ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-18
    Description: P2X receptors are trimeric cation channels with widespread roles in health and disease. The recent crystal structure of a P2X4 receptor provides a 3D view of their topology and architecture. A key unresolved issue is how ions gain access to the pore, because the structure reveals two different pathways within the extracellular domain. One of these is the central pathway spanning the entire length of the extracellular domain and covering a distance of ≈70 Å. The second consists of three lateral portals, adjacent to the membrane and connected to the transmembrane pore by short tunnels. Here, we demonstrate the preferential use of the lateral portals. Owing to their favorable diameters and equivalent spacing, the lateral portals split the task of ion supply threefold and minimize an ion's diffusive path before it succumbs to transmembrane electrochemical gradients.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-19
    Description: Voltage-gated sodium (Nav) channels propagate action potentials in excitable cells. Accordingly, Nav channels are therapeutic targets for many cardiovascular and neurological disorders. Selective inhibitors have been challenging to design because the nine mammalian Nav channel isoforms share high sequence identity and remain recalcitrant to high-resolution structural studies. Targeting the human Nav1.7 channel involved in pain perception, we present a protein-engineering strategy that has allowed us to determine crystal structures of a novel receptor site in complex with isoform-selective antagonists. GX-936 and related inhibitors bind to the activated state of voltage-sensor domain IV (VSD4), where their anionic aryl sulfonamide warhead engages the fourth arginine gating charge on the S4 helix. By opposing VSD4 deactivation, these compounds inhibit Nav1.7 through a voltage-sensor trapping mechanism, likely by stabilizing inactivated states of the channel. Residues from the S2 and S3 helices are key determinants of isoform selectivity, and bound phospholipids implicate the membrane as a modulator of channel function and pharmacology. Our results help to elucidate the molecular basis of voltage sensing and establish structural blueprints to design selective Nav channel antagonists.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahuja, Shivani -- Mukund, Susmith -- Deng, Lunbin -- Khakh, Kuldip -- Chang, Elaine -- Ho, Hoangdung -- Shriver, Stephanie -- Young, Clint -- Lin, Sophia -- Johnson, J P Jr -- Wu, Ping -- Li, Jun -- Coons, Mary -- Tam, Christine -- Brillantes, Bobby -- Sampang, Honorio -- Mortara, Kyle -- Bowman, Krista K -- Clark, Kevin R -- Estevez, Alberto -- Xie, Zhiwei -- Verschoof, Henry -- Grimwood, Michael -- Dehnhardt, Christoph -- Andrez, Jean-Christophe -- Focken, Thilo -- Sutherlin, Daniel P -- Safina, Brian S -- Starovasnik, Melissa A -- Ortwine, Daniel F -- Franke, Yvonne -- Cohen, Charles J -- Hackos, David H -- Koth, Christopher M -- Payandeh, Jian -- New York, N.Y. -- Science. 2015 Dec 18;350(6267):aac5464. doi: 10.1126/science.aac5464.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biology, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA. ; Department of Chemistry, Xenon Pharmaceuticals Inc., Burnaby, British Columbia, V5G 4W8, Canada. ; Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com. ; Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA. hackos.david@gene.com koth.christopher@gene.com payandeh.jian@gene.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26680203" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Membrane/chemistry ; Crystallization/methods ; Crystallography, X-Ray ; DNA Mutational Analysis ; Humans ; Models, Molecular ; Molecular Sequence Data ; NAV1.7 Voltage-Gated Sodium Channel/*chemistry/genetics ; Pain Perception/drug effects ; Protein Engineering ; Protein Isoforms/antagonists & inhibitors/chemistry ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Sodium Channel Blockers/*chemistry/*pharmacology ; Sulfonamides/*chemistry/*pharmacology ; Thiadiazoles/*chemistry/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...