ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-12-03
    Description: Alphaviruses are enveloped RNA viruses that have a diameter of about 700 A and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Jose, Joyce -- Xiang, Ye -- Kuhn, Richard J -- Rossmann, Michael G -- P01 AI055672/AI/NIAID NIH HHS/ -- P01 AI055672-07/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Dec 2;468(7324):705-8. doi: 10.1038/nature09546.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21124457" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Drosophila melanogaster ; Endosomes/metabolism ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Membrane Fusion ; Membrane Glycoproteins/chemistry/metabolism ; Models, Molecular ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Virus/metabolism ; Sindbis Virus/*chemistry/*metabolism ; Viral Envelope Proteins/*chemistry/*metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Virion/chemistry/metabolism ; *Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mukhopadhyay, Suchetana -- Kim, Bong-Suk -- Chipman, Paul R -- Rossmann, Michael G -- Kuhn, Richard J -- AI 45976/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2003 Oct 10;302(5643):248.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, USA. West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14551429" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Dengue Virus/chemistry/ultrastructure ; Dimerization ; Image Processing, Computer-Assisted ; Nucleocapsid/chemistry/ultrastructure ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; West Nile virus/chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-03-29
    Description: Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide beta-barrel structure covers the fusion loop in E, preventing fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Long -- Lok, Shee-Mei -- Yu, I-Mei -- Zhang, Ying -- Kuhn, Richard J -- Chen, Jue -- Rossmann, Michael G -- 1-U54-AI-057153/AI/NIAID NIH HHS/ -- AI055672/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1830-4. doi: 10.1126/science.1153263.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369147" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Dengue Virus/*chemistry/growth & development ; Dimerization ; Hydrogen-Ion Concentration ; Models, Molecular ; Protein Conformation ; Protein Precursors/chemistry/metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Viral Envelope Proteins/*chemistry/metabolism ; Viral Matrix Proteins/*chemistry/metabolism ; Virus Assembly
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-03-29
    Description: Intracellular cleavage of immature flaviviruses is a critical step in assembly that generates the membrane fusion potential of the E glycoprotein. With cryo-electron microscopy we show that the immature dengue particles undergo a reversible conformational change at low pH that renders them accessible to furin cleavage. At a pH of 6.0, the E proteins are arranged in a herringbone pattern with the pr peptides docked onto the fusion loops, a configuration similar to that of the mature virion. After cleavage, the dissociation of pr is pH-dependent, suggesting that in the acidic environment of the trans-Golgi network pr is retained on the virion to prevent membrane fusion. These results suggest a mechanism by which flaviviruses are processed and stabilized in the host cell secretory pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yu, I-Mei -- Zhang, Wei -- Holdaway, Heather A -- Li, Long -- Kostyuchenko, Victor A -- Chipman, Paul R -- Kuhn, Richard J -- Rossmann, Michael G -- Chen, Jue -- 1-U54-AI-057153/AI/NIAID NIH HHS/ -- AI055672/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2008 Mar 28;319(5871):1834-7. doi: 10.1126/science.1153264.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, 915 West State Street, Purdue University, West Lafayette, IN 47907-2054, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369148" target="_blank"〉PubMed〈/a〉
    Keywords: Cryoelectron Microscopy ; Crystallography, X-Ray ; Dengue Virus/*chemistry/growth & development/metabolism/*ultrastructure ; Dimerization ; Endoplasmic Reticulum/virology ; Furin/metabolism ; Hydrogen-Ion Concentration ; Image Processing, Computer-Assisted ; Membrane Fusion ; Protein Conformation ; Viral Envelope Proteins/*chemistry/metabolism ; Viral Fusion Proteins/chemistry/metabolism ; Viral Matrix Proteins/*chemistry/metabolism ; Virion/metabolism/ultrastructure ; trans-Golgi Network/metabolism/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-03
    Description: Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the "pocket factor," a small molecule that stabilizes the virus, is partly exposed on the floor of the "canyon." Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448362/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3448362/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Plevka, Pavel -- Perera, Rushika -- Cardosa, Jane -- Kuhn, Richard J -- Rossmann, Michael G -- AI11219/AI/NIAID NIH HHS/ -- R37 AI011219/AI/NIAID NIH HHS/ -- RR007707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1274. doi: 10.1126/science.1218713. Epub 2012 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383808" target="_blank"〉PubMed〈/a〉
    Keywords: Capsid/chemistry/metabolism/ultrastructure ; Capsid Proteins/*chemistry/metabolism ; Crystallography, X-Ray ; Enterovirus A, Human/*chemistry/metabolism/*ultrastructure ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Protein Conformation ; Receptors, Virus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-08
    Description: Flaviviruses, the human pathogens responsible for dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever, are endemic in tropical and temperate parts of the world. The flavivirus nonstructural protein 1 (NS1) functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. We report crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses. The NS1 hexamer in crystal structures is similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 binds to lipid bilayers and remodels large liposomes into lipoprotein nanoparticles. The NS1 structures reveal distinct domains for membrane association of the dimer and interactions with the immune system and are a basis for elucidating the molecular mechanism of NS1 function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263348/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263348/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Akey, David L -- Brown, W Clay -- Dutta, Somnath -- Konwerski, Jamie -- Jose, Joyce -- Jurkiw, Thomas J -- DelProposto, James -- Ogata, Craig M -- Skiniotis, Georgios -- Kuhn, Richard J -- Smith, Janet L -- P01 AI055672/AI/NIAID NIH HHS/ -- P01AI055672/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Feb 21;343(6173):881-5. doi: 10.1126/science.1247749. Epub 2014 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24505133" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Membrane/chemistry/*virology ; Crystallography, X-Ray ; DEAD-box RNA Helicases/chemistry/immunology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immune System/chemistry/*virology ; Immunity, Innate ; Lipid Bilayers ; Microscopy, Electron ; Protein Conformation ; Protein Multimerization ; Viral Nonstructural Proteins/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-03
    Description: Enterovirus D68 (EV-D68) is a member of Picornaviridae and is a causative agent of recent outbreaks of respiratory illness in children in the United States. We report here the crystal structures of EV-D68 and its complex with pleconaril, a capsid-binding compound that had been developed as an anti-rhinovirus drug. The hydrophobic drug-binding pocket in viral protein 1 contained density that is consistent with a fatty acid of about 10 carbon atoms. This density could be displaced by pleconaril. We also showed that pleconaril inhibits EV-D68 at a half-maximal effective concentration of 430 nanomolar and might, therefore, be a possible drug candidate to alleviate EV-D68 outbreaks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4307789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Yue -- Sheng, Ju -- Fokine, Andrei -- Meng, Geng -- Shin, Woong-Hee -- Long, Feng -- Kuhn, Richard J -- Kihara, Daisuke -- Rossmann, Michael G -- AI11219/AI/NIAID NIH HHS/ -- R24 GM111072/GM/NIGMS NIH HHS/ -- R37 AI011219/AI/NIAID NIH HHS/ -- RR007707/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2015 Jan 2;347(6217):71-4. doi: 10.1126/science.1261962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA. ; Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA. Department of Computer Science, 305 North University Street, Purdue University, West Lafayette, IN 47907, USA. ; Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 South Martin Jischke Drive, Purdue University, West Lafayette, IN 47907, USA. mr@purdue.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25554786" target="_blank"〉PubMed〈/a〉
    Keywords: Antiviral Agents/*chemistry/pharmacology/therapeutic use ; Capsid/*chemistry/drug effects/ultrastructure ; Child ; Crystallography, X-Ray ; Enterovirus D, Human/*chemistry/drug effects/ultrastructure ; Enterovirus Infections/drug therapy/epidemiology/*virology ; Humans ; Hydrophobic and Hydrophilic Interactions ; Oxadiazoles/*chemistry/pharmacology/therapeutic use ; Respiratory Tract Diseases/drug therapy/epidemiology/*virology ; United States/epidemiology ; Viral Proteins/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-02
    Description: The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4845755/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sirohi, Devika -- Chen, Zhenguo -- Sun, Lei -- Klose, Thomas -- Pierson, Theodore C -- Rossmann, Michael G -- Kuhn, Richard J -- R01 AI073755/AI/NIAID NIH HHS/ -- R01 AI076331/AI/NIAID NIH HHS/ -- R01AI073755/AI/NIAID NIH HHS/ -- R01AI076331/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2016 Apr 22;352(6284):467-70. doi: 10.1126/science.aaf5316. Epub 2016 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Markey Center for Structural Biology and Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA. ; Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27033547" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Glycosylation ; Humans ; Molecular Sequence Data ; Protein Structure, Tertiary ; Viral Envelope Proteins/chemistry/ultrastructure ; Viral Matrix Proteins/chemistry/ultrastructure ; Zika Virus/*chemistry/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-03
    Description: Human enterovirus 71 is a picornavirus causing hand, foot, and mouth disease that may progress to fatal encephalitis in infants and small children. As of now, no cure is available for enterovirus 71 infections. Small molecule inhibitors binding into a hydrophobic pocket within capsid viral protein 1 were previously shown...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 29 (1986), S. 635-637 
    ISSN: 1432-1041
    Keywords: netilmicin ; prematurity ; infants ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary The pharmacokinetics of netilmicin were studied in 12 premature infants with proven or presumed sepsis during the first month of life. Eleven of 12 patients received netilmicin 2.5 mg/kg intravenously every 12 h while one 770-gram birth weight infant received 2.5 mg/kg every 18 h. Mean steady-state peak and trough concentrations were 8.9 µg/ml and 2.8 µg/ml, respectively. Of twelve patients, 11 had trough serum concentration above 2 µg/ml and four had trough serum concentrations above 3 µg/ml. Mean total body clearance of netilmicin was 0.84 ml/min/kg. The mean clearance of 0.72 ml/min/kg was substantially lower in patients with a mean postnatal age of 2.7 days than the clearance of 1.10 ml/min/kg in patients with a mean postnatal age of 23 days. The mean apparent volume of distribution was 0.63 l/kg; and the mean elimination half-life was 8.6 h. A three-fold interpatient variation in pharmacokinetic parameters was seen. These data suggest the need for careful monitoring of netilmicin serum concentration in premature infants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...