibitors ; Protein Conformation ; Protein Structure, Secondary ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 1994-07-15
    Description: A subset of patients who have undergone coronary angioplasty develop restenosis, a vessel renarrowing characterized by excessive proliferation of smooth muscle cells (SMCs). Of 60 human restenosis lesions examined, 23 (38 percent) were found to have accumulated high amounts of the tumor suppressor protein p53, and this correlated with the presence of human cytomegalovirus (HCMV) in the lesions. SMCs grown from the lesions expressed HCMV protein IE84 and high amounts of p53. HCMV infection of cultured SMCs enhanced p53 accumulation, which correlated temporally with IE84 expression. IE84 also bound to p53 and abolished its ability to transcriptionally activate a reporter gene. Thus, HCMV, and IE84-mediated inhibition of p53 function, may contribute to the development of restenosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Speir, E -- Modali, R -- Huang, E S -- Leon, M B -- Shawl, F -- Finkel, T -- Epstein, S E -- New York, N.Y. -- Science. 1994 Jul 15;265(5170):391-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiology Branch, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8023160" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Aged, 80 and over ; *Angioplasty, Balloon ; Antigens, Viral/*metabolism ; Atherectomy, Coronary ; Base Sequence ; Cells, Cultured ; Coronary Disease/*etiology/pathology/therapy ; Coronary Vessels/cytology/metabolism/microbiology ; Cytomegalovirus/*physiology ; Genes, p53 ; Humans ; Immediate-Early Proteins/*metabolism ; Middle Aged ; Molecular Sequence Data ; Muscle, Smooth, Vascular/cytology/metabolism/microbiology ; Recurrence ; Transcriptional Activation ; Transfection ; Tumor Suppressor Protein p53/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-11
    Description: Protein tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic signal transducing enzymes that catalyze the dephosphorylation of phosphotyrosine residues and are characterized by homologous catalytic domains. The crystal structure of a representative member of this family, the 37-kilodalton form (residues 1 to 321) of PTP1B, has been determined at 2.8 A resolution. The enzyme consists of a single domain with the catalytic site located at the base of a shallow cleft. The phosphate recognition site is created from a loop that is located at the amino-terminus of an alpha helix. This site is formed from an 11-residue sequence motif that is diagnostic of PTPs and the dual specificity phosphatases, and that contains the catalytically essential cysteine and arginine residues. The position of the invariant cysteine residue within the phosphate binding site is consistent with its role as a nucleophile in the catalytic reaction. The structure of PTP1B should serve as a model for other members of the PTP family and as a framework for understanding the mechanism of tyrosine dephosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barford, D -- Flint, A J -- Tonks, N K -- CA53840/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1397-404.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, NY 11724.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phosphates/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Tyrosine Phosphatases/*chemistry/isolation & purification/metabolism ; Substrate Specificity ; Tungsten Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 1994-09-16
    Description: To identify proteins that may participate in the activation of the protein kinase Raf, proteins that interact with Raf were selected in a two-hybrid screen. Two members of the 14-3-3 protein family were isolated that interacted with both the amino terminal regulatory regions of Raf and the kinase domain of Raf, but did not compete with the guanine nucleotide-binding protein Ras for binding to Raf. 14-3-3 proteins associated with Raf in mammalian cells and accompanied Raf to the membrane in the presence of activated Ras. In yeast cells expressing Raf and MEK, mammalian 14-3-3 beta or 14-3-3 zeta activated Raf to a similar extent as did expression of Ras. Therefore, 14-3-3 proteins may participate in or be required for the regulation of Raf function. These findings suggest a role for 14-3-3 proteins in Raf-mediated signal transduction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freed, E -- Symons, M -- Macdonald, S G -- McCormick, F -- Ruggieri, R -- New York, N.Y. -- Science. 1994 Sep 16;265(5179):1713-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Onyx Pharmaceuticals, Richmond, CA 94806-5206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8085158" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins ; Amino Acid Sequence ; Animals ; Cell Line ; Cell Membrane/enzymology ; Cytosol/enzymology ; Enzyme Activation ; GTP-Binding Proteins/metabolism ; HeLa Cells ; Humans ; MAP Kinase Kinase 1 ; *Mitogen-Activated Protein Kinase Kinases ; Molecular Sequence Data ; Nerve Tissue Proteins/*metabolism ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Protein-Tyrosine Kinases/genetics/metabolism ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-raf ; Recombinant Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development ; Signal Transduction ; *Tyrosine 3-Monooxygenase ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 1994-04-29
    Description: A gene, reaper (rpr), that appears to play a central control function for the initiation of programmed cell death (apoptosis) in Drosophila was identified. Virtually all programmed cell death that normally occurs during Drosophila embryogenesis was blocked in embryos homozygous for a small deletion that includes the reaper gene. Mutant embryos contained many extra cells and failed to hatch, but many other aspects of development appeared quite normal. Deletions that include reaper also protected embryos from apoptosis caused by x-irradiation and developmental defects. However, high doses of x-rays induced some apoptosis in mutant embryos, and the resulting corpses were phagocytosed by macrophages. These data suggest that the basic cell death program is intact although it was not activated in mutant embryos. The DNA encompassed by the deletion was cloned and the reaper gene was identified on the basis of the ability of cloned DNA to restore apoptosis to cell death defective embryos in germ line transformation experiments. The reaper gene appears to encode a small peptide that shows no homology to known proteins, and reaper messenger RNA is expressed in cells destined to undergo apoptosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉White, K -- Grether, M E -- Abrams, J M -- Young, L -- Farrell, K -- Steller, H -- 5 F32 NS08536/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1994 Apr 29;264(5159):677-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Brain and Cognitive Sciences, Cambridge, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171319" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/*genetics ; Base Sequence ; Cloning, Molecular ; DNA Primers ; Drosophila/cytology/embryology/*genetics ; *Drosophila Proteins ; Embryo, Nonmammalian/cytology ; *Genes, Insect ; Models, Genetic ; Molecular Sequence Data ; Mutation ; Nervous System/cytology ; Neurons/cytology ; Peptides/chemistry/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-02-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barinaga, M -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):754-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303290" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis ; Caenorhabditis elegans/genetics ; Caspase 1 ; Cells, Cultured ; Free Radicals/metabolism ; Metalloendopeptidases/*genetics/metabolism ; Mice ; Mice, Knockout ; Neurons/cytology ; Oxygen/metabolism ; Proto-Oncogene Proteins/genetics/physiology ; Proto-Oncogene Proteins c-bcl-2 ; Rats ; bcl-2-Associated X Protein ; bcl-X Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-01-07
    Description: Heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) may participate in membrane traffic events. A complementary DNA (cDNA) was isolated from a mouse pituitary cDNA library that corresponded to an alternatively spliced form of the gene encoding the G protein alpha subunit G alpha i2. The cDNA was identical to that encoding G alpha i2 except that the region encoding for the carboxyl-terminal 24 amino acids was replaced by a longer region encoding 35 amino acids that have no sequence similarity with G alpha i2 or other members of the G protein family. This alternative spliced product and the corresponding protein (sGi2) were present in several tissues. Specific antibodies revealed that sGi2 was localized in the Golgi apparatus, suggesting a role in membrane transport. Thus, alternative splicing may generate from a single gene two G protein alpha subunits with differential cellular localization and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Montmayeur, J P -- Borrelli, E -- New York, N.Y. -- Science. 1994 Jan 7;263(5143):95-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Genetique Moleculaire des Eucaryotes, CNRS, INSERM U184, Faculte de Medecine, Strasbourg, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8272874" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Membrane/metabolism ; Coatomer Protein ; DNA, Complementary/genetics ; GTP-Binding Protein alpha Subunit, Gi2 ; *GTP-Binding Protein alpha Subunits, Gi-Go ; GTP-Binding Proteins/analysis/chemistry/genetics/*metabolism ; Golgi Apparatus/chemistry/*metabolism ; Mice ; Microtubule-Associated Proteins/analysis ; Molecular Sequence Data ; Oncogene Proteins/analysis/chemistry/genetics/*metabolism ; *Proto-Oncogene Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 1994-03-25
    Description: The Drosophila decapentaplegic (dpp) gene encodes a transforming growth factor-beta (TGF-beta)-like protein that plays a key role in several aspects of development. Transduction of the DPP signal was investigated by cloning of serine-threonine kinase transmembrane receptors from Drosophila because this type of receptor is specific for the TGF-beta-like ligands. Here evidence is provided demonstrating that the Drosophila saxophone (sax) gene, a previously identified female sterile locus, encodes a TGF-beta-like type I receptor. Embryos from sax mothers and dpp embryos exhibit similar mutant phenotypes during early gastrulation, and these two loci exhibit genetic interactions, which suggest that they are utilized in the same pathway. These data suggest that sax encodes a receptor for dpp.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xie, T -- Finelli, A L -- Padgett, R W -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1756-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Waksman Institute, Rutgers University, Piscataway, NJ 08855-0759.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134837" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cloning, Molecular ; Drosophila/embryology/*genetics/metabolism ; *Drosophila Proteins ; Embryo, Nonmammalian/metabolism ; Female ; *Genes, Insect ; Insect Hormones/genetics/*metabolism ; Male ; Molecular Sequence Data ; Mutation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/metabolism ; Receptors, Transforming Growth Factor beta/chemistry/*genetics/metabolism ; Signal Transduction ; Transforming Growth Factor beta/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 1994-06-03
    Description: The Arabidopsis ABI1 locus is essential for a wide spectrum of abscisic acid (ABA) responses throughout plant development. Here, ABI1 was shown to regulate stomatal aperture in leaves and mitotic activity in root meristems. The ABI1 gene was cloned and predicted to encode a signaling protein. Although its carboxyl-terminal domain is related to serine-threonine phosphatase 2C, the ABI1 protein has a unique amino-terminal extension containing an EF hand calcium-binding site. These results suggest that the ABI1 protein is a Ca(2+)-modulated phosphatase and functions to integrate ABA and Ca2+ signals with phosphorylation-dependent response pathways.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Leung, J -- Bouvier-Durand, M -- Morris, P C -- Guerrier, D -- Chefdor, F -- Giraudat, J -- New York, N.Y. -- Science. 1994 Jun 3;264(5164):1448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut des Sciences Vegetales, Centre National de la Recherche Scientifique UPR 40, Gif-sur-Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7910981" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/*pharmacology ; Amino Acid Sequence ; Arabidopsis/chemistry/cytology/*genetics/physiology ; *Arabidopsis Proteins ; Calcium/*metabolism ; Cloning, Molecular ; *Genes, Plant ; Mitosis ; Molecular Sequence Data ; Mutation ; Phenotype ; Phosphoprotein Phosphatases/chemistry/*genetics/*metabolism ; Phosphorylation ; Plants, Genetically Modified ; Polymorphism, Restriction Fragment Length ; Signal Transduction ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 1994-01-21
    Description: Assembled class I histocompatibility molecules, consisting of heavy chain, beta 2-microglobulin, and peptide ligand, are transported rapidly to the cell surface. In contrast, the intracellular transport of free heavy chains or peptide-deficient heavy chain-beta 2-microglobulin heterodimers is impaired. A 90-kilodalton membrane-bound chaperone of the endoplasmic reticulum (ER), termed calnexin, associates quantitatively with newly synthesized class I heavy chains, but the functions of calnexin in this interaction are unknown. Class I subunits were expressed alone or in combination with calnexin in Drosophila melanogaster cells. Calnexin retarded the intracellular transport of both peptide-deficient heavy chain-beta 2-microglobulin heterodimers and free heavy chains. Calnexin also impeded the rapid intracellular degradation of free heavy chains. The ability of calnexin to protect and retain class I assembly intermediates is likely to contribute to the efficient intracellular formation of class I-peptide complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, M R -- Cohen-Doyle, M F -- Peterson, P A -- Williams, D B -- New York, N.Y. -- Science. 1994 Jan 21;263(5145):384-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8278813" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Transport ; Calcium-Binding Proteins/*metabolism ; Calnexin ; Cell Line ; Drosophila melanogaster ; Endoplasmic Reticulum/*metabolism ; Golgi Apparatus/metabolism ; Histocompatibility Antigens Class I/*metabolism ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Temperature ; Transfection ; beta 2-Microglobulin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 1994-02-25
    Description: The T cell antigen receptor (TCR) initiates signals by interacting with cytoplasmic protein tyrosine kinases (PTKs) through a 17-residue sequence motif [called the antigen recognition activation motif (ARAM)] that is contained in the TCR zeta and CD3 chains. TCR stimulation induces the tyrosine phosphorylation of several cellular substrates, including the ARAMs. Lck kinase activity is required for phosphorylation of two conserved tyrosine residues in an ARAM. This phosphorylation leads to the recruitment of a second cytoplasmic PTK, ZAP-70, through both of the ZAP-70 Src homology 2 domains and its phosphorylation. Thus, TCR signal transduction is initiated by the sequential interaction of two PTKs with TCR ARAMs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Iwashima, M -- Irving, B A -- van Oers, N S -- Chan, A C -- Weiss, A -- AR-20684/AR/NIAMS NIH HHS/ -- GM39553/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Feb 25;263(5150):1136-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7509083" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens, CD8/metabolism ; Cell Line ; Cytoplasm/enzymology ; Haplorhini ; Humans ; Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ; Membrane Proteins/*metabolism ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Phosphotyrosine ; Protein-Tyrosine Kinases/*metabolism ; Receptors, Antigen, T-Cell/*metabolism ; Signal Transduction ; Tumor Cells, Cultured ; Tyrosine/analogs & derivatives/metabolism ; ZAP-70 Protein-Tyrosine Kinase
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 1994-10-14
    Description: An engineered variant of subtilisin BPN', termed subtiligase, which efficiently ligates esterified peptides in aqueous solution, was used for the complete synthesis of ribonuclease (RNase) A that contains unnatural catalytic residues. Fully active RNase A (124 residues long) was produced in milligram quantities by stepwise ligation of six esterified peptide fragments (each 12 to 30 residues long) at yields averaging 70 percent per ligation. Variants of RNase A were produced in which the catalytic histidines at positions 12 and 119 were substituted with the unnatural amino acid 4-fluorohistidine, which has a pKa of 3.5 compared to 6.8 for histidine. Large changes in the profile of the pH as it affects rate occurred for the single and double mutants with surprisingly little change in the kcat for either the RNA cleavage or hydrolysis steps. The data indicate that these imidazoles function as general acids and bases, but that the proton transfer steps are not rate-limiting when the imidazoles are present in their correct protonation states. These studies indicate the potential of subtiligase for the blockwise synthesis of large proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, D Y -- Burnier, J -- Quan, C -- Stanley, M -- Tom, J -- Wells, J A -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):243-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Engineering, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939659" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Esterification ; Histidine/analogs & derivatives/analysis ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Mutation ; Nucleotides, Cyclic/metabolism ; Protein Engineering/*methods ; Ribonuclease, Pancreatic/*chemical synthesis/chemistry/isolation & purification ; Subtilisins/chemistry/genetics/*metabolism ; Uridine Monophosphate/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 1994-03-11
    Description: The pathogenesis of amoebic dysentery is a result of cytolysis of the colonic mucosa by the parasitic protozoan Entamoeba histolytica. The cytolysis results in extensive local ulceration and allows the amoeba to penetrate and metastasize to distant sites. Factors involved in this process were defined with three clones that express hemolytic activities in Escherichia coli. These potential amoebic virulence determinants were also toxic to human colonic epithelial cells, the primary cellular targets in amoebal invasion of the large intestine. The coding sequences for the hemolysins were close to each other on a 2.6-kilobase segment of a 25-kilobase extrachromosomal DNA element. The structural genes for the hemolysins were within inverted repeats that encode ribosomal RNAs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jansson, A -- Gillin, F -- Kagardt, U -- Hagblom, P -- New York, N.Y. -- Science. 1994 Mar 11;263(5152):1440-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Uppsala University, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8128227" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Survival/drug effects ; Cloning, Molecular ; Entamoeba histolytica/*genetics/pathogenicity ; Escherichia coli/genetics ; *Genes, Protozoan ; Hemolysin Proteins/*genetics/toxicity ; Molecular Sequence Data ; Open Reading Frames ; *Plasmids ; RNA, Protozoan/genetics ; RNA, Ribosomal/*genetics ; Repetitive Sequences, Nucleic Acid ; Tumor Cells, Cultured ; Virulence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 1994-02-11
    Description: Many transcription factors contain proline- or glutamine-rich activation domains. Here it is shown that simple homopolymeric stretches of these amino acids can activate transcription when fused to the DNA binding domain of GAL4 factor. In vitro, activity increased with polymer length, whereas in cell transfection assays maximal activity was achieved by 10 to 30 glutamines or about 10 prolines. Similar results were obtained when glutamine stretches were placed within a [GAL4]-VP16 chimeric protein. Because these stretches are encoded by rapidly evolving triplet repeats (microsatellites), they may be the main cause for modulation of transcription factor activity and thus result in subtle or overt genomic effects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerber, H P -- Seipel, K -- Georgiev, O -- Hofferer, M -- Hug, M -- Rusconi, S -- Schaffner, W -- New York, N.Y. -- Science. 1994 Feb 11;263(5148):808-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Molekularbiologie II der Universitat Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8303297" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Glutamine/*chemistry/pharmacology ; HeLa Cells ; Humans ; Molecular Sequence Data ; Peptides/*chemistry/pharmacology ; Recombinant Fusion Proteins/pharmacology ; Repetitive Sequences, Nucleic Acid ; Transcription Factors/*chemistry/pharmacology ; *Transcriptional Activation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-10-14
    Description: The trimeric protein hemagglutinin (HA) of the influenza viral envelope is essential for cell entry. To investigate the interaction of HA with membranes, two 40-residue, cysteine-substituted peptides comprising the loop region and the first part of the coiled-coil stem were synthesized and modified with a nitroxide spin label. Electron paramagnetic resonance analysis revealed that the peptide inserts reversibly into phospholipid vesicles under endosomal pH conditions. This result suggests that some or all of the long coiled-coil trimer of HA may insert into membranes, which could bring the viral and cell membranes closer together and facilitate fusion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Y G -- King, D S -- Shin, Y K -- New York, N.Y. -- Science. 1994 Oct 14;266(5183):274-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of California, Berkeley.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7939662" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Electron Spin Resonance Spectroscopy ; Endocytosis ; Hemagglutinin Glycoproteins, Influenza Virus ; Hemagglutinins, Viral/chemistry/*metabolism ; Hydrogen-Ion Concentration ; Lipid Bilayers/*metabolism ; *Membrane Fusion ; Molecular Sequence Data ; Orthomyxoviridae/physiology ; Protein Conformation ; Protein Structure, Secondary ; Temperature ; Viral Envelope Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-12-16
    Description: The biologically relevant interactions of a transcription factor are those that are important for function in the organism. Here, a transgenic rescue assay was used to determine which molecular functions of Drosophila CCAAT/enhancer binding protein (C/EBP), a basic region-leucine zipper transcription factor, are required for it to fulfill its essential role during development. Chimeric proteins that contain the Drosophila C/EBP (DmC/EBP) basic region, a heterologous zipper, and a heterologous activation domain could functionally substitute for DmC/EBP. Mammalian C/EBPs were also functional in Drosophila. In contrast, 9 of 25 single amino acid substitutions in the basic region disrupted biological function. Thus, the conserved basic region specifies DmC/EBP activity in the organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rorth, P -- New York, N.Y. -- Science. 1994 Dec 16;266(5192):1878-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7997882" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Animals, Genetically Modified ; Base Sequence ; Basic-Leucine Zipper Transcription Factors ; CCAAT-Enhancer-Binding Proteins ; DNA/metabolism ; DNA-Binding Proteins/chemistry/genetics/*physiology ; Drosophila/genetics/*growth & development ; Female ; G-Box Binding Factors ; *Leucine Zippers ; Male ; Molecular Sequence Data ; Nuclear Proteins/chemistry/genetics/*physiology ; Recombinant Fusion Proteins ; Transcription Factors/chemistry/genetics/*physiology ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 1994-03-04
    Description: The 2;5 chromosomal translocation occurs in most anaplastic large-cell non-Hodgkin's lymphomas arising from activated T lymphocytes. This rearrangement was shown to fuse the NPM nucleolar phosphoprotein gene on chromosome 5q35 to a previously unidentified protein tyrosine kinase gene, ALK, on chromosome 2p23. In the predicted hybrid protein, the amino terminus of nucleophosmin (NPM) is linked to the catalytic domain of anaplastic lymphoma kinase (ALK). Expressed in the small intestine, testis, and brain but not in normal lymphoid cells, ALK shows greatest sequence similarity to the insulin receptor subfamily of kinases. Unscheduled expression of the truncated ALK may contribute to malignant transformation in these lymphomas.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, S W -- Kirstein, M N -- Valentine, M B -- Dittmer, K G -- Shapiro, D N -- Saltman, D L -- Look, A T -- CA 21765/CA/NCI NIH HHS/ -- KO8 CA 01702/CA/NCI NIH HHS/ -- P01 CA 20180/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1994 Mar 4;263(5151):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8122112" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Brain/enzymology ; Cell Transformation, Neoplastic ; Chromosome Walking ; Chromosomes, Human, Pair 2 ; Chromosomes, Human, Pair 5 ; Cloning, Molecular ; Gene Expression Regulation, Neoplastic ; Humans ; Intestine, Small/enzymology ; Lymphoma, Large-Cell, Anaplastic/chemistry/enzymology/*genetics ; Male ; Molecular Sequence Data ; Nuclear Proteins/chemistry/*genetics ; Phosphoproteins/chemistry/*genetics ; Promoter Regions, Genetic ; Protein-Tyrosine Kinases/chemistry/*genetics ; RNA, Messenger/genetics/metabolism ; Receptor Protein-Tyrosine Kinases ; Sequence Alignment ; Signal Transduction ; Testis/enzymology ; *Translocation, Genetic ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-09-23
    Description: The functional consequences of single proton transfers occurring in the pore of a cyclic nucleotide-gated channel were observed with patch recording techniques. These results led to three conclusions about the chemical nature of ion binding sites in the conduction pathway: The channel contains two identical titratable sites, even though there are more than two (probably four) identical subunits; the sites are formed by glutamate residues that have a pKa (where K(a) is the acid constant) of 7.6; and protonation of one site does not perturb the pKa of the other. These properties point to an unusual arrangement of carboxyl side-chain residues in the pore of a cation channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Root, M J -- MacKinnon, R -- 5 T32 GM083113/GM/NIGMS NIH HHS/ -- GM47400/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1994 Sep 23;265(5180):1852-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7522344" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Calcium Channels/metabolism ; Catfishes ; Electric Conductivity ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Ion Channels/chemistry/genetics/*metabolism ; Kinetics ; Molecular Sequence Data ; Mutation ; *Protons ; Sodium/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 1994-11-11
    Description: The decay of excitatory postsynaptic currents in central neurons mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors is likely to be shaped either by receptor desensitization or by offset after removal of glutamate from the synaptic cleft. Native AMPA receptors show desensitization time constants of 1 to about 10 milliseconds, but the underlying molecular determinants of these large differences are unknown. Cloned AMPA receptors carrying the "flop" splice variants of glutamate receptor subtype C (GluR-C) and GluR-D are shown to have desensitization time constants of around 1 millisecond, whereas those with the "flip" variants are about four times slower. Cerebellar granule cells switch their expression of GluR-D splice variants from mostly flip forms in early stages to predominantly flop forms in the adult rat brain. These findings suggest that rapid desensitization of AMPA receptors can be regulated by the expression and alternative splicing of GluR-D gene transcripts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mosbacher, J -- Schoepfer, R -- Monyer, H -- Burnashev, N -- Seeburg, P H -- Ruppersberg, J P -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1994 Nov 11;266(5187):1059-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur medizinische Forschung, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973663" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Animals ; Cells, Cultured ; Cerebellum/cytology/metabolism ; Cloning, Molecular ; Glutamic Acid/*pharmacology ; In Situ Hybridization ; Oocytes ; Patch-Clamp Techniques ; Rats ; Receptors, AMPA/drug effects/genetics/*physiology ; Recombinant Proteins ; Synaptic Transmission ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 1994-02-04
    Description: Poly(adenosine 5'-diphosphoribose) synthetase (PARS) is a nuclear enzyme which, when activated by DNA strand breaks, adds up to 100 adenosine 5'-diphosphoribose (ADP-ribose) units to nuclear proteins such as histones and PARS itself. This activation can lead to cell death through depletion of beta-nicotinamide adenine dinucleotide (the source of ADP-ribose) and adenosine triphosphate. Nitric oxide (NO) stimulated ADP-ribosylation of PARS in rat brain. Benzamide and other derivatives, which inhibit PARS, blocked N-methyl-D-aspartate- and NO-mediated neurotoxicity with relative potencies paralleling their ability to inhibit PARS. Thus, NO appeared to elicit neurotoxicity by activating PARS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, J -- Dawson, V L -- Dawson, T M -- Snyder, S H -- DA-00074/DA/NIDA NIH HHS/ -- DA-00266/DA/NIDA NIH HHS/ -- DA-271-90-7408/DA/NIDA NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Feb 4;263(5147):687-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8080500" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides/pharmacology ; Brain/cytology/drug effects/enzymology ; Cell Death/drug effects ; Cell Line ; Cells, Cultured ; Cerebral Cortex/cytology/drug effects/enzymology ; DNA Damage ; Enzyme Activation ; Humans ; N-Methylaspartate/*toxicity ; Neurons/cytology/*drug effects/enzymology ; Nitric Oxide/*toxicity ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/*metabolism ; Rats ; Rats, Sprague-Dawley
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 1994-01-28
    Description: As changes in synaptic strength are thought to be critical for learning and memory, it would be useful to monitor the activity of individual identified synapses on mammalian central neurons. Calcium imaging of cortical neurons grown in primary culture was used to visualize the activation of individual postsynaptic elements by miniature excitatory synaptic currents elicited by spontaneous quantal release. This approach revealed that the probability of spontaneous activity differed among synapses on the same dendrite. Furthermore, synapses that undergo changes in activity induced by glutamate or phorbol ester treatment were identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Murphy, T H -- Baraban, J M -- Wier, W G -- Blatter, L A -- New York, N.Y. -- Science. 1994 Jan 28;263(5146):529-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7904774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cells, Cultured ; Cerebral Cortex ; Dendrites/*metabolism ; Glutamates/pharmacology ; Glutamic Acid ; Kinetics ; Microelectrodes ; Neuronal Plasticity ; Neurons/*physiology ; Phorbol Esters/pharmacology ; Rats ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology ; *Synaptic Transmission ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 1994-04-29
    Description: Tumor necrosis factor (TNF) and lymphotoxin-alpha (LT-alpha) are members of a family of secreted and cell surface cytokines that participate in the regulation of immune and inflammatory responses. The cell surface form of LT-alpha is assembled during biosynthesis as a heteromeric complex with lymphotoxin-beta (LT-beta), a type II transmembrane protein that is another member of the TNF ligand family. Secreted LT-alpha is a homotrimer that binds to distinct TNF receptors of 60 and 80 kilodaltons; however, these receptors do not recognize the major cell surface LT-alpha-LT-beta complex. A receptor specific for human LT-beta was identified, which suggests that cell surface LT may have functions that are distinct from those of secreted LT-alpha.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Crowe, P D -- VanArsdale, T L -- Walter, B N -- Ware, C F -- Hession, C -- Ehrenfels, B -- Browning, J L -- Din, W S -- Goodwin, R G -- Smith, C A -- New York, N.Y. -- Science. 1994 Apr 29;264(5159):707-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biomedical Sciences, University of California, Riverside 92521.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171323" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Cysteine/chemistry ; Humans ; Hybridomas ; Ligands ; Lymphotoxin beta Receptor ; Lymphotoxin-alpha/*metabolism ; Molecular Sequence Data ; Receptors, Tumor Necrosis Factor/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; T-Lymphocytes/immunology ; Tetradecanoylphorbol Acetate/pharmacology ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 1994-04-08
    Description: The role of protein degradation in mitochondrial homeostasis was explored by cloning of a gene from Saccharomyces cerevisiae that encodes a protein resembling the adenosine triphosphate (ATP)-dependent bacterial protease Lon. The predicted yeast protein has a typical mitochondrial matrix-targeting sequence at its amino terminus. Yeast cells lacking a functional LON gene contained a nonfunctional mitochondrial genome, were respiratory-deficient, and lacked an ATP-dependent proteolytic activity present in the mitochondria of Lon+ cells. Lon- cells were also impaired in their ability to catalyze the energy-dependent degradation of several mitochondrial matrix proteins and they accumulated electron-dense inclusions in their mitochondrial matrix.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, C K -- Suda, K -- Wang, N -- Schatz, G -- New York, N.Y. -- Science. 1994 Apr 8;264(5156):273-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biozentrum der Universitat Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8146662" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Dependent Proteases ; Adenosine Triphosphatases/genetics/metabolism ; Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Fungal Proteins/metabolism ; *Genes, Fungal ; Heat-Shock Proteins/*genetics/metabolism ; Microscopy, Electron ; Mitochondria/*metabolism/ultrastructure ; Molecular Sequence Data ; *Oxygen Consumption ; Saccharomyces cerevisiae/*genetics/metabolism ; Serine Endopeptidases/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 1994-12-09
    Description: AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor channels mediate the fast component of excitatory postsynaptic currents in the central nervous system. Site-selective nuclear RNA editing controls the calcium permeability of these channels, and RNA editing at a second site is shown here to affect the kinetic aspects of these channels in rat brain. In three of the four AMPA receptor subunits (GluR-B, -C, and -D), intronic elements determine a codon switch (AGA, arginine, to GGA, glycine) in the primary transcripts in a position termed the R/G site, which immediately precedes the alternatively spliced modules "flip" and "flop." The extent of editing at this site progresses with brain development in a manner specific for subunit and splice form, and edited channels possess faster recovery rates from desensitization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lomeli, H -- Mosbacher, J -- Melcher, T -- Hoger, T -- Geiger, J R -- Kuner, T -- Monyer, H -- Higuchi, M -- Bach, A -- Seeburg, P H -- New York, N.Y. -- Science. 1994 Dec 9;266(5191):1709-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, University of Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7992055" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/embryology/*metabolism ; Cell Nucleus/metabolism ; Exons ; Glutamic Acid/pharmacology ; Glycine/genetics ; Introns ; Kinetics ; Membrane Potentials ; Molecular Sequence Data ; Oocytes ; PC12 Cells ; Patch-Clamp Techniques ; *RNA Editing ; Rats ; Rats, Wistar ; Receptors, AMPA/*genetics/*metabolism ; Recombinant Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 1994-11-04
    Description: The tomato Cf-9 gene confers resistance to infection by races of the fungus Cladosporium fulvum that carry the avirulence gene Avr9. The Cf-9 gene was isolated by transposon tagging with the maize transposable element Dissociation. The DNA sequence of Cf-9 encodes a putative membrane-anchored extracytoplasmic glycoprotein. The predicted protein shows homology to the receptor domain of several receptor-like protein kinases in Arabidopsis, to antifungal polygalacturonase-inhibiting proteins in plants, and to other members of the leucine-rich repeat family of proteins. This structure is consistent with that of a receptor that could bind Avr9 peptide and activate plant defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, D A -- Thomas, C M -- Hammond-Kosack, K E -- Balint-Kurti, P J -- Jones, J D -- New York, N.Y. -- Science. 1994 Nov 4;266(5186):789-93.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7973631" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cladosporium/genetics/*physiology ; Consensus Sequence ; DNA Primers ; *DNA Transposable Elements ; Fungal Proteins/genetics ; Gene Targeting ; *Genes, Plant ; Glycoproteins/chemistry/*genetics ; Glycosylation ; Lycopersicon esculentum/chemistry/*genetics/microbiology ; Membrane Glycoproteins/chemistry/*genetics ; Molecular Sequence Data ; Multigene Family ; Nucleic Acid Hybridization ; Plant Proteins/chemistry/*genetics ; Plants, Genetically Modified ; Polymerase Chain Reaction ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1994-03-25
    Description: Although astrocytes have been considered to be supportive, rather than transmissive, in the adult nervous system, recent studies have challenged this assumption by demonstrating that astrocytes possess functional neurotransmitter receptors. Astrocytes are now shown to directly modulate the free cytosolic calcium, and hence transmission characteristics, of neighboring neurons. When a focal electric field potential was applied to single astrocytes in mixed cultures of rat forebrain astrocytes and neurons, a prompt elevation of calcium occurred in the target cell. This in turn triggered a wave of calcium increase, which propagated from astrocyte to astrocyte. Neurons resting on these astrocytes responded with large increases in their concentration of cytosolic calcium. The gap junction blocker octanol attenuated the neuronal response, which suggests that the astrocytic-neuronal signaling is mediated through intercellular connections rather than synaptically. This neuronal response to local astrocytic stimulation may mediate local intercellular communication within the brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nedergaard, M -- New York, N.Y. -- Science. 1994 Mar 25;263(5154):1768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, Cornell University Medical College, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8134839" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/drug effects/*metabolism ; Calcium/*metabolism ; Cell Communication ; Cells, Cultured ; Electric Stimulation ; Excitatory Amino Acid Antagonists ; Gap Junctions/physiology ; Kynurenic Acid/pharmacology ; Neurons/drug effects/*metabolism ; Nifedipine/pharmacology ; Octanols/pharmacology ; Prosencephalon/*cytology/embryology ; Rats ; *Signal Transduction ; Synapses/metabolism ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...