ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-17
    Description: Centrioles and basal bodies are essential for the formation of cilia, flagella, and centrosomes. They exhibit a characteristic ninefold symmetry imparted by a cartwheel thought to contain rings of SAS-6 proteins. We used cryoelectron tomography to investigate the architecture of the exceptionally long cartwheel of the flagellate Trichonympha. We found that the cartwheel is a stack of central rings that exhibit a vertical periodicity of 8.5 nanometers and is able to accommodate nine SAS-6 homodimers. The spokes that emanate from two such rings associate into a layer, with a vertical periodicity of 17 nanometers on the cartwheel margin. Thus, by using the power of biodiversity, we unveiled the architecture of the cartwheel at the root of the ninefold symmetry of centrioles and basal bodies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guichard, Paul -- Desfosses, Ambroise -- Maheshwari, Aditi -- Hachet, Virginie -- Dietrich, Carsten -- Brune, Andreas -- Ishikawa, Takashi -- Sachse, Carsten -- Gonczy, Pierre -- New York, N.Y. -- Science. 2012 Aug 3;337(6094):553. doi: 10.1126/science.1222789. Epub 2012 Jul 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798403" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle Proteins/*ultrastructure ; Cryoelectron Microscopy ; Electron Microscope Tomography ; Hypermastigia/*ultrastructure ; Organelles/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-18
    Description: Measles is a highly contagious human disease. We used cryo-electron microscopy and single particle-based helical image analysis to determine the structure of the helical nucleocapsid formed by the folded domain of the measles virus nucleoprotein encapsidating an RNA at a resolution of 4.3 angstroms. The resulting pseudoatomic model of the measles virus nucleocapsid offers important insights into the mechanism of the helical polymerization of nucleocapsids of negative-strand RNA viruses, in particular via the exchange subdomains of the nucleoprotein. The structure reveals the mode of the nucleoprotein-RNA interaction and explains why each nucleoprotein of measles virus binds six nucleotides, whereas the respiratory syncytial virus nucleoprotein binds seven. It provides a rational basis for further analysis of measles virus replication and transcription, and reveals potential targets for drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gutsche, Irina -- Desfosses, Ambroise -- Effantin, Gregory -- Ling, Wai Li -- Haupt, Melina -- Ruigrok, Rob W H -- Sachse, Carsten -- Schoehn, Guy -- New York, N.Y. -- Science. 2015 May 8;348(6235):704-7. doi: 10.1126/science.aaa5137. Epub 2015 Apr 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. gutsche@embl.fr. ; Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69917 Heidelberg, Germany. ; CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. ; Universite Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France. ; Institut Laue-Langevin, 38000 Grenoble, France. ; CNRS, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, Unit for Virus Host-Cell Interactions, 38042 Grenoble, France. Universite Grenoble Alpes, IBS, 38044 Grenoble, France. CNRS, IBS, 38044 Grenoble, France. CEA, IBS, 38044 Grenoble, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25883315" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cryoelectron Microscopy ; Humans ; Measles/*virology ; Measles virus/chemistry/*ultrastructure ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleocapsid/chemistry/*ultrastructure ; Nucleoproteins/chemistry/ultrastructure ; Protein Structure, Secondary ; RNA, Viral/chemistry/ultrastructure ; Viral Proteins/chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-06-15
    Description: The genome of measles virus is encapsidated by multiple copies of the nucleoprotein (N), forming helical nucleocapsids of molecular mass approaching 150 Megadalton. The intrinsically disordered C-terminal domain of N (NTAIL) is essential for transcription and replication of the virus via interaction with the phosphoprotein P of the viral polymerase complex. The molecular recognition element (MoRE) of NTAIL that binds P is situated 90 amino acids from the folded RNA-binding domain (NCORE) of N, raising questions about the functional role of this disordered chain. Here we report the first in situ structural characterization of NTAIL in the context of the entire N-RNA capsid. Using nuclear magnetic resonance spectroscopy, small angle scattering, and electron microscopy, we demonstrate that NTAIL is highly flexible in intact nucleocapsids and that the MoRE is in transient interaction with NCORE. We present a model in which the first 50 disordered amino acids of NTAIL are conformationally restricted as the chain escapes to the outside of the nucleocapsid via the interstitial space between successive NCORE helical turns. The model provides a structural framework for understanding the role of NTAIL in the initiation of viral transcription and replication, placing the flexible MoRE close to the viral RNA and, thus, positioning the polymerase complex in its functional environment.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...