ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-11
    Description: Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinson's disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD. Importantly, α-synuclein-positive Lewy bodies are the most common pathology identified in the brains of PD subjects harboring LRRK2 mutations. These observations may suggest that LRRK2 functions in a common pathway with α-synuclein to regulate its aggregation. To explore the potential pathophysiological interaction between LRRK2 and α-synuclein in vivo , we modulated LRRK2 expression in a well-established human A53T α-synuclein transgenic mouse model with transgene expression driven by the hindbrain-selective prion protein promoter. Deletion of LRRK2 or overexpression of human G2019S-LRRK2 has minimal impact on the lethal neurodegenerative phenotype that develops in A53T α-synuclein transgenic mice, including premature lethality, pre-symptomatic behavioral deficits and human α-synuclein or glial neuropathology. We also find that endogenous or human LRRK2 and A53T α-synuclein do not interact together to influence the number of nigrostriatal dopaminergic neurons. Taken together, our data suggest that α-synuclein-related pathology, which occurs predominantly in the hindbrain of this A53T α-synuclein mouse model, occurs largely independently from LRRK2 expression. These observations fail to provide support for a pathophysiological interaction of LRRK2 and α-synuclein in vivo , at least within neurons of the mouse hindbrain.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-14
    Description: Stroke is a major cause of mortality and morbidity worldwide. Extracellular glutamate accumulation leading to overstimulation of the ionotropic glutamate receptors mediates neuronal injury in stroke and in neurodegenerative disorders. Here we show that miR-223 controls the response to neuronal injury by regulating the functional expression of the glutamate receptor...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-02
    Description: The pathologic accumulation and aggregation of α-synuclein (α-syn) underlies Parkinson’s disease (PD). The molecular mechanisms by which pathologic α-syn causes neurodegeneration in PD are not known. Here, we found that pathologic α-syn activates poly(adenosine 5'-diphosphate–ribose) (PAR) polymerase-1 (PARP-1), and PAR generation accelerates the formation of pathologic α-syn, resulting in cell death via parthanatos. PARP inhibitors or genetic deletion of PARP-1 prevented pathologic α-syn toxicity. In a feed-forward loop, PAR converted pathologic α-syn to a more toxic strain. PAR levels were increased in the cerebrospinal fluid and brains of patients with PD, suggesting that PARP activation plays a role in PD pathogenesis. Thus, strategies aimed at inhibiting PARP-1 activation could hold promise as a disease-modifying therapy to prevent the loss of dopamine neurons in PD.
    Keywords: Medicine, Diseases, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-01
    Description: Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, Ted M -- Dawson, Valina L -- NS38377/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 31;302(5646):819-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. tdawson@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14593166" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Brain/*metabolism/pathology ; Cysteine Endopeptidases/metabolism ; Dopamine/metabolism ; Electron Transport Complex I/antagonists & inhibitors/genetics/*metabolism ; Humans ; Mitochondria/enzymology ; Multienzyme Complexes/metabolism ; Mutation ; Nerve Degeneration ; Nerve Tissue Proteins/chemistry/genetics/metabolism ; Neurons/*metabolism/pathology ; Oxidative Stress ; Parkinson Disease/*etiology/genetics/metabolism/pathology ; Parkinsonian Disorders/genetics/metabolism/pathology ; Proteasome Endopeptidase Complex ; Synucleins ; Ubiquitin/metabolism ; Ubiquitin-Protein Ligases/genetics/metabolism ; alpha-Synuclein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-03-27
    Description: Expanded polyglutamine repeats have been proposed to cause neuronal degeneration in Huntington's disease (HD) and related disorders, through abnormal interactions with other proteins containing short polyglutamine tracts such as the transcriptional coactivator CREB binding protein, CBP. We found that CBP was depleted from its normal nuclear location and was present in polyglutamine aggregates in HD cell culture models, HD transgenic mice, and human HD postmortem brain. Expanded polyglutamine repeats specifically interfere with CBP-activated gene transcription, and overexpression of CBP rescued polyglutamine-induced neuronal toxicity. Thus, polyglutamine-mediated interference with CBP-regulated gene transcription may constitute a genetic gain of function, underlying the pathogenesis of polyglutamine disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nucifora , F C Jr -- Sasaki, M -- Peters, M F -- Huang, H -- Cooper, J K -- Yamada, M -- Takahashi, H -- Tsuji, S -- Troncoso, J -- Dawson, V L -- Dawson, T M -- Ross, C A -- NS16375/NS/NINDS NIH HHS/ -- NS34172/NS/NINDS NIH HHS/ -- NS37090/NS/NINDS NIH HHS/ -- NS38144/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2001 Mar 23;291(5512):2423-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Neurobiology, Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11264541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/metabolism ; CREB-Binding Protein ; Cell Nucleus/metabolism ; Cell Survival ; Cells, Cultured ; Humans ; Huntington Disease/genetics/*metabolism ; Mice ; Mice, Transgenic ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Neurons/cytology/*metabolism ; Nuclear Proteins/chemistry/genetics/*metabolism ; Peptides/chemistry/*metabolism ; Repetitive Sequences, Amino Acid ; Trans-Activators/chemistry/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-07-13
    Description: Poly(ADP-ribose) polymerase-1 (PARP-1) protects the genome by functioning in the DNA damage surveillance network. PARP-1 is also a mediator of cell death after ischemia-reperfusion injury, glutamate excitotoxicity, and various inflammatory processes. We show that PARP-1 activation is required for translocation of apoptosis-inducing factor (AIF) from the mitochondria to the nucleus and that AIF is necessary for PARP-1-dependent cell death. N-methyl-N'-nitro-N-nitrosoguanidine, H2O2, and N-methyl-d-aspartate induce AIF translocation and cell death, which is prevented by PARP inhibitors or genetic knockout of PARP-1, but is caspase independent. Microinjection of an antibody to AIF protects against PARP-1-dependent cytotoxicity. These data support a model in which PARP-1 activation signals AIF release from mitochondria, resulting in a caspase-independent pathway of programmed cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, Seong-Woon -- Wang, Hongmin -- Poitras, Marc F -- Coombs, Carmen -- Bowers, William J -- Federoff, Howard J -- Poirier, Guy G -- Dawson, Ted M -- Dawson, Valina L -- New York, N.Y. -- Science. 2002 Jul 12;297(5579):259-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12114629" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Antibodies/immunology ; *Apoptosis ; Apoptosis Inducing Factor ; Caspase Inhibitors ; Caspases/metabolism ; Cell Nucleus/metabolism ; Cells, Cultured ; Cytochrome c Group/metabolism ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Flavoproteins/immunology/*metabolism ; Hydrogen Peroxide/pharmacology ; Membrane Potentials ; Membrane Proteins/immunology/*metabolism ; Methylnitronitrosoguanidine/pharmacology ; Mice ; Mice, Knockout ; Mitochondria/metabolism/physiology ; N-Methylaspartate/metabolism/pharmacology ; NAD/metabolism ; Neurons/cytology/physiology ; Oxidative Stress ; Poly(ADP-ribose) Polymerase Inhibitors ; Poly(ADP-ribose) Polymerases/genetics/*metabolism ; Proto-Oncogene Proteins c-bcl-2/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-04-24
    Description: Parkin is an E3 ubiquitin ligase involved in the ubiquitination of proteins that are important in the survival of dopamine neurons in Parkinson's disease (PD). We show that parkin is S-nitrosylated in vitro, as well as in vivo in a mouse model of PD and in brains of patients with PD and diffuse Lewy body disease. Moreover, S-nitrosylation inhibits parkin's ubiquitin E3 ligase activity and its protective function. The inhibition of parkin's ubiquitin E3 ligase activity by S-nitrosylation could contribute to the degenerative process in these disorders by impairing the ubiquitination of parkin substrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Kenny K K -- Thomas, Bobby -- Li, Xiaojie -- Pletnikova, Olga -- Troncoso, Juan C -- Marsh, Laura -- Dawson, Valina L -- Dawson, Ted M -- NS38377/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2004 May 28;304(5675):1328-31. Epub 2004 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15105460" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/metabolism ; Animals ; Brain/metabolism ; Carrier Proteins/genetics/metabolism ; Catalytic Domain ; Cell Death ; Cell Line ; Cysteine Proteinase Inhibitors/pharmacology ; Humans ; Lewy Body Disease/metabolism ; MPTP Poisoning/metabolism ; Mice ; Mice, Knockout ; Nerve Tissue Proteins/genetics/metabolism ; Nitric Oxide/*metabolism ; Nitric Oxide Donors/pharmacology ; Nitric Oxide Synthase/genetics/metabolism ; Parkinson Disease/*metabolism ; Recombinant Proteins/metabolism ; Synucleins ; Transfection ; Ubiquitin/*metabolism ; Ubiquitin-Protein Ligases/antagonists & inhibitors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-12-13
    Description: Indirect mechanisms are implicated in the pathogenesis of the dementia associated with human immunodeficiency virus-type 1 (HIV-1) infection. Proinflammatory molecules such as tumor necrosis factor alpha and eicosanoids are elevated in the central nervous system of patients with HIV-1-related dementia. Nitric oxide (NO) is a potential mediator of neuronal injury, because cytokines may activate the immunologic (type II) isoform of NO synthase (iNOS). The levels of iNOS in severe HIV-1-associated dementia coincided with increased expression of the HIV-1 coat protein gp41. Furthermore, gp41 induced iNOS in primary cultures of mixed rat neuronal and glial cells and killed neurons through a NO-dependent mechanism. Thus, gp41-induced NO formation may contribute to the severe cognitive dysfunction associated with HIV-1 infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adamson, D C -- Wildemann, B -- Sasaki, M -- Glass, J D -- McArthur, J C -- Christov, V I -- Dawson, T M -- Dawson, V L -- AI35042/AI/NIAID NIH HHS/ -- NS07392/NS/NINDS NIH HHS/ -- NS22643/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1917-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 2-210, Baltimore, MD 21287, USA. valina.dawson@qmail.bs.jhu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8943206" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Dementia Complex/*enzymology/metabolism ; Animals ; Brain/*enzymology/metabolism ; Cell Death ; Cells, Cultured ; Cerebral Cortex/enzymology/metabolism ; Enzyme Induction ; HIV Envelope Protein gp120/metabolism/pharmacology ; HIV Envelope Protein gp41/*metabolism/pharmacology ; *Hiv-1 ; Humans ; Neuroglia/cytology ; Neurons/cytology ; Nitric Oxide/metabolism ; Nitric Oxide Synthase/*biosynthesis/genetics ; Polymerase Chain Reaction ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-05-17
    Description: Author(s): Sean Symon, Kevin Rosenberg, Scott T. M. Dawson, and Beverley J. McKeon Eigenspectra and pseudospectra of the (turbulent) mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. [Phys. Rev. Fluids 3, 053902] Published Wed May 16, 2018
    Keywords: Instability, Transition, and Control
    Electronic ISSN: 2469-990X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-02-05
    Description: beta-Adrenergic receptor kinase (beta ARK) and beta-arrestin function in the homologous or agonist-activated desensitization of G protein-coupled receptors. The isoforms beta ARK-2 and beta-arrestin-2 are highly enriched in and localized to the dendritic knobs and cilia of the olfactory receptor neurons where the initial events of olfactory signal transduction occur. Odorants induce a rapid and transient elevation of adenosine 3',5'-monophosphate (cAMP), which activates a nonspecific cation channel and produces membrane depolarization. Preincubation of rat olfactory cilia with antibodies raised against beta ARK-2 and beta-arrestin-2 increased the odorant-induced elevation of cAMP and attenuated desensitization. These results suggest that beta ARK-2 and beta-arrestin-2 mediate agonist-dependent desensitization in olfaction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dawson, T M -- Arriza, J L -- Jaworsky, D E -- Borisy, F F -- Attramadal, H -- Lefkowitz, R J -- Ronnett, G V -- NS 01578-01/NS/NINDS NIH HHS/ -- NS-02131/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Feb 5;259(5096):825-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Johns Hopkins Medical Institutions, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8381559" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens/*metabolism ; *Arrestins ; Cells, Cultured ; Cyclic AMP/metabolism ; *Cyclic AMP-Dependent Protein Kinases ; Cytosol/metabolism ; Dendrites/physiology ; Eye Proteins/*metabolism ; G-Protein-Coupled Receptor Kinase 2 ; GTP-Binding Proteins/*metabolism ; Isoenzymes/metabolism ; Male ; Mechanoreceptors/*physiology ; Neurons/*physiology ; *Odors ; Olfactory Bulb/*physiology ; Protein Kinases/*metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, beta/*physiology ; Signal Transduction ; *Smell ; Testis/physiology ; Turbinates/*physiology ; beta-Adrenergic Receptor Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...