ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (70)
  • Atomic, Molecular and Optical Physics
  • Cell Line
  • 2015-2019
  • 2010-2014  (70)
  • 1990-1994
  • 1980-1984
  • 1945-1949
  • 2013  (70)
  • Chemistry and Pharmacology  (70)
  • Biology  (70)
  • Computer Science  (22)
Collection
  • Articles  (70)
Years
  • 2015-2019
  • 2010-2014  (70)
  • 1990-1994
  • 1980-1984
  • 1945-1949
Year
Topic
  • 1
    Publication Date: 2013-10-12
    Description: Diverse eukaryotic hosts produce virus-derived small interfering RNAs (siRNAs) to direct antiviral immunity by RNA interference (RNAi). However, it remains unknown whether the mammalian RNAi pathway has a natural antiviral function. Here, we show that infection of hamster cells and suckling mice by Nodamura virus (NoV), a mosquito-transmissible RNA virus, requires RNAi suppression by its B2 protein. Loss of B2 expression or its suppressor activity leads to abundant production of viral siRNAs and rapid clearance of the mutant viruses in mice. However, viral small RNAs detected during virulent infection by NoV do not have the properties of canonical siRNAs. These findings have parallels with the induction and suppression of antiviral RNAi by the related Flock house virus in fruit flies and nematodes and reveal a mammalian antiviral immunity mechanism mediated by RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3875315/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Yang -- Lu, Jinfeng -- Han, Yanhong -- Fan, Xiaoxu -- Ding, Shou-Wei -- AI52447/AI/NIAID NIH HHS/ -- GM94396/GM/NIGMS NIH HHS/ -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):231-4. doi: 10.1126/science.1241911.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cricetinae ; Mice ; Nodaviridae/genetics/*pathogenicity ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Small Interfering/*immunology ; RNA, Viral/genetics/*immunology ; Viral Nonstructural Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-23
    Description: Glycosylated alpha-dystroglycan (alpha-DG) serves as cellular entry receptor for multiple pathogens, and defects in its glycosylation cause hereditary Walker-Warburg syndrome (WWS). At least eight proteins are critical to glycosylate alpha-DG, but many genes mutated in WWS remain unknown. To identify modifiers of alpha-DG, we performed a haploid screen for Lassa virus entry, a hemorrhagic fever virus causing thousands of deaths annually that hijacks glycosylated alpha-DG to enter cells. In complementary screens, we profiled cells for absence of alpha-DG carbohydrate chains or biochemically related glycans. This revealed virus host factors and a suite of glycosylation units, including all known Walker-Warburg genes and five additional factors critical for the modification of alpha-DG. Our findings accentuate the complexity of this posttranslational feature and point out genes defective in dystroglycanopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3919138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jae, Lucas T -- Raaben, Matthijs -- Riemersma, Moniek -- van Beusekom, Ellen -- Blomen, Vincent A -- Velds, Arno -- Kerkhoven, Ron M -- Carette, Jan E -- Topaloglu, Haluk -- Meinecke, Peter -- Wessels, Marja W -- Lefeber, Dirk J -- Whelan, Sean P -- van Bokhoven, Hans -- Brummelkamp, Thijn R -- AI057159/AI/NIAID NIH HHS/ -- AI081842/AI/NIAID NIH HHS/ -- R01 AI081842/AI/NIAID NIH HHS/ -- U54 AI057159/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 26;340(6131):479-83. doi: 10.1126/science.1233675. Epub 2013 Mar 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23519211" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cell Line ; Dystroglycans/*metabolism ; Female ; Glycosylation ; Haploidy ; Host-Pathogen Interactions/*genetics ; Humans ; Infant ; Lassa Fever/*genetics/virology ; Lassa virus/*physiology ; Male ; Membrane Proteins/*genetics ; Molecular Sequence Data ; Mutation ; Pedigree ; Proteome/*metabolism ; *Virus Internalization ; Walker-Warburg Syndrome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-21
    Description: Evidence for transcriptional feedback in circadian timekeeping is abundant, yet little is known about the mechanisms underlying translational control. We found that ATAXIN-2 (ATX2), an RNA-associated protein involved in neurodegenerative disease, is a translational activator of the rate-limiting clock component PERIOD (PER) in Drosophila. ATX2 specifically interacted with TWENTY-FOUR (TYF), an activator of PER translation. RNA interference-mediated depletion of Atx2 or the expression of a mutant ATX2 protein that does not associate with polyadenylate-binding protein (PABP) suppressed behavioral rhythms and decreased abundance of PER. Although ATX2 can repress translation, depletion of Atx2 from Drosophila S2 cells inhibited translational activation by RNA-tethered TYF and disrupted the association between TYF and PABP. Thus, ATX2 coordinates an active translation complex important for PER expression and circadian rhythms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lim, Chunghun -- Allada, Ravi -- R01NS059042/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 17;340(6134):875-9. doi: 10.1126/science.1234785.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23687047" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxins ; Cell Line ; *Circadian Rhythm ; Drosophila Proteins/*biosynthesis/genetics/metabolism ; Drosophila melanogaster/metabolism/*physiology ; Mutation ; Nerve Tissue Proteins/genetics/*metabolism ; Period Circadian Proteins/*biosynthesis ; Poly(A)-Binding Proteins/metabolism ; Protein Biosynthesis ; RNA Interference
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-03
    Description: An inducible program of inflammatory gene expression is central to antimicrobial defenses. This response is controlled by a collaboration involving signal-dependent activation of transcription factors, transcriptional co-regulators, and chromatin-modifying factors. We have identified a long noncoding RNA (lncRNA) that acts as a key regulator of this inflammatory response. Pattern recognition receptors such as the Toll-like receptors induce the expression of numerous lncRNAs. One of these, lincRNA-Cox2, mediates both the activation and repression of distinct classes of immune genes. Transcriptional repression of target genes is dependent on interactions of lincRNA-Cox2 with heterogeneous nuclear ribonucleoprotein A/B and A2/B1. Collectively, these studies unveil a central role of lincRNA-Cox2 as a broad-acting regulatory component of the circuit that controls the inflammatory response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4376668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carpenter, Susan -- Aiello, Daniel -- Atianand, Maninjay K -- Ricci, Emiliano P -- Gandhi, Pallavi -- Hall, Lisa L -- Byron, Meg -- Monks, Brian -- Henry-Bezy, Meabh -- Lawrence, Jeanne B -- O'Neill, Luke A J -- Moore, Melissa J -- Caffrey, Daniel R -- Fitzgerald, Katherine A -- AI067497/AI/NIAID NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- R01 AI067497/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):789-92. doi: 10.1126/science.1240925. Epub 2013 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23907535" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/metabolism ; Cyclooxygenase 2/genetics ; Cytokines/genetics/metabolism ; Cytosol/metabolism ; *Gene Expression Regulation ; Heterogeneous-Nuclear Ribonucleoproteins/metabolism ; Immunity, Innate/*genetics ; Inflammation/*genetics ; Macrophage Activation ; Macrophages/*immunology/*metabolism ; Mice ; Models, Immunological ; RNA Interference ; RNA, Long Noncoding/*genetics/metabolism ; Toll-Like Receptors/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-12-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2013 Dec 20;342(6165):1436. doi: 10.1126/science.342.6165.1436-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24357287" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Separation ; Cloning, Organism/*methods ; Female ; Humans ; *Induced Pluripotent Stem Cells ; Nuclear Transfer Techniques ; Pregnancy ; *Research Embryo Creation ; Surrogate Mothers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-03-02
    Description: The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-epsilon as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-epsilon was not induced by known PRR pathways; instead, IFN-epsilon was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-epsilon-deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-epsilon is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617553/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fung, Ka Yee -- Mangan, Niamh E -- Cumming, Helen -- Horvat, Jay C -- Mayall, Jemma R -- Stifter, Sebastian A -- De Weerd, Nicole -- Roisman, Laila C -- Rossjohn, Jamie -- Robertson, Sarah A -- Schjenken, John E -- Parker, Belinda -- Gargett, Caroline E -- Nguyen, Hong P T -- Carr, Daniel J -- Hansbro, Philip M -- Hertzog, Paul J -- R01 AI053108/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 1;339(6123):1088-92. doi: 10.1126/science.1233321.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23449591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Chlamydia Infections/genetics/*immunology ; *Chlamydia muridarum ; Estrogens/administration & dosage/immunology ; Female ; HEK293 Cells ; Herpes Genitalis/genetics/*immunology ; *Herpesvirus 2, Human ; Humans ; Interferons/genetics/*immunology ; Ligands ; Mice ; Mice, Inbred C57BL ; Oligodeoxyribonucleotides/immunology ; Poly I-C/immunology ; Poly dA-dT/immunology ; Toll-Like Receptors/*immunology ; Uterus/immunology ; Vagina/*immunology/microbiology/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-10
    Description: Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-beta induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Daxing -- Wu, Jiaxi -- Wu, You-Tong -- Du, Fenghe -- Aroh, Chukwuemika -- Yan, Nan -- Sun, Lijun -- Chen, Zhijian J -- R01 AI093967/AI/NIAID NIH HHS/ -- R01 AI098569/AI/NIAID NIH HHS/ -- R01-AI093967/AI/NIAID NIH HHS/ -- R01-AI098569/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):903-6. doi: 10.1126/science.1240933. Epub 2013 Aug 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23929945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Gene Knockdown Techniques ; HEK293 Cells ; HIV/drug effects/enzymology/*immunology ; HIV Infections/enzymology/*immunology/virology ; HIV Reverse Transcriptase/antagonists & inhibitors ; Humans ; *Immunity, Innate ; Interferon-beta/biosynthesis ; Membrane Proteins/metabolism ; Mice ; Nucleotidyltransferases/genetics/*metabolism ; Retroviridae/immunology ; Retroviridae Infections/enzymology/immunology/virology ; Reverse Transcriptase Inhibitors/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-10-12
    Description: In antiviral RNA interference (RNAi), the DICER enzyme processes virus-derived double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) that guide ARGONAUTE proteins to silence complementary viral RNA. As a counterdefense, viruses deploy viral suppressors of RNAi (VSRs). Well-established in plants and invertebrates, the existence of antiviral RNAi remains unknown in mammals. Here, we show that undifferentiated mouse cells infected with encephalomyocarditis virus (EMCV) or Nodamura virus (NoV) accumulate ~22-nucleotide RNAs with all the signature features of siRNAs. These derive from viral dsRNA replication intermediates, incorporate into AGO2, are eliminated in Dicer knockout cells, and decrease in abundance upon cell differentiation. Furthermore, genetically ablating a NoV-encoded VSR that antagonizes DICER during authentic infections reduces NoV accumulation, which is rescued in RNAi-deficient mouse cells. We conclude that antiviral RNAi operates in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853215/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maillard, P V -- Ciaudo, C -- Marchais, A -- Li, Y -- Jay, F -- Ding, S W -- Voinnet, Olivier -- R01 AI052447/AI/NIAID NIH HHS/ -- R01 GM094396/GM/NIGMS NIH HHS/ -- RC1 GM091896/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):235-8. doi: 10.1126/science.1241930.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Swiss Federal Institute of Technology Zurich (ETH-Z), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115438" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/genetics/metabolism ; Base Sequence ; Cardiovirus Infections/*immunology ; Cell Line ; DEAD-box RNA Helicases/genetics/metabolism ; Encephalomyocarditis virus/genetics/*physiology ; Gene Knockout Techniques ; Mice ; Molecular Sequence Data ; Nodaviridae/genetics/*physiology ; RNA Interference/*immunology ; RNA Virus Infections/*immunology ; RNA, Double-Stranded/genetics/*immunology/metabolism ; RNA, Small Interfering/genetics/*immunology/metabolism ; RNA, Viral/genetics/*immunology/metabolism ; Ribonuclease III/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-26
    Description: The human genome contains ~50 genes that were derived from transposable elements or transposons, and many are now integral components of cellular gene expression programs. The human THAP9 gene is related to the Drosophila P-element transposase. Here, we show that human THAP9 can mobilize Drosophila P-elements in both Drosophila and human cells. Chimeric proteins formed between the Drosophila P-element transposase N-terminal THAP DNA binding domain and the C-terminal regions of human THAP9 can also mobilize Drosophila P elements. Our results indicate that human THAP9 is an active DNA transposase that, although "domesticated," still retains the catalytic activity to mobilize P transposable elements across species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779457/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Majumdar, Sharmistha -- Singh, Anita -- Rio, Donald C -- R01 GM048862/GM/NIGMS NIH HHS/ -- R01 GM094890/GM/NIGMS NIH HHS/ -- R01 GM097352/GM/NIGMS NIH HHS/ -- R01 GM104385/GM/NIGMS NIH HHS/ -- R01GM094890/GM/NIGMS NIH HHS/ -- R01GM104385/GM/NIGMS NIH HHS/ -- R01GM48862/GM/NIGMS NIH HHS/ -- R01GM61987/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Jan 25;339(6118):446-8. doi: 10.1126/science.1231789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23349291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; *DNA Transposable Elements ; Drosophila/genetics ; Genome, Human ; HEK293 Cells ; Humans ; Molecular Sequence Data ; Recombinant Fusion Proteins/metabolism ; Sequence Analysis, DNA ; Transfection ; Transposases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-25
    Description: The introduction of sulfa drugs for the chemotherapy of bacterial infections in 1935 revolutionized medicine. Although their mechanism of action is understood, the molecular bases for most of their side effects remain obscure. Here, we report that sulfamethoxazole and other sulfa drugs interfere with tetrahydrobiopterin biosynthesis through inhibition of sepiapterin reductase. Crystal structures of sepiapterin reductase with bound sulfa drugs reveal how structurally diverse sulfa drugs achieve specific inhibition of the enzyme. The effect of sulfa drugs on tetrahydrobiopterin-dependent neurotransmitter biosynthesis in cell-based assays provides a rationale for some of their central nervous system-related side effects, particularly in high-dose sulfamethoxazole therapy of Pneumocystis pneumonia. Our findings reveal an unexpected aspect of the pharmacology of sulfa drugs and might translate into their improved medical use.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haruki, Hirohito -- Pedersen, Miriam Gronlund -- Gorska, Katarzyna Irena -- Pojer, Florence -- Johnsson, Kai -- New York, N.Y. -- Science. 2013 May 24;340(6135):987-91. doi: 10.1126/science.1232972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EPFL, Institute of Chemical Sciences and Engineering, Institute of Bioengineering, National Centre of Competence in Research in Chemical Biology, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704574" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Hydroxytryptophan/biosynthesis ; Adult ; Alcohol Oxidoreductases/*antagonists & inhibitors/*chemistry ; Anti-Infective Agents/adverse effects/*pharmacology/therapeutic use ; Biopterin/*analogs & derivatives/biosynthesis ; Cell Line ; Central Nervous System/drug effects ; Crystallography, X-Ray ; Fibroblasts/drug effects/metabolism ; Humans ; Levodopa/biosynthesis ; NADP/chemistry ; Nausea/chemically induced ; Pneumonia, Pneumocystis/drug therapy ; Protein Conformation ; Structure-Activity Relationship ; Sulfamethoxazole/adverse effects/*pharmacology/therapeutic use ; Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology/therapeutic use ; Vomiting/chemically induced
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-03
    Description: The posttranslational modification of proteins and their regulation by metabolites represent conserved mechanisms in biology. At the confluence of these two processes, we report that the primary glycolytic intermediate 1,3-bisphosphoglycerate (1,3-BPG) reacts with select lysine residues in proteins to form 3-phosphoglyceryl-lysine (pgK). This reaction, which does not require enzyme catalysis, but rather exploits the electrophilicity of 1,3-BPG, was found by proteomic profiling to be enriched on diverse classes of proteins and prominently in or around the active sites of glycolytic enzymes. pgK modifications inhibit glycolytic enzymes and, in cells exposed to high glucose, accumulate on these enzymes to create a potential feedback mechanism that contributes to the buildup and redirection of glycolytic intermediates to alternate biosynthetic pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005992/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moellering, Raymond E -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):549-53. doi: 10.1126/science.1238327.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA. rmoeller@scripps.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23908237" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biomarkers, Tumor/chemistry/metabolism ; Catalysis ; Cell Line ; DNA-Binding Proteins/chemistry/metabolism ; Diphosphoglyceric Acids/*metabolism ; Glucose/metabolism ; Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry/metabolism ; Glycerophosphates/*metabolism ; *Glycolysis ; Humans ; Lysine/*analogs & derivatives/*metabolism ; Mice ; Molecular Sequence Data ; Phosphopyruvate Hydratase/chemistry/metabolism ; *Protein Processing, Post-Translational ; Proteins/chemistry/*metabolism ; Tumor Suppressor Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-07-06
    Description: Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778663/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Engreitz, Jesse M -- Pandya-Jones, Amy -- McDonel, Patrick -- Shishkin, Alexander -- Sirokman, Klara -- Surka, Christine -- Kadri, Sabah -- Xing, Jeffrey -- Goren, Alon -- Lander, Eric S -- Plath, Kathrin -- Guttman, Mitchell -- 1F32GM103139-01/GM/NIGMS NIH HHS/ -- DP5 OD012190/OD/NIH HHS/ -- DP5OD012190/OD/NIH HHS/ -- P01 GM099134/GM/NIGMS NIH HHS/ -- P01GM099134/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):1237973. doi: 10.1126/science.1237973. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828888" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Line ; Chromatin/chemistry/metabolism ; Female ; *Genome ; Male ; Mice ; Models, Genetic ; RNA, Long Noncoding/chemistry/*metabolism ; Transcription, Genetic ; X Chromosome/*metabolism/ultrastructure ; *X Chromosome Inactivation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-10-11
    Description: DNA methylation was first described almost a century ago; however, the rules governing its establishment and maintenance remain elusive. Here we present data demonstrating that active transcription regulates levels of genomic methylation. We identify a novel RNA arising from the CEBPA gene locus that is critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extend the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene-selective demethylation of therapeutic targets in human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870304/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870304/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di Ruscio, Annalisa -- Ebralidze, Alexander K -- Benoukraf, Touati -- Amabile, Giovanni -- Goff, Loyal A -- Terragni, Jolyon -- Figueroa, Maria Eugenia -- De Figueiredo Pontes, Lorena Lobo -- Alberich-Jorda, Meritxell -- Zhang, Pu -- Wu, Mengchu -- D'Alo, Francesco -- Melnick, Ari -- Leone, Giuseppe -- Ebralidze, Konstantin K -- Pradhan, Sriharsa -- Rinn, John L -- Tenen, Daniel G -- CA118316/CA/NCI NIH HHS/ -- CA66996/CA/NCI NIH HHS/ -- HL56745/HL/NHLBI NIH HHS/ -- P01 CA066996/CA/NCI NIH HHS/ -- R01 CA118316/CA/NCI NIH HHS/ -- R01 HL056745/HL/NHLBI NIH HHS/ -- R01 HL112719/HL/NHLBI NIH HHS/ -- T32 HL007917-11A1/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Nov 21;503(7476):371-6. doi: 10.1038/nature12598. Epub 2013 Oct 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA [3] Universita Cattolica del Sacro Cuore, Institute of Hematology, L.go A. Gemelli 8, Rome 00168, Italy [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24107992" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; CCAAT-Enhancer-Binding Proteins/*genetics ; Cell Line ; DNA/genetics/metabolism ; DNA (Cytosine-5-)-Methyltransferase/*metabolism ; DNA Methylation/*genetics ; Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genome, Human/genetics ; Humans ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/genetics/*metabolism ; RNA-Binding Proteins/metabolism ; Substrate Specificity ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-21
    Description: Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rais, Yoach -- Zviran, Asaf -- Geula, Shay -- Gafni, Ohad -- Chomsky, Elad -- Viukov, Sergey -- Mansour, Abed AlFatah -- Caspi, Inbal -- Krupalnik, Vladislav -- Zerbib, Mirie -- Maza, Itay -- Mor, Nofar -- Baran, Dror -- Weinberger, Leehee -- Jaitin, Diego A -- Lara-Astiaso, David -- Blecher-Gonen, Ronnie -- Shipony, Zohar -- Mukamel, Zohar -- Hagai, Tzachi -- Gilad, Shlomit -- Amann-Zalcenstein, Daniela -- Tanay, Amos -- Amit, Ido -- Novershtern, Noa -- Hanna, Jacob H -- England -- Nature. 2013 Oct 3;502(7469):65-70. doi: 10.1038/nature12587. Epub 2013 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24048479" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/genetics/*physiology ; DNA-Binding Proteins/genetics ; Embryonic Stem Cells ; Female ; Gene Expression Regulation ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/*physiology ; Male ; Mice ; *Models, Biological ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-02
    Description: More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Donovan, Bridget M -- Labitt, Rachael N -- Budell, William C -- Friling, Tamar -- Vogt, Alexander -- Catanese, Maria Teresa -- Satoh, Takashi -- Kawai, Taro -- Akira, Shizuo -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 AI107301/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):237-41. doi: 10.1038/nature12427. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD81/genetics/metabolism ; Cell Line ; Cyclophilin A/genetics/metabolism ; *Disease Models, Animal ; *Genetic Engineering ; Hepacivirus/immunology/*physiology ; Hepatitis C/*genetics/immunology/*virology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Occludin/genetics/metabolism ; STAT1 Transcription Factor/deficiency ; Viremia/virology ; Virion/growth & development/physiology ; *Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-06-01
    Description: Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage 〉Gp(2'-5')Ap(3'-5')〉. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ablasser, Andrea -- Goldeck, Marion -- Cavlar, Taner -- Deimling, Tobias -- Witte, Gregor -- Rohl, Ingo -- Hopfner, Karl-Peter -- Ludwig, Janos -- Hornung, Veit -- 243046/European Research Council/International -- U19AI083025/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):380-4. doi: 10.1038/nature12306. Epub 2013 May 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany. andrea.ablasser@uni-bonn.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23722158" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/chemistry ; Animals ; Biocatalysis ; Cell Line ; Cyclic GMP/chemistry ; Cyclization ; HEK293 Cells ; Humans ; Magnetic Resonance Spectroscopy ; Membrane Proteins/*metabolism ; Mice ; Models, Molecular ; Molecular Structure ; Nucleotidyltransferases/genetics/*metabolism ; Oligoribonucleotides/biosynthesis/chemistry/*metabolism ; Second Messenger Systems/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-06-14
    Description: 53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3955401/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fradet-Turcotte, Amelie -- Canny, Marella D -- Escribano-Diaz, Cristina -- Orthwein, Alexandre -- Leung, Charles C Y -- Huang, Hao -- Landry, Marie-Claude -- Kitevski-LeBlanc, Julianne -- Noordermeer, Sylvie M -- Sicheri, Frank -- Durocher, Daniel -- 84297-1/Canadian Institutes of Health Research/Canada -- 84297-2/Canadian Institutes of Health Research/Canada -- MOP84297/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 4;499(7456):50-4. doi: 10.1038/nature12318. Epub 2013 Jun 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23760478" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Cycle Proteins/chemistry/metabolism ; Cell Line ; Chromosomal Proteins, Non-Histone/chemistry/deficiency/genetics ; DNA Breaks, Double-Stranded ; *DNA Damage ; DNA-Binding Proteins/chemistry/deficiency/genetics ; Female ; Histones/*chemistry/*metabolism ; Humans ; Intracellular Signaling Peptides and ; Proteins/chemistry/deficiency/genetics/*metabolism ; Lysine/*metabolism ; Male ; Mice ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Nuclear Proteins/chemistry/metabolism ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Schizosaccharomyces ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction ; Ubiquitin/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-03-19
    Description: The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarraf, Shireen A -- Raman, Malavika -- Guarani-Pereira, Virginia -- Sowa, Mathew E -- Huttlin, Edward L -- Gygi, Steven P -- Harper, J Wade -- CA139885/CA/NCI NIH HHS/ -- GM067945/GM/NIGMS NIH HHS/ -- GM070565/GM/NIGMS NIH HHS/ -- GM095567/GM/NIGMS NIH HHS/ -- R01 GM067945/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- R01 GM095567/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):372-6. doi: 10.1038/nature12043. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila Proteins/metabolism ; Drosophila melanogaster/metabolism ; Humans ; *Membrane Potential, Mitochondrial ; Mice ; Mitochondria/chemistry/*metabolism ; Mitochondrial Membranes/*metabolism ; Mitochondrial Proteins/*metabolism ; Protein Kinases/metabolism ; Proteome/*metabolism ; Proteomics ; Ubiquitin-Protein Ligases/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-07-13
    Description: Cell-surface receptors frequently use scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr)-binding (PTB) domains. Using quantitative mass spectrometry, here we show that mammalian Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. After stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic or survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser 29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signalling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signalling information after EGF stimulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Yong -- Zhang, Cunjie -- Croucher, David R -- Soliman, Mohamed A -- St-Denis, Nicole -- Pasculescu, Adrian -- Taylor, Lorne -- Tate, Stephen A -- Hardy, W Rod -- Colwill, Karen -- Dai, Anna Yue -- Bagshaw, Rick -- Dennis, James W -- Gingras, Anne-Claude -- Daly, Roger J -- Pawson, Tony -- MOP-13466-6849/Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jul 11;499(7457):166-71. doi: 10.1038/nature12308.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23846654" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast/cytology ; Cell Line ; Epidermal Growth Factor/*metabolism ; Epithelial Cells/cytology ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Feedback, Physiological ; GRB2 Adaptor Protein/deficiency/genetics/metabolism ; Humans ; Mice ; Multiprotein Complexes/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein-Tyrosine Kinases ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Receptor, Epidermal Growth Factor/agonists/metabolism ; Shc Signaling Adaptor Proteins/deficiency/genetics/*metabolism ; *Signal Transduction ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-10-04
    Description: Nutrient deprivation is a stimulus shared by both autophagy and the formation of primary cilia. The recently discovered role of primary cilia in nutrient sensing and signalling motivated us to explore the possible functional interactions between this signalling hub and autophagy. Here we show that part of the molecular machinery involved in ciliogenesis also participates in the early steps of the autophagic process. Signalling from the cilia, such as that from the Hedgehog pathway, induces autophagy by acting directly on essential autophagy-related proteins strategically located in the base of the cilium by ciliary trafficking proteins. Whereas abrogation of ciliogenesis partially inhibits autophagy, blockage of autophagy enhances primary cilia growth and cilia-associated signalling during normal nutritional conditions. We propose that basal autophagy regulates ciliary growth through the degradation of proteins required for intraflagellar transport. Compromised ability to activate the autophagic response may underlie some common ciliopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896125/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896125/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pampliega, Olatz -- Orhon, Idil -- Patel, Bindi -- Sridhar, Sunandini -- Diaz-Carretero, Antonio -- Beau, Isabelle -- Codogno, Patrice -- Satir, Birgit H -- Satir, Peter -- Cuervo, Ana Maria -- AG031782/AG/NIA NIH HHS/ -- AG038072/AG/NIA NIH HHS/ -- DK098408/DK/NIDDK NIH HHS/ -- P01 AG031782/AG/NIA NIH HHS/ -- P30 AG038072/AG/NIA NIH HHS/ -- R01 DK098408/DK/NIDDK NIH HHS/ -- R37 AG021904/AG/NIA NIH HHS/ -- England -- Nature. 2013 Oct 10;502(7470):194-200. doi: 10.1038/nature12639. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089209" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics/*physiology ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cilia/metabolism/*physiology ; Hedgehog Proteins/metabolism ; Mice ; Protein Transport ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-07-19
    Description: Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848249/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3848249/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Jun -- Jing, Yuanchun -- Cost, Gregory J -- Chiang, Jen-Chieh -- Kolpa, Heather J -- Cotton, Allison M -- Carone, Dawn M -- Carone, Benjamin R -- Shivak, David A -- Guschin, Dmitry Y -- Pearl, Jocelynn R -- Rebar, Edward J -- Byron, Meg -- Gregory, Philip D -- Brown, Carolyn J -- Urnov, Fyodor D -- Hall, Lisa L -- Lawrence, Jeanne B -- 1F32CA154086/CA/NCI NIH HHS/ -- 2T32HD007439/HD/NICHD NIH HHS/ -- F32 CA154086/CA/NCI NIH HHS/ -- GM053234/GM/NIGMS NIH HHS/ -- GM085548/GM/NIGMS NIH HHS/ -- GM096400 RC4/GM/NIGMS NIH HHS/ -- MOP-13680/Canadian Institutes of Health Research/Canada -- R01 GM053234/GM/NIGMS NIH HHS/ -- R01 GM085548/GM/NIGMS NIH HHS/ -- RC4 GM096400/GM/NIGMS NIH HHS/ -- T32 HD007439/HD/NICHD NIH HHS/ -- England -- Nature. 2013 Aug 15;500(7462):296-300. doi: 10.1038/nature12394. Epub 2013 Jul 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23863942" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Proliferation ; Chromosomes, Human, Pair 21/*genetics ; DNA Methylation ; *Dosage Compensation, Genetic ; Down Syndrome/*genetics/therapy ; Gene Silencing ; Humans ; Induced Pluripotent Stem Cells ; Male ; Mice ; Mutagenesis, Insertional ; Neurogenesis ; RNA, Long Noncoding/genetics/*metabolism ; Sex Chromatin/genetics ; X Chromosome Inactivation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-07-26
    Description: It is becoming increasingly clear that the shape of the genome importantly influences transcription regulation. Pluripotent stem cells such as embryonic stem cells were recently shown to organize their chromosomes into topological domains that are largely invariant between cell types. Here we combine chromatin conformation capture technologies with chromatin factor binding data to demonstrate that inactive chromatin is unusually disorganized in pluripotent stem-cell nuclei. We show that gene promoters engage in contacts between topological domains in a largely tissue-independent manner, whereas enhancers have a more tissue-restricted interaction profile. Notably, genomic clusters of pluripotency factor binding sites find each other very efficiently, in a manner that is strictly pluripotent-stem-cell-specific, dependent on the presence of Oct4 and Nanog protein and inducible after artificial recruitment of Nanog to a selected chromosomal site. We conclude that pluripotent stem cells have a unique higher-order genome structure shaped by pluripotency factors. We speculate that this interactome enhances the robustness of the pluripotent state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Wit, Elzo -- Bouwman, Britta A M -- Zhu, Yun -- Klous, Petra -- Splinter, Erik -- Verstegen, Marjon J A M -- Krijger, Peter H L -- Festuccia, Nicola -- Nora, Elphege P -- Welling, Maaike -- Heard, Edith -- Geijsen, Niels -- Poot, Raymond A -- Chambers, Ian -- de Laat, Wouter -- G0901533/Medical Research Council/United Kingdom -- England -- Nature. 2013 Sep 12;501(7466):227-31. doi: 10.1038/nature12420. Epub 2013 Jul 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23883933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line ; Chromatin/*chemistry/genetics/*metabolism ; Chromatin Immunoprecipitation ; *Chromosome Positioning ; Embryonic Stem Cells/cytology/metabolism ; Enhancer Elements, Genetic ; Genome/*genetics ; Homeodomain Proteins/metabolism ; *Imaging, Three-Dimensional ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Molecular Imaging ; Octamer Transcription Factor-3/metabolism ; Organ Specificity ; Pluripotent Stem Cells/*cytology/*metabolism ; Promoter Regions, Genetic ; SOXB1 Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-11-29
    Description: Two large-scale pharmacogenomic studies were published recently in this journal. Genomic data are well correlated between studies; however, the measured drug response data are highly discordant. Although the source of inconsistencies remains uncertain, it has potential implications for using these outcome measures to assess gene-drug associations or select potential anticancer drugs on the basis of their reported results.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haibe-Kains, Benjamin -- El-Hachem, Nehme -- Birkbak, Nicolai Juul -- Jin, Andrew C -- Beck, Andrew H -- Aerts, Hugo J W L -- Quackenbush, John -- CA087969/CA/NCI NIH HHS/ -- P01 CA087969/CA/NCI NIH HHS/ -- U19 CA148065/CA/NCI NIH HHS/ -- U19 CA148065-01/CA/NCI NIH HHS/ -- England -- Nature. 2013 Dec 19;504(7480):389-93. doi: 10.1038/nature12831. Epub 2013 Nov 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut de Recherches Cliniques de Montreal, University of Montreal, Montreal, Quebec, Canada [2] Ontario Cancer Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada. ; Institut de Recherches Cliniques de Montreal, University of Montreal, Montreal, Quebec, Canada. ; Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark. ; Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA. ; 1] Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA [2]. ; 1] Department of Biostatistics and Computational Biology and Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Radiation Oncology & Radiology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA [3] Department of Radiation Oncology, Maastricht University, Maastricht 6200 MD, The Netherlands [4]. ; 1] Department of Biostatistics and Computational Biology and Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24284626" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Area Under Curve ; Cell Line ; Drug Resistance, Neoplasm/drug effects/genetics ; Gene Expression Profiling ; Genome, Human/genetics ; Humans ; Inhibitory Concentration 50 ; Neoplasms/drug therapy/genetics/pathology ; *Pharmacogenetics ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-06-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wadman, Meredith -- England -- Nature. 2013 Jun 27;498(7455):422-6. doi: 10.1038/498422a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23803825" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Biomedical Research/ethics/*history ; Cell Aging ; Cell Culture Techniques/*history ; Cell Division ; Cell Line ; Child ; Female ; Fetus/*cytology ; HeLa Cells ; Helsinki Declaration/history ; History, 20th Century ; Humans ; Informed Consent ; Sweden ; Tissue and Organ Procurement/economics/ethics ; United States ; Viral Vaccines/history/supply & distribution
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-07-23
    Description: Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millay, Douglas P -- O'Rourke, Jason R -- Sutherland, Lillian B -- Bezprozvannaya, Svetlana -- Shelton, John M -- Bassel-Duby, Rhonda -- Olson, Eric N -- F32 AR059484/AR/NIAMS NIH HHS/ -- F32AR05948403/AR/NIAMS NIH HHS/ -- HL-077439/HL/NHLBI NIH HHS/ -- HL-111665/HL/NHLBI NIH HHS/ -- HL093039/HL/NHLBI NIH HHS/ -- R01 HL093039/HL/NHLBI NIH HHS/ -- R01 HL111665/HL/NHLBI NIH HHS/ -- U01-HL-100401/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Jul 18;499(7458):301-5. doi: 10.1038/nature12343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Fusion ; Cell Line ; Membrane Proteins/genetics/metabolism/*physiology ; Mice ; Mice, Knockout ; *Muscle Development ; Muscle Proteins/genetics/metabolism/*physiology ; Muscle, Skeletal/cytology/*embryology/metabolism ; Myoblasts/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-10
    Description: Faithful propagation of DNA methylation patterns during DNA replication is critical for maintaining cellular phenotypes of individual differentiated cells. Although it is well established that Uhrf1 (ubiquitin-like with PHD and ring finger domains 1; also known as Np95 and ICBP90) specifically binds to hemi-methylated DNA through its SRA (SET and RING finger associated) domain and has an essential role in maintenance of DNA methylation by recruiting Dnmt1 to hemi-methylated DNA sites, the mechanism by which Uhrf1 coordinates the maintenance of DNA methylation and DNA replication is largely unknown. Here we show that Uhrf1-dependent histone H3 ubiquitylation has a prerequisite role in the maintenance DNA methylation. Using Xenopus egg extracts, we successfully reproduce maintenance DNA methylation in vitro. Dnmt1 depletion results in a marked accumulation of Uhrf1-dependent ubiquitylation of histone H3 at lysine 23. Dnmt1 preferentially associates with ubiquitylated H3 in vitro though a region previously identified as a replication foci targeting sequence. The RING finger mutant of Uhrf1 fails to recruit Dnmt1 to DNA replication sites and maintain DNA methylation in mammalian cultured cells. Our findings represent the first evidence, to our knowledge, of the mechanistic link between DNA methylation and DNA replication through histone H3 ubiquitylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nishiyama, Atsuya -- Yamaguchi, Luna -- Sharif, Jafar -- Johmura, Yoshikazu -- Kawamura, Takeshi -- Nakanishi, Keiko -- Shimamura, Shintaro -- Arita, Kyohei -- Kodama, Tatsuhiko -- Ishikawa, Fuyuki -- Koseki, Haruhiko -- Nakanishi, Makoto -- England -- Nature. 2013 Oct 10;502(7470):249-53. doi: 10.1038/nature12488. Epub 2013 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan. anishiya@med.nagoya-cu.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24013172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; DNA Methylation/genetics/*physiology ; DNA Replication/genetics/*physiology ; HEK293 Cells ; HeLa Cells ; Histones/*metabolism ; Humans ; Mice ; Ovum/chemistry ; Protein Binding ; Ubiquitin-Protein Ligases/genetics/*metabolism ; Ubiquitination ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-10-04
    Description: The primary cilium is a microtubule-based organelle that functions in sensory and signalling pathways. Defects in ciliogenesis can lead to a group of genetic syndromes known as ciliopathies. However, the regulatory mechanisms of primary ciliogenesis in normal and cancer cells are incompletely understood. Here we demonstrate that autophagic degradation of a ciliopathy protein, OFD1 (oral-facial-digital syndrome 1), at centriolar satellites promotes primary cilium biogenesis. Autophagy is a catabolic pathway in which cytosol, damaged organelles and protein aggregates are engulfed in autophagosomes and delivered to lysosomes for destruction. We show that the population of OFD1 at the centriolar satellites is rapidly degraded by autophagy upon serum starvation. In autophagy-deficient Atg5 or Atg3 null mouse embryonic fibroblasts, OFD1 accumulates at centriolar satellites, leading to fewer and shorter primary cilia and a defective recruitment of BBS4 (Bardet-Biedl syndrome 4) to cilia. These defects are fully rescued by OFD1 partial knockdown that reduces the population of OFD1 at centriolar satellites. More strikingly, OFD1 depletion at centriolar satellites promotes cilia formation in both cycling cells and transformed breast cancer MCF7 cells that normally do not form cilia. This work reveals that removal of OFD1 by autophagy at centriolar satellites represents a general mechanism to promote ciliogenesis in mammalian cells. These findings define a newly recognized role of autophagy in organelle biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Zaiming -- Lin, Mary Grace -- Stowe, Timothy Richard -- Chen, She -- Zhu, Muyuan -- Stearns, Tim -- Franco, Brunella -- Zhong, Qing -- CA133228/CA/NCI NIH HHS/ -- R01 CA133228/CA/NCI NIH HHS/ -- TGM11CB3/Telethon/Italy -- England -- Nature. 2013 Oct 10;502(7470):254-7. doi: 10.1038/nature12606. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089205" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy/genetics ; Cell Line ; Centrioles/*metabolism ; Cilia/genetics/metabolism/*physiology ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; MCF-7 Cells ; Mice ; Protein Transport ; Proteins/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-10-04
    Description: The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(DeltaIEC)) or autophagy function (Atg16l1(DeltaIEC) or Atg7(DeltaIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(DeltaIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2alpha (eIF2alpha) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1alpha (IRE1alpha)-regulated NF-kappaB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1alpha activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-kappaB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adolph, Timon E -- Tomczak, Michal F -- Niederreiter, Lukas -- Ko, Hyun-Jeong -- Bock, Janne -- Martinez-Naves, Eduardo -- Glickman, Jonathan N -- Tschurtschenthaler, Markus -- Hartwig, John -- Hosomi, Shuhei -- Flak, Magdalena B -- Cusick, Jennifer L -- Kohno, Kenji -- Iwawaki, Takao -- Billmann-Born, Susanne -- Raine, Tim -- Bharti, Richa -- Lucius, Ralph -- Kweon, Mi-Na -- Marciniak, Stefan J -- Choi, Augustine -- Hagen, Susan J -- Schreiber, Stefan -- Rosenstiel, Philip -- Kaser, Arthur -- Blumberg, Richard S -- 100140/Wellcome Trust/United Kingdom -- 260961/European Research Council/International -- DK0034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- G1002610/Medical Research Council/United Kingdom -- R01 DK044319/DK/NIDDK NIH HHS/ -- R01 DK051362/DK/NIDDK NIH HHS/ -- R01 DK053056/DK/NIDDK NIH HHS/ -- R01 DK088199/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):272-6. doi: 10.1038/nature12599. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics ; Carrier Proteins/genetics/metabolism ; Cell Line ; DNA-Binding Proteins/genetics/metabolism ; Endoplasmic Reticulum Stress/genetics ; Inflammation ; Intestinal Diseases/genetics/*physiopathology ; Intestinal Mucosa/cytology/*pathology ; Mice ; Paneth Cells/*pathology ; Signal Transduction ; Transcription Factors/genetics/metabolism ; Unfolded Protein Response/physiology ; eIF-2 Kinase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-03-15
    Description: Centrosome duplication is critical for cell division, and genome instability can result if duplication is not restricted to a single round per cell cycle. Centrosome duplication is controlled in part by CP110, a centriolar protein that positively regulates centriole duplication while restricting centriole elongation and ciliogenesis. Maintenance of normal CP110 levels is essential, as excessive CP110 drives centrosome over-duplication and suppresses ciliogenesis, whereas its depletion inhibits centriole amplification and leads to highly elongated centrioles and aberrant assembly of cilia in growing cells. CP110 levels are tightly controlled, partly through ubiquitination by the ubiquitin ligase complex SCF(cyclin F) during G2 and M phases of the cell cycle. Here, using human cells, we report a new mechanism for the regulation of centrosome duplication that requires USP33, a deubiquitinating enzyme that is able to regulate CP110 levels. USP33 interacts with CP110 and localizes to centrioles primarily in S and G2/M phases, the periods during which centrioles duplicate and elongate. USP33 potently and specifically deubiquitinates CP110, but not other cyclin-F substrates. USP33 activity antagonizes SCF(cyclin F)-mediated ubiquitination and promotes the generation of supernumerary centriolar foci, whereas ablation of USP33 destabilizes CP110 and thereby inhibits centrosome amplification and mitotic defects. To our knowledge, we have identified the first centriolar deubiquitinating enzyme whose expression regulates centrosome homeostasis by countering cyclin-F-mediated destruction of a key substrate. Our results point towards potential therapeutic strategies for inhibiting tumorigenesis associated with centrosome amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815529/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815529/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Ji -- D'Angiolella, Vincenzo -- Seeley, E Scott -- Kim, Sehyun -- Kobayashi, Tetsuo -- Fu, Wenxiang -- Campos, Eric I -- Pagano, Michele -- Dynlacht, Brian David -- 5R01HD069647-02/HD/NICHD NIH HHS/ -- R01 GM057587/GM/NIGMS NIH HHS/ -- R01 HD069647/HD/NICHD NIH HHS/ -- R37 CA076584/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Mar 14;495(7440):255-9. doi: 10.1038/nature11941.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, 522 1st Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23486064" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle ; Cell Cycle Proteins/*metabolism ; Cell Line ; Centrioles/metabolism ; Centrosome/*metabolism ; Cyclins/metabolism ; Homeostasis ; Humans ; Microtubule-Associated Proteins/*metabolism ; Neoplasms/pathology/therapy ; Phosphoproteins/*metabolism ; Protein Stability ; SKP Cullin F-Box Protein Ligases/metabolism ; Ubiquitin Thiolesterase/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-04-26
    Description: Skeletal muscle arises from the fusion of precursor myoblasts into multinucleated myofibres. Although conserved transcription factors and signalling proteins involved in myogenesis have been identified, upstream regulators are less well understood. Here we report an unexpected discovery that the membrane protein BAI1, previously linked to recognition of apoptotic cells by phagocytes, promotes myoblast fusion. Endogenous BAI1 expression increased during myoblast fusion, and BAI1 overexpression enhanced myoblast fusion by means of signalling through ELMO/Dock180/Rac1 proteins. During myoblast fusion, a fraction of myoblasts within the population underwent apoptosis and exposed phosphatidylserine, an established ligand for BAI1 (ref. 3). Blocking apoptosis potently impaired myoblast fusion, and adding back apoptotic myoblasts restored fusion. Furthermore, primary human myoblasts could be induced to form myotubes by adding apoptotic myoblasts, even under normal growth conditions. Mechanistically, apoptotic cells did not directly fuse with the healthy myoblasts, rather the apoptotic cells induced a contact-dependent signalling with neighbours to promote fusion among the healthy myoblasts. In vivo, myofibres from Bai1(-/-) mice are smaller than those from wild-type littermates. Muscle regeneration after injury was also impaired in Bai1(-/-)mice, highlighting a role for BAI1 in mammalian myogenesis. Collectively, these data identify apoptotic cells as a new type of cue that induces signalling via the phosphatidylserine receptor BAI1 to promote fusion of healthy myoblasts, with important implications for muscle development and repair.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773542/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773542/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hochreiter-Hufford, Amelia E -- Lee, Chang Sup -- Kinchen, Jason M -- Sokolowski, Jennifer D -- Arandjelovic, Sanja -- Call, Jarrod A -- Klibanov, Alexander L -- Yan, Zhen -- Mandell, James W -- Ravichandran, Kodi S -- P30 CA044579/CA/NCI NIH HHS/ -- R01 GM064709/GM/NIGMS NIH HHS/ -- T32 AI007496/AI/NIAID NIH HHS/ -- T32 AR007612/AR/NIAMS NIH HHS/ -- England -- Nature. 2013 May 9;497(7448):263-7. doi: 10.1038/nature12135. Epub 2013 Apr 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23615608" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenic Proteins/deficiency/genetics/*metabolism ; Animals ; Apoptosis/drug effects/*physiology ; Cell Communication ; Cell Differentiation ; *Cell Fusion ; Cell Line ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Development ; Muscle Fibers, Skeletal/cytology/metabolism/pathology ; Muscle, Skeletal/*cytology/metabolism ; Myoblasts/*cytology/metabolism ; Phosphatidylserines/metabolism ; Receptors, Cell Surface/deficiency/genetics/*metabolism ; *Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-11-12
    Description: In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954713/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yubo -- Wong, Chee-Hong -- Birnbaum, Ramon Y -- Li, Guoliang -- Favaro, Rebecca -- Ngan, Chew Yee -- Lim, Joanne -- Tai, Eunice -- Poh, Huay Mei -- Wong, Eleanor -- Mulawadi, Fabianus Hendriyan -- Sung, Wing-Kin -- Nicolis, Silvia -- Ahituv, Nadav -- Ruan, Yijun -- Wei, Chia-Lin -- 1U54HG004557-01/HG/NHGRI NIH HHS/ -- GGP12152/Telethon/Italy -- GM61390/GM/NIGMS NIH HHS/ -- R01 DK090382/DK/NIDDK NIH HHS/ -- R01 HD059862/HD/NICHD NIH HHS/ -- R01 HG004456-01/HG/NHGRI NIH HHS/ -- R01 NS079231/NS/NINDS NIH HHS/ -- R01DK090382/DK/NIDDK NIH HHS/ -- R01HD059862/HD/NICHD NIH HHS/ -- R01HG003521-01/HG/NHGRI NIH HHS/ -- R01HG005058/HG/NHGRI NIH HHS/ -- R01HG006768/HG/NHGRI NIH HHS/ -- R01NS079231/NS/NINDS NIH HHS/ -- U01 GM061390/GM/NIGMS NIH HHS/ -- U19 GM061390/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Dec 12;504(7479):306-10. doi: 10.1038/nature12716. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2]. ; 1] Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA [2] [3] Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (R.Y.B.); National Heart, Lung, and Blood Institute, National Institutes of Health, Systems Biology Center, 9000 Rockville Pike, Bethesda, Maryland 20892, USA (Y.Z.). ; 1] The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Biological Sciences and Biotechnology, University of Milano-Bicocca, 20126 Milano, Italy. ; Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA. ; Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore. ; Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, UCSF, San Francisco, California 94158, USA. ; The Jackson Laboratory for Genomic Medicine, and Department of Genetic and Development Biology, University of Connecticut, 400 Farmington, Connecticut 06030, USA. ; 1] Sequencing Technology Group, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, California 94598, USA [2] Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213634" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Lineage ; Chromatin/*genetics/*metabolism ; Embryonic Stem Cells/metabolism ; Enhancer Elements, Genetic/*genetics ; Gene Expression Regulation/*genetics ; In Situ Hybridization, Fluorescence ; Mice ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/*genetics ; RNA Polymerase II/metabolism ; Transcription, Genetic/genetics ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-06-07
    Description: Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRalpha1) of DC8 and group A PfEMP1 subfamilies, and that CIDRalpha1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870021/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870021/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Louise -- Lavstsen, Thomas -- Berger, Sanne S -- Wang, Christian W -- Petersen, Jens E V -- Avril, Marion -- Brazier, Andrew J -- Freeth, Jim -- Jespersen, Jakob S -- Nielsen, Morten A -- Magistrado, Pamela -- Lusingu, John -- Smith, Joseph D -- Higgins, Matthew K -- Theander, Thor G -- G0901062/Medical Research Council/United Kingdom -- R01 AI047953/AI/NIAID NIH HHS/ -- R01 AI47953/AI/NIAID NIH HHS/ -- U19 AI089688/AI/NIAID NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2013 Jun 27;498(7455):502-5. doi: 10.1038/nature12216. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark. lturner@sund.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739325" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*metabolism ; Blood Coagulation ; Brain/blood supply ; CHO Cells ; Cell Adhesion ; Cell Line ; Cricetinae ; Endothelial Cells/metabolism ; Erythrocyte Membrane/metabolism ; Humans ; Inflammation/complications/parasitology/pathology ; Malaria, Falciparum/complications/*parasitology/*pathology ; Microcirculation ; Plasmodium falciparum/chemistry/*metabolism/pathogenicity ; Protozoan Proteins/chemistry/metabolism ; Receptors, Cell Surface/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-10-25
    Description: Identifying cellular and molecular differences between human and non-human primates (NHPs) is essential to the basic understanding of the evolution and diversity of our own species. Until now, preserved tissues have been the main source for most comparative studies between humans, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, these tissue samples do not fairly represent the distinctive traits of live cell behaviour and are not amenable to genetic manipulation. We propose that induced pluripotent stem (iPS) cells could be a unique biological resource to determine relevant phenotypical differences between human and NHPs, and that those differences could have potential adaptation and speciation value. Here we describe the generation and initial characterization of iPS cells from chimpanzees and bonobos as new tools to explore factors that may have contributed to great ape evolution. Comparative gene expression analysis of human and NHP iPS cells revealed differences in the regulation of long interspersed element-1 (L1, also known as LINE-1) transposons. A force of change in mammalian evolution, L1 elements are retrotransposons that have remained active during primate evolution. Decreased levels of L1-restricting factors APOBEC3B (also known as A3B) and PIWIL2 (ref. 7) in NHP iPS cells correlated with increased L1 mobility and endogenous L1 messenger RNA levels. Moreover, results from the manipulation of A3B and PIWIL2 levels in iPS cells supported a causal inverse relationship between levels of these proteins and L1 retrotransposition. Finally, we found increased copy numbers of species-specific L1 elements in the genome of chimpanzees compared to humans, supporting the idea that increased L1 mobility in NHPs is not limited to iPS cells in culture and may have also occurred in the germ line or embryonic cells developmentally upstream to germline specification during primate evolution. We propose that differences in L1 mobility may have differentially shaped the genomes of humans and NHPs and could have continuing adaptive significance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064720/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064720/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchetto, Maria C N -- Narvaiza, Inigo -- Denli, Ahmet M -- Benner, Christopher -- Lazzarini, Thomas A -- Nathanson, Jason L -- Paquola, Apua C M -- Desai, Keval N -- Herai, Roberto H -- Weitzman, Matthew D -- Yeo, Gene W -- Muotri, Alysson R -- Gage, Fred H -- AI074967/AI/NIAID NIH HHS/ -- GM084317/GM/NIGMS NIH HHS/ -- HG004659/HG/NHGRI NIH HHS/ -- MH08848/MH/NIMH NIH HHS/ -- MH094753/MH/NIMH NIH HHS/ -- NS075449/NS/NINDS NIH HHS/ -- P30 CA014195/CA/NCI NIH HHS/ -- R01 MH088485/MH/NIMH NIH HHS/ -- R01 MH094753/MH/NIMH NIH HHS/ -- R01 MH095741/MH/NIMH NIH HHS/ -- R01 NS075449/NS/NINDS NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):525-9. doi: 10.1038/nature12686. Epub 2013 Oct 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24153179" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins/metabolism ; Cell Line ; Cell Shape ; Cytidine Deaminase/metabolism ; Evolution, Molecular ; Genome, Human/genetics ; High-Throughput Nucleotide Sequencing ; Humans ; Karyotyping ; Long Interspersed Nucleotide Elements/*genetics ; Mice, Nude ; Pan paniscus/*genetics/metabolism ; Pan troglodytes/*genetics/metabolism ; Pluripotent Stem Cells/cytology/*metabolism ; RNA, Messenger/analysis/genetics ; Sequence Analysis, RNA ; Species Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-05-24
    Description: The KRAS oncogene product is considered a major target in anticancer drug discovery. However, direct interference with KRAS signalling has not yet led to clinically useful drugs. Correct localization and signalling by farnesylated KRAS is regulated by the prenyl-binding protein PDEdelta, which sustains the spatial organization of KRAS by facilitating its diffusion in the cytoplasm. Here we report that interfering with binding of mammalian PDEdelta to KRAS by means of small molecules provides a novel opportunity to suppress oncogenic RAS signalling by altering its localization to endomembranes. Biochemical screening and subsequent structure-based hit optimization yielded inhibitors of the KRAS-PDEdelta interaction that selectively bind to the prenyl-binding pocket of PDEdelta with nanomolar affinity, inhibit oncogenic RAS signalling and suppress in vitro and in vivo proliferation of human pancreatic ductal adenocarcinoma cells that are dependent on oncogenic KRAS. Our findings may inspire novel drug discovery efforts aimed at the development of drugs targeting oncogenic RAS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zimmermann, Gunther -- Papke, Bjorn -- Ismail, Shehab -- Vartak, Nachiket -- Chandra, Anchal -- Hoffmann, Maike -- Hahn, Stephan A -- Triola, Gemma -- Wittinghofer, Alfred -- Bastiaens, Philippe I H -- Waldmann, Herbert -- England -- Nature. 2013 May 30;497(7451):638-42. doi: 10.1038/nature12205. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Biology, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698361" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/drug therapy/genetics/metabolism ; Animals ; Benzimidazoles/*chemistry/metabolism/*pharmacology/therapeutic use ; Binding Sites ; Carcinoma, Pancreatic Ductal/drug therapy/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & ; inhibitors/chemistry/*metabolism ; Dogs ; Humans ; Hydrogen Bonding ; MAP Kinase Signaling System/drug effects ; Mice ; Mice, Nude ; Mitogen-Activated Protein Kinases/metabolism ; Models, Molecular ; Molecular Conformation ; Neoplasm Transplantation ; Oncogene Protein p21(ras)/*antagonists & inhibitors/genetics/*metabolism ; Protein Binding/drug effects ; Signal Transduction/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-01-22
    Description: Cellular senescence both protects multicellular organisms from cancer and contributes to their ageing. The pre-eminent tumour suppressor p53 has an important role in the induction and maintenance of senescence, but how it carries out this function remains poorly understood. In addition, although increasing evidence supports the idea that metabolic changes underlie many cell-fate decisions and p53-mediated tumour suppression, few connections between metabolic enzymes and senescence have been established. Here we describe a new mechanism by which p53 links these functions. We show that p53 represses the expression of the tricarboxylic-acid-cycle-associated malic enzymes ME1 and ME2 in human and mouse cells. Both malic enzymes are important for NADPH production, lipogenesis and glutamine metabolism, but ME2 has a more profound effect. Through the inhibition of malic enzymes, p53 regulates cell metabolism and proliferation. Downregulation of ME1 and ME2 reciprocally activates p53 through distinct MDM2- and AMP-activated protein kinase-mediated mechanisms in a feed-forward manner, bolstering this pathway and enhancing p53 activation. Downregulation of ME1 and ME2 also modulates the outcome of p53 activation, leading to strong induction of senescence, but not apoptosis, whereas enforced expression of either malic enzyme suppresses senescence. Our findings define physiological functions of malic enzymes, demonstrate a positive-feedback mechanism that sustains p53 activation, and reveal a connection between metabolism and senescence mediated by p53.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561500/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561500/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jiang, Peng -- Du, Wenjing -- Mancuso, Anthony -- Wellen, Kathryn E -- Yang, Xiaolu -- CA088868/CA/NCI NIH HHS/ -- P30 CA016520/CA/NCI NIH HHS/ -- R01 CA088868/CA/NCI NIH HHS/ -- England -- Nature. 2013 Jan 31;493(7434):689-93. doi: 10.1038/nature11776. Epub 2013 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23334421" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3 Cells ; Animals ; Antibiotics, Antineoplastic/pharmacology ; Cell Aging/physiology ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Doxorubicin/pharmacology ; *Gene Expression Regulation ; Gene Knockdown Techniques ; Gene Silencing ; Glucose/metabolism ; Glutamine/metabolism ; HCT116 Cells ; Humans ; Lipids/biosynthesis ; Malate Dehydrogenase/genetics/*metabolism ; Malate Dehydrogenase (NADP+)/genetics/*metabolism ; Mice ; NADP/metabolism ; Protein Binding/drug effects ; Tumor Suppressor Protein p53/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-05-28
    Description: The detection of DNA lesions within chromatin represents a critical step in cellular responses to DNA damage. However, the regulatory mechanisms that couple chromatin sensing to DNA-damage signalling in mammalian cells are not well understood. Here we show that tyrosine phosphorylation of the protein acetyltransferase KAT5 (also known as TIP60) increases after DNA damage in a manner that promotes KAT5 binding to the histone mark H3K9me3. This triggers KAT5-mediated acetylation of the ATM kinase, promoting DNA-damage-checkpoint activation and cell survival. We also establish that chromatin alterations can themselves enhance KAT5 tyrosine phosphorylation and ATM-dependent signalling, and identify the proto-oncogene c-Abl as a mediator of this modification. These findings define KAT5 tyrosine phosphorylation as a key event in the sensing of genomic and chromatin perturbations, and highlight a key role for c-Abl in such processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaidi, Abderrahmane -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- 268536/European Research Council/International -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jun 6;498(7452):70-4. doi: 10.1038/nature12201. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708966" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Survival/radiation effects ; Chromatin/*metabolism ; DNA Damage ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; HeLa Cells ; Histone Acetyltransferases/*chemistry/*metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/chemistry/metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins c-abl/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-03-01
    Description: Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Memczak, Sebastian -- Jens, Marvin -- Elefsinioti, Antigoni -- Torti, Francesca -- Krueger, Janna -- Rybak, Agnieszka -- Maier, Luisa -- Mackowiak, Sebastian D -- Gregersen, Lea H -- Munschauer, Mathias -- Loewer, Alexander -- Ziebold, Ulrike -- Landthaler, Markus -- Kocks, Christine -- le Noble, Ferdinand -- Rajewsky, Nikolaus -- England -- Nature. 2013 Mar 21;495(7441):333-8. doi: 10.1038/nature11928. Epub 2013 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Systems Biology of Gene Regulatory Elements, Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23446348" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autoantigens/genetics/metabolism ; Binding Sites ; Brain/metabolism ; Caenorhabditis elegans/genetics/metabolism ; Cell Line ; Conserved Sequence ; Female ; *Gene Expression Regulation ; HEK293 Cells ; Humans ; Male ; Mice ; MicroRNAs/genetics/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; RNA/genetics/*metabolism ; Zebrafish/embryology/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-01-11
    Description: Insulin receptor signalling has a central role in mammalian biology, regulating cellular metabolism, growth, division, differentiation and survival. Insulin resistance contributes to the pathogenesis of type 2 diabetes mellitus and the onset of Alzheimer's disease; aberrant signalling occurs in diverse cancers, exacerbated by cross-talk with the homologous type 1 insulin-like growth factor receptor (IGF1R). Despite more than three decades of investigation, the three-dimensional structure of the insulin-insulin receptor complex has proved elusive, confounded by the complexity of producing the receptor protein. Here we present the first view, to our knowledge, of the interaction of insulin with its primary binding site on the insulin receptor, on the basis of four crystal structures of insulin bound to truncated insulin receptor constructs. The direct interaction of insulin with the first leucine-rich-repeat domain (L1) of insulin receptor is seen to be sparse, the hormone instead engaging the insulin receptor carboxy-terminal alpha-chain (alphaCT) segment, which is itself remodelled on the face of L1 upon insulin binding. Contact between insulin and L1 is restricted to insulin B-chain residues. The alphaCT segment displaces the B-chain C-terminal beta-strand away from the hormone core, revealing the mechanism of a long-proposed conformational switch in insulin upon receptor engagement. This mode of hormone-receptor recognition is novel within the broader family of receptor tyrosine kinases. We support these findings by photo-crosslinking data that place the suggested interactions into the context of the holoreceptor and by isothermal titration calorimetry data that dissect the hormone-insulin receptor interface. Together, our findings provide an explanation for a wealth of biochemical data from the insulin receptor and IGF1R systems relevant to the design of therapeutic insulin analogues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793637/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793637/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menting, John G -- Whittaker, Jonathan -- Margetts, Mai B -- Whittaker, Linda J -- Kong, Geoffrey K-W -- Smith, Brian J -- Watson, Christopher J -- Zakova, Lenka -- Kletvikova, Emilia -- Jiracek, Jiri -- Chan, Shu Jin -- Steiner, Donald F -- Dodson, Guy G -- Brzozowski, Andrzej M -- Weiss, Michael A -- Ward, Colin W -- Lawrence, Michael C -- DK13914/DK/NIDDK NIH HHS/ -- DK20595/DK/NIDDK NIH HHS/ -- DK40949/DK/NIDDK NIH HHS/ -- R01 DK040949/DK/NIDDK NIH HHS/ -- UL1 TR000439/TR/NCATS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2013 Jan 10;493(7431):241-5. doi: 10.1038/nature11781.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23302862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Calorimetry ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Insulin/*chemistry/*metabolism ; Leucine/metabolism ; Ligands ; Models, Molecular ; Protein Binding ; Protein Structure, Secondary ; Receptor, Insulin/*chemistry/*metabolism ; Reproducibility of Results
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-15
    Description: HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-alpha at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-alpha. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912734/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912734/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kane, Melissa -- Yadav, Shalini S -- Bitzegeio, Julia -- Kutluay, Sebla B -- Zang, Trinity -- Wilson, Sam J -- Schoggins, John W -- Rice, Charles M -- Yamashita, Masahiro -- Hatziioannou, Theodora -- Bieniasz, Paul D -- AI057158/AI/NIAID NIH HHS/ -- AI091707/AI/NIAID NIH HHS/ -- DK095031/DK/NIDDK NIH HHS/ -- K01 DK095031/DK/NIDDK NIH HHS/ -- R01 AI078788/AI/NIAID NIH HHS/ -- R01 AI091707/AI/NIAID NIH HHS/ -- R01 AI100720/AI/NIAID NIH HHS/ -- R01AI078788/AI/NIAID NIH HHS/ -- R01AI100720/AI/NIAID NIH HHS/ -- R37 AI064003/AI/NIAID NIH HHS/ -- R37AI64003/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Oct 24;502(7472):563-6. doi: 10.1038/nature12653. Epub 2013 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Aaron Diamond AIDS Research Center, New York, New York 10016, USA [2] Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24121441" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Capsid/metabolism ; Cell Division ; Cell Line ; Cell Nucleus/metabolism/virology ; Cells, Cultured ; HIV Infections/genetics/immunology/metabolism/*prevention & control ; HIV-1/immunology/*physiology ; Humans ; Interferon-alpha/*immunology ; Mutant Proteins/genetics/metabolism ; Myxovirus Resistance Proteins/genetics/*metabolism ; RNA Interference ; Reverse Transcription ; Transcriptome ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-07-03
    Description: DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(II) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaschke, Kathryn -- Ebata, Kevin T -- Karimi, Mohammad M -- Zepeda-Martinez, Jorge A -- Goyal, Preeti -- Mahapatra, Sahasransu -- Tam, Angela -- Laird, Diana J -- Hirst, Martin -- Rao, Anjana -- Lorincz, Matthew C -- Ramalho-Santos, Miguel -- 92093/Canadian Institutes of Health Research/Canada -- CA151535/CA/NCI NIH HHS/ -- DP2 OD007420/OD/NIH HHS/ -- DP2OD004698/OD/NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 OD012204/OD/NIH HHS/ -- England -- Nature. 2013 Aug 8;500(7461):222-6. doi: 10.1038/nature12362. Epub 2013 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics and Gynecology and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antioxidants/pharmacology ; Ascorbic Acid/*pharmacology ; Blastocyst/metabolism ; Cell Line ; Culture Media/chemistry ; Cytosine/analogs & derivatives/metabolism ; DNA Methylation/*drug effects ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/*drug effects/metabolism ; Gene Expression Regulation, Developmental/drug effects ; Gene Knockout Techniques ; Mice ; Protein Binding/drug effects ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-12-18
    Description: A primary cilium is a solitary, slender, non-motile protuberance of structured microtubules (9+0) enclosed by plasma membrane. Housing components of the cell division apparatus between cell divisions, primary cilia also serve as specialized compartments for calcium signalling and hedgehog signalling pathways. Specialized sensory cilia such as retinal photoreceptors and olfactory cilia use diverse ion channels. An ion current has been measured from primary cilia of kidney cells, but the responsible genes have not been identified. The polycystin proteins (PC and PKD), identified in linkage studies of polycystic kidney disease, are candidate channels divided into two structural classes: 11-transmembrane proteins (PKD1, PKD1L1 and PKD1L2) remarkable for a large extracellular amino terminus of putative cell adhesion domains and a G-protein-coupled receptor proteolytic site, and the 6-transmembrane channel proteins (PKD2, PKD2L1 and PKD2L2; TRPPs). Evidence indicates that the PKD1 proteins associate with the PKD2 proteins via coiled-coil domains. Here we use a transgenic mouse in which only cilia express a fluorophore and use it to record directly from primary cilia, and demonstrate that PKD1L1 and PKD2L1 form ion channels at high densities in several cell types. In conjunction with an accompanying manuscript, we show that the PKD1L1-PKD2L1 heteromeric channel establishes the cilia as a unique calcium compartment within cells that modulates established hedgehog pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073646/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4073646/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeCaen, Paul G -- Delling, Markus -- Vien, Thuy N -- Clapham, David E -- P01 NS072040/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD18655/HD/NICHD NIH HHS/ -- T32 HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Dec 12;504(7479):315-8. doi: 10.1038/nature12832.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2]. ; Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111, USA. ; 1] Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, Massachusetts 02115, USA [2] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24336289" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Channels/deficiency/genetics/*metabolism ; Cell Division ; Cell Line ; Cell Membrane/metabolism ; Cells, Cultured ; Cilia/*metabolism ; HEK293 Cells ; Hedgehog Proteins/metabolism ; Humans ; Membrane Proteins/deficiency/genetics/metabolism ; Mice ; Mice, Transgenic ; Oncogene Proteins/metabolism ; Receptors, Cell Surface/deficiency/genetics/metabolism ; Receptors, G-Protein-Coupled/genetics/metabolism ; Trans-Activators/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-06-07
    Description: Previous investigations of the core gene regulatory circuitry that controls the pluripotency of embryonic stem (ES) cells have largely focused on the roles of transcription, chromatin and non-coding RNA regulators. Alternative splicing represents a widely acting mode of gene regulation, yet its role in regulating ES-cell pluripotency and differentiation is poorly understood. Here we identify the muscleblind-like RNA binding proteins, MBNL1 and MBNL2, as conserved and direct negative regulators of a large program of cassette exon alternative splicing events that are differentially regulated between ES cells and other cell types. Knockdown of MBNL proteins in differentiated cells causes switching to an ES-cell-like alternative splicing pattern for approximately half of these events, whereas overexpression of MBNL proteins in ES cells promotes differentiated-cell-like alternative splicing patterns. Among the MBNL-regulated events is an ES-cell-specific alternative splicing switch in the forkhead family transcription factor FOXP1 that controls pluripotency. Consistent with a central and negative regulatory role for MBNL proteins in pluripotency, their knockdown significantly enhances the expression of key pluripotency genes and the formation of induced pluripotent stem cells during somatic cell reprogramming.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Hong -- Irimia, Manuel -- Ross, P Joel -- Sung, Hoon-Ki -- Alipanahi, Babak -- David, Laurent -- Golipour, Azadeh -- Gabut, Mathieu -- Michael, Iacovos P -- Nachman, Emil N -- Wang, Eric -- Trcka, Dan -- Thompson, Tadeo -- O'Hanlon, Dave -- Slobodeniuc, Valentina -- Barbosa-Morais, Nuno L -- Burge, Christopher B -- Moffat, Jason -- Frey, Brendan J -- Nagy, Andras -- Ellis, James -- Wrana, Jeffrey L -- Blencowe, Benjamin J -- R01 HG002439/HG/NHGRI NIH HHS/ -- R33 MH087908/MH/NIMH NIH HHS/ -- R33MH087908/MH/NIMH NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 Jun 13;498(7453):241-5. doi: 10.1038/nature12270. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research and Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739326" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing/genetics ; Amino Acid Motifs ; Animals ; Cell Differentiation/genetics ; Cell Line ; *Cellular Reprogramming ; DNA-Binding Proteins/chemistry/deficiency/genetics/*metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Fibroblasts/cytology/metabolism ; Forkhead Transcription Factors/metabolism ; Gene Knockdown Techniques ; HEK293 Cells ; HeLa Cells ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Kinetics ; Mice ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-01-08
    Description: Little is known about the three-dimensional organization of rubella virus, which causes a relatively mild measles-like disease in children but leads to serious congenital health problems when contracted in utero. Although rubella virus belongs to the same family as the mosquito-borne alphaviruses, in many respects it is more similar to other aerosol-transmitted human viruses such as the agents of measles and mumps. Although the use of the triple MMR (measles, mumps and rubella) live vaccine has limited its incidence in western countries, congenital rubella syndrome remains an important health problem in the developing world. Here we report the 1.8 A resolution crystal structure of envelope glycoprotein E1, the main antigen and sole target of neutralizing antibodies against rubella virus. E1 is the main player during entry into target cells owing to its receptor-binding and membrane-fusion functions. The structure reveals the epitope and the neutralization mechanism of an important category of protecting antibodies against rubella infection. It also shows that rubella virus E1 is a class II fusion protein, which had hitherto only been structurally characterized for the arthropod-borne alphaviruses and flaviviruses. In addition, rubella virus E1 has an extensive membrane-fusion surface that includes a metal site, reminiscent of the T-cell immunoglobulin and mucin family of cellular proteins that bind phosphatidylserine lipids at the plasma membrane of cells undergoing apoptosis. Such features have not been seen in any fusion protein crystallized so far. Structural comparisons show that the class II fusion proteins from alphaviruses and flaviviruses, despite belonging to different virus families, are closer to each other than they are to rubella virus E1. This suggests that the constraints on arboviruses imposed by alternating cycles between vertebrates and arthropods resulted in more conservative evolution. By contrast, in the absence of this constraint, the strictly human rubella virus seems to have drifted considerably into a unique niche as sole member of the Rubivirus genus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DuBois, Rebecca M -- Vaney, Marie-Christine -- Tortorici, M Alejandra -- Kurdi, Rana Al -- Barba-Spaeth, Giovanna -- Krey, Thomas -- Rey, Felix A -- England -- Nature. 2013 Jan 24;493(7433):552-6. doi: 10.1038/nature11741. Epub 2013 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut Pasteur, Departement de Virologie, Unite de Virologie Structurale and CNRS URA 3015, F-75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23292515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; *Biological Evolution ; Cell Line ; Crystallography, X-Ray ; Drosophila melanogaster ; Evolution, Molecular ; Hydrogen-Ion Concentration ; Liposomes/chemistry/metabolism ; Membrane Fusion ; Metals/metabolism ; Models, Molecular ; Protein Multimerization ; Rubella Syndrome, Congenital/virology ; Rubella virus/*chemistry/physiology ; Viral Envelope Proteins/*chemistry/genetics/*metabolism/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-04-02
    Description: Animal viruses are broadly categorized structurally by the presence or absence of an envelope composed of a lipid-bilayer membrane, attributes that profoundly affect stability, transmission and immune recognition. Among those lacking an envelope, the Picornaviridae are a large and diverse family of positive-strand RNA viruses that includes hepatitis A virus (HAV), an ancient human pathogen that remains a common cause of enterically transmitted hepatitis. HAV infects in a stealth-like manner and replicates efficiently in the liver. Virus-specific antibodies appear only after 3-4 weeks of infection, and typically herald its resolution. Although unexplained mechanistically, both anti-HAV antibody and inactivated whole-virus vaccines prevent disease when administered as late as 2 weeks after exposure, when virus replication is well established in the liver. Here we show that HAV released from cells is cloaked in host-derived membranes, thereby protecting the virion from antibody-mediated neutralization. These enveloped viruses ('eHAV') resemble exosomes, small vesicles that are increasingly recognized to be important in intercellular communications. They are fully infectious, sensitive to extraction with chloroform, and circulate in the blood of infected humans. Their biogenesis is dependent on host proteins associated with endosomal-sorting complexes required for transport (ESCRT), namely VPS4B and ALIX. Whereas the hijacking of membranes by HAV facilitates escape from neutralizing antibodies and probably promotes virus spread within the liver, anti-capsid antibodies restrict replication after infection with eHAV, suggesting a possible explanation for prophylaxis after exposure. Membrane hijacking by HAV blurs the classic distinction between 'enveloped' and 'non-enveloped' viruses and has broad implications for mechanisms of viral egress from infected cells as well as host immune responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Zongdi -- Hensley, Lucinda -- McKnight, Kevin L -- Hu, Fengyu -- Madden, Victoria -- Ping, Lifang -- Jeong, Sook-Hyang -- Walker, Christopher -- Lanford, Robert E -- Lemon, Stanley M -- P30 CA016086/CA/NCI NIH HHS/ -- P51 OD011133/OD/NIH HHS/ -- R01 AI103083/AI/NIAID NIH HHS/ -- R01-AI103083/AI/NIAID NIH HHS/ -- R37 AI047367/AI/NIAID NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):367-71. doi: 10.1038/nature12029. Epub 2013 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23542590" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Neutralizing/immunology/therapeutic use ; Cell Line ; Cell Membrane/*metabolism ; Cercopithecus aethiops ; Endosomal Sorting Complexes Required for Transport/metabolism ; Hepatitis A/blood/immunology/prevention & control/virology ; Hepatitis A virus/chemistry/growth & development/immunology/*metabolism ; *Host-Pathogen Interactions ; Humans ; Liver/virology ; Macaca mulatta ; Molecular Sequence Data ; Neutralization Tests ; Pan troglodytes ; Viral Envelope Proteins
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-05-17
    Description: Gene expression differs among individuals and populations and is thought to be a major determinant of phenotypic variation. Although variation and genetic loci responsible for RNA expression levels have been analysed extensively in human populations, our knowledge is limited regarding the differences in human protein abundance and the genetic basis for this difference. Variation in messenger RNA expression is not a perfect surrogate for protein expression because the latter is influenced by an array of post-transcriptional regulatory mechanisms, and, empirically, the correlation between protein and mRNA levels is generally modest. Here we used isobaric tag-based quantitative mass spectrometry to determine relative protein levels of 5,953 genes in lymphoblastoid cell lines from 95 diverse individuals genotyped in the HapMap Project. We found that protein levels are heritable molecular phenotypes that exhibit considerable variation between individuals, populations and sexes. Levels of specific sets of proteins involved in the same biological process covary among individuals, indicating that these processes are tightly regulated at the protein level. We identified cis-pQTLs (protein quantitative trait loci), including variants not detected by previous transcriptome studies. This study demonstrates the feasibility of high-throughput human proteome quantification that, when integrated with DNA variation and transcriptome information, adds a new dimension to the characterization of gene expression regulation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789121/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789121/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Linfeng -- Candille, Sophie I -- Choi, Yoonha -- Xie, Dan -- Jiang, Lihua -- Li-Pook-Than, Jennifer -- Tang, Hua -- Snyder, Michael -- P50 HG002357/HG/NHGRI NIH HHS/ -- R01 GM073059/GM/NIGMS NIH HHS/ -- U01 HL107393/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Jul 4;499(7456):79-82. doi: 10.1038/nature12223. Epub 2013 May 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23676674" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Ethnic Groups/genetics ; Female ; *Gene Expression Profiling ; Gene Expression Regulation/*genetics ; Genetic Variation ; Genotype ; HapMap Project ; Humans ; Male ; Mass Spectrometry ; *Phenotype ; *Protein Biosynthesis ; Proteome/*analysis/biosynthesis/*genetics ; Proteomics ; Quantitative Trait Loci ; RNA, Messenger/analysis/genetics ; Transcriptome
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-22
    Description: A large number of cis-regulatory sequences have been annotated in the human genome, but defining their target genes remains a challenge. One strategy is to identify the long-range looping interactions at these elements with the use of chromosome conformation capture (3C)-based techniques. However, previous studies lack either the resolution or coverage to permit a whole-genome, unbiased view of chromatin interactions. Here we report a comprehensive chromatin interaction map generated in human fibroblasts using a genome-wide 3C analysis method (Hi-C). We determined over one million long-range chromatin interactions at 5-10-kb resolution, and uncovered general principles of chromatin organization at different types of genomic features. We also characterized the dynamics of promoter-enhancer contacts after TNF-alpha signalling in these cells. Unexpectedly, we found that TNF-alpha-responsive enhancers are already in contact with their target promoters before signalling. Such pre-existing chromatin looping, which also exists in other cell types with different extracellular signalling, is a strong predictor of gene induction. Our observations suggest that the three-dimensional chromatin landscape, once established in a particular cell type, is relatively stable and could influence the selection or activation of target genes by a ubiquitous transcription activator in a cell-specific manner.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jin, Fulai -- Li, Yan -- Dixon, Jesse R -- Selvaraj, Siddarth -- Ye, Zhen -- Lee, Ah Young -- Yen, Chia-An -- Schmitt, Anthony D -- Espinoza, Celso A -- Ren, Bing -- P50 GM085764/GM/NIGMS NIH HHS/ -- P50 GM085764-03/GM/NIGMS NIH HHS/ -- T32 GM008666/GM/NIGMS NIH HHS/ -- U01 ES017166/ES/NIEHS NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):290-4. doi: 10.1038/nature12644. Epub 2013 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, California 92093, USA [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24141950" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromatin/chemistry/genetics/*metabolism ; *Chromosome Mapping ; Enhancer Elements, Genetic/physiology ; Gene Expression Regulation ; *Genome, Human ; Humans ; Imaging, Three-Dimensional ; Promoter Regions, Genetic/physiology ; Protein Binding ; Signal Transduction ; Tumor Necrosis Factor-alpha/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-07-12
    Description: On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like alpha2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Belser, Jessica A -- Gustin, Kortney M -- Pearce, Melissa B -- Maines, Taronna R -- Zeng, Hui -- Pappas, Claudia -- Sun, Xiangjie -- Carney, Paul J -- Villanueva, Julie M -- Stevens, James -- Katz, Jacqueline M -- Tumpey, Terrence M -- GM62116/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Sep 26;501(7468):556-9. doi: 10.1038/nature12391. Epub 2013 Jul 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23842497" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Polarity ; Disease Models, Animal ; Epithelial Cells/virology ; Female ; Ferrets/*virology ; Humans ; Influenza A Virus, H3N2 Subtype/growth & development/pathogenicity ; Influenza A Virus, H9N2 Subtype/growth & development/pathogenicity ; Influenza A virus/growth & development/isolation & ; purification/metabolism/*pathogenicity ; Influenza, Human/virology ; Madin Darby Canine Kidney Cells ; Male ; Mice/*virology ; Mice, Inbred BALB C ; Orthomyxoviridae Infections/*transmission/*virology ; Polysaccharides/chemistry/metabolism ; Receptors, Virus/chemistry/metabolism ; Respiratory System/cytology ; Substrate Specificity ; Virus Replication/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-07-05
    Description: Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (alpha2,3-linked sialic acid) and human-type (alpha2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1beta, MCP-1, IL-6, IL-8 and IFN-alpha were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Jianfang -- Wang, Dayan -- Gao, Rongbao -- Zhao, Baihui -- Song, Jingdong -- Qi, Xian -- Zhang, Yanjun -- Shi, Yonglin -- Yang, Lei -- Zhu, Wenfei -- Bai, Tian -- Qin, Kun -- Lan, Yu -- Zou, Shumei -- Guo, Junfeng -- Dong, Jie -- Dong, Libo -- Zhang, Ye -- Wei, Hejiang -- Li, Xiaodan -- Lu, Jian -- Liu, Liqi -- Zhao, Xiang -- Li, Xiyan -- Huang, Weijuan -- Wen, Leying -- Bo, Hong -- Xin, Li -- Chen, Yongkun -- Xu, Cuilin -- Pei, Yuquan -- Yang, Yue -- Zhang, Xiaodong -- Wang, Shiwen -- Feng, Zijian -- Han, Jun -- Yang, Weizhong -- Gao, George F -- Wu, Guizhen -- Li, Dexin -- Wang, Yu -- Shu, Yuelong -- England -- Nature. 2013 Jul 25;499(7459):500-3. doi: 10.1038/nature12379. Epub 2013 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23823727" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Viral/immunology ; Birds/virology ; Bronchi/cytology/metabolism/virology ; Cell Line ; Chemokines/blood ; China ; Cross Reactions/immunology ; Epithelial Cells/virology ; Host Specificity ; Humans ; In Vitro Techniques ; Influenza A Virus, H5N1 Subtype/immunology/physiology ; Influenza A virus/immunology/pathogenicity/*physiology ; Influenza Vaccines/immunology ; Influenza in Birds/transmission/*virology ; Influenza, Human/blood/immunology/virology ; Lung/virology ; N-Acetylneuraminic Acid/analogs & derivatives/chemistry/metabolism ; Organ Specificity ; Pulmonary Alveoli/cytology/metabolism/virology ; Receptors, Virus/chemistry/*metabolism ; Trachea/virology ; Virus Replication ; Zoonoses/transmission/virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-06-07
    Description: Human immunodeficiency virus-1 (HIV-1) has infected more than 60 million people and caused nearly 30 million deaths worldwide, ultimately the consequence of cytolytic infection of CD4(+) T cells. In humans and in macaque models, most of these cells contain viral DNA and are rapidly eliminated at the peak of viraemia, yet the mechanism by which HIV-1 induces helper T-cell death has not been defined. Here we show that virus-induced cell killing is triggered by viral integration. Infection by wild-type HIV-1, but not an integrase-deficient mutant, induced the death of activated primary CD4 lymphocytes. Similarly, raltegravir, a pharmacologic integrase inhibitor, abolished HIV-1-induced cell killing both in cell culture and in CD4(+) T cells from acutely infected subjects. The mechanism of killing during viral integration involved the activation of DNA-dependent protein kinase (DNA-PK), a central integrator of the DNA damage response, which caused phosphorylation of p53 and histone H2AX. Pharmacological inhibition of DNA-PK abolished cell death during HIV-1 infection in vitro, suggesting that processes which reduce DNA-PK activation in CD4 cells could facilitate the formation of latently infected cells that give rise to reservoirs in vivo. We propose that activation of DNA-PK during viral integration has a central role in CD4(+) T-cell depletion, raising the possibility that integrase inhibitors and interventions directed towards DNA-PK may improve T-cell survival and immune function in infected individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, Arik -- Garcia, Mayra -- Petrovas, Constantinos -- Yamamoto, Takuya -- Koup, Richard A -- Nabel, Gary J -- Intramural NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):376-9. doi: 10.1038/nature12274. Epub 2013 Jun 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Virology Laboratory, Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3005, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23739328" target="_blank"〉PubMed〈/a〉
    Keywords: CD4-Positive T-Lymphocytes/drug effects/metabolism/*pathology/*virology ; Carrier State/virology ; Cell Death/drug effects ; Cell Line ; Cell Survival/drug effects ; Cells, Cultured ; *DNA Damage ; DNA Repair ; DNA-Activated Protein Kinase/antagonists & inhibitors/*metabolism ; Enzyme Activation ; HIV Infections/pathology/virology ; HIV Integrase Inhibitors/pharmacology ; HIV-1/drug effects/growth & development/*pathogenicity ; Histones/metabolism ; Human Immunodeficiency Virus Proteins/analysis/genetics ; Humans ; Phosphorylation ; Proviruses/*pathogenicity ; Pyrrolidinones/pharmacology ; Raltegravir Potassium ; Tumor Suppressor Protein p53/metabolism ; *Virus Integration ; Virus Replication/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-09-03
    Description: Statins are prescribed widely to lower plasma low-density lipoprotein (LDL) concentrations and cardiovascular disease risk and have been shown to have beneficial effects in a broad range of patients. However, statins are associated with an increased risk, albeit small, of clinical myopathy and type 2 diabetes. Despite evidence for substantial genetic influence on LDL concentrations, pharmacogenomic trials have failed to identify genetic variations with large effects on either statin efficacy or toxicity, and have produced little information regarding mechanisms that modulate statin response. Here we identify a downstream target of statin treatment by screening for the effects of in vitro statin exposure on genetic associations with gene expression levels in lymphoblastoid cell lines derived from 480 participants of a clinical trial of simvastatin treatment. This analysis identified six expression quantitative trait loci (eQTLs) that interacted with simvastatin exposure, including rs9806699, a cis-eQTL for the gene glycine amidinotransferase (GATM) that encodes the rate-limiting enzyme in creatine synthesis. We found this locus to be associated with incidence of statin-induced myotoxicity in two separate populations (meta-analysis odds ratio = 0.60). Furthermore, we found that GATM knockdown in hepatocyte-derived cell lines attenuated transcriptional response to sterol depletion, demonstrating that GATM may act as a functional link between statin-mediated lowering of cholesterol and susceptibility to statin-induced myopathy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mangravite, Lara M -- Engelhardt, Barbara E -- Medina, Marisa W -- Smith, Joshua D -- Brown, Christopher D -- Chasman, Daniel I -- Mecham, Brigham H -- Howie, Bryan -- Shim, Heejung -- Naidoo, Devesh -- Feng, QiPing -- Rieder, Mark J -- Chen, Yii-Der I -- Rotter, Jerome I -- Ridker, Paul M -- Hopewell, Jemma C -- Parish, Sarah -- Armitage, Jane -- Collins, Rory -- Wilke, Russell A -- Nickerson, Deborah A -- Stephens, Matthew -- Krauss, Ronald M -- HG002585/HG/NHGRI NIH HHS/ -- K99/R00HG006265/HG/NHGRI NIH HHS/ -- MC_U137686853/Medical Research Council/United Kingdom -- P30 DK063491/DK/NIDDK NIH HHS/ -- R00 HG006265/HG/NHGRI NIH HHS/ -- R01 HG002585/HG/NHGRI NIH HHS/ -- R01 HL104133/HL/NHLBI NIH HHS/ -- U01 HL069757/HL/NHLBI NIH HHS/ -- U01 HL69757/HL/NHLBI NIH HHS/ -- UL1 TR000124/TR/NCATS NIH HHS/ -- British Heart Foundation/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2013 Oct 17;502(7471):377-80. doi: 10.1038/nature12508. Epub 2013 Aug 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sage Bionetworks, 1100 Fairview Avenue North, Seattle, Washington 98109, USA. lara.mangravite@sagebase.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23995691" target="_blank"〉PubMed〈/a〉
    Keywords: Amidinotransferases/deficiency/*genetics/metabolism ; Cell Line ; Cholesterol/deficiency/metabolism/pharmacology ; Gene Expression Regulation/*drug effects ; Gene Knockdown Techniques ; Humans ; Hydroxymethylglutaryl-CoA Reductase Inhibitors/*adverse effects/pharmacology ; Lymphocytes/cytology/drug effects/metabolism ; Muscular Diseases/*chemically induced/genetics/metabolism ; Polymorphism, Single Nucleotide/genetics ; Quantitative Trait Loci/*genetics ; Simvastatin/*adverse effects/pharmacology ; Sterol Regulatory Element Binding Proteins/metabolism ; Transcription, Genetic/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-09-10
    Description: The most conspicuous event in the cell cycle is the alignment of chromosomes in metaphase. Chromosome alignment fosters faithful segregation through the formation of bi-oriented attachments of kinetochores to spindle microtubules. Notably, numerous kinetochore-microtubule (k-MT) attachment errors are present in early mitosis (prometaphase), and the persistence of those errors is the leading cause of chromosome mis-segregation in aneuploid human tumour cells that continually mis-segregate whole chromosomes and display chromosomal instability. How robust error correction is achieved in prometaphase to ensure error-free mitosis remains unknown. Here we show that k-MT attachments in prometaphase cells are considerably less stable than in metaphase cells. The switch to more stable k-MT attachments in metaphase requires the proteasome-dependent destruction of cyclin A in prometaphase. Persistent cyclin A expression prevents k-MT stabilization even in cells with aligned chromosomes. By contrast, k-MTs are prematurely stabilized in cyclin-A-deficient cells. Consequently, cells lacking cyclin A display higher rates of chromosome mis-segregation. Thus, the stability of k-MT attachments increases decisively in a coordinated fashion among all chromosomes as cells transit from prometaphase to metaphase. Cyclin A creates a cellular environment that promotes microtubule detachment from kinetochores in prometaphase to ensure efficient error correction and faithful chromosome segregation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791168/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791168/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kabeche, Lilian -- Compton, Duane A -- GM008704/GM/NIGMS NIH HHS/ -- GM51542/GM/NIGMS NIH HHS/ -- R37 GM051542/GM/NIGMS NIH HHS/ -- T32 GM008704/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Oct 3;502(7469):110-3. doi: 10.1038/nature12507. Epub 2013 Sep 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24013174" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Chromosome Segregation/drug effects/*physiology ; Cyclin A/deficiency/genetics/*metabolism ; Enzyme Inhibitors/pharmacology ; Gene Expression Regulation ; Humans ; Kinetochores/*metabolism ; Microtubules/*metabolism ; Mitosis/drug effects/*physiology ; Protein Stability ; Pyrimidines/pharmacology ; Thiones/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-03-01
    Description: Biologists have long been concerned about what constrains variation in cell size, but progress in this field has been slow and stymied by experimental limitations. Here we describe a new method, ergodic rate analysis (ERA), that uses single-cell measurements of fixed steady-state populations to accurately infer the rates of molecular events, including rates of cell growth. ERA exploits the fact that the number of cells in a particular state is related to the average transit time through that state. With this method, it is possible to calculate full time trajectories of any feature that can be labelled in fixed cells, for example levels of phosphoproteins or total cellular mass. Using ERA we find evidence for a size-discriminatory process at the G1/S transition that acts to decrease cell-to-cell size variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730528/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730528/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kafri, Ran -- Levy, Jason -- Ginzberg, Miriam B -- Oh, Seungeun -- Lahav, Galit -- Kirschner, Marc W -- GM26875/GM/NIGMS NIH HHS/ -- R01 GM026875/GM/NIGMS NIH HHS/ -- R01 GM083303/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Feb 28;494(7438):480-3. doi: 10.1038/nature11897.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23446419" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Count ; Cell Cycle/drug effects/*physiology ; Cell Line ; Cell Proliferation ; *Cell Size/drug effects ; Cycloheximide ; Dimethyl Sulfoxide ; *Feedback, Physiological ; G1 Phase/drug effects/physiology ; HeLa Cells ; Humans ; Leupeptins ; Phosphoproteins ; S Phase/physiology ; Single-Cell Analysis/*methods ; Sirolimus
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-08-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2013 May 23;497(7450):409.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23936908" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cloning, Organism/*ethics ; DNA, Mitochondrial/genetics ; Embryo, Mammalian/cytology ; Embryonic Stem Cells/*cytology ; Female ; Haplorhini ; Humans ; Induced Pluripotent Stem Cells/cytology ; Oocyte Donation/adverse effects/ethics ; Oregon ; Precision Medicine/ethics/methods ; *Public Opinion ; *Research Personnel/ethics ; Sheep ; Stem Cell Research/*ethics ; Stem Cell Transplantation/*ethics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-10-18
    Description: The dense glycan coat that surrounds every cell is essential for cellular development and physiological function, and it is becoming appreciated that its composition is highly dynamic. Post-translational addition of the polysaccharide repeating unit [-3-xylose-alpha1,3-glucuronic acid-beta1-]n by like-acetylglucosaminyltransferase (LARGE) is required for the glycoprotein dystroglycan to function as a receptor for proteins in the extracellular matrix. Reductions in the amount of [-3-xylose-alpha1,3-glucuronic acid-beta1-]n (hereafter referred to as LARGE-glycan) on dystroglycan result in heterogeneous forms of muscular dystrophy. However, neither patient nor mouse studies has revealed a clear correlation between glycosylation status and phenotype. This disparity can be attributed to our lack of knowledge of the cellular function of the LARGE-glycan repeat. Here we show that coordinated upregulation of Large and dystroglycan in differentiating mouse muscle facilitates rapid extension of LARGE-glycan repeat chains. Using synthesized LARGE-glycan repeats we show a direct correlation between LARGE-glycan extension and its binding capacity for extracellular matrix ligands. Blocking Large upregulation during muscle regeneration results in the synthesis of dystroglycan with minimal LARGE-glycan repeats in association with a less compact basement membrane, immature neuromuscular junctions and dysfunctional muscle predisposed to dystrophy. This was consistent with the finding that patients with increased clinical severity of disease have fewer LARGE-glycan repeats. Our results reveal that the LARGE-glycan of dystroglycan serves as a tunable extracellular matrix protein scaffold, the extension of which is required for normal skeletal muscle function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891507/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891507/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goddeeris, Matthew M -- Wu, Biming -- Venzke, David -- Yoshida-Moriguchi, Takako -- Saito, Fumiaki -- Matsumura, Kiichiro -- Moore, Steven A -- Campbell, Kevin P -- 1RC2NS069521-01/NS/NINDS NIH HHS/ -- 1U54NS053672/NS/NINDS NIH HHS/ -- F32 AR057289-01/AR/NIAMS NIH HHS/ -- T32-DK07690-16/DK/NIDDK NIH HHS/ -- U54 NS053672/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Nov 7;503(7474):136-40. doi: 10.1038/nature12605. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA [2] Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132234" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basement Membrane/metabolism/pathology ; Cell Differentiation ; Cell Line ; Dystroglycans/*chemistry/*metabolism ; Extracellular Matrix/chemistry/*metabolism ; Female ; Humans ; Ligands ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Weight ; Muscle Development ; Muscles/metabolism/pathology ; Muscular Dystrophies/metabolism/pathology/*prevention & control ; Myoblasts ; N-Acetylglucosaminyltransferases/deficiency/genetics/*metabolism ; Neuromuscular Junction/metabolism/pathology ; Phenotype ; Polysaccharides/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-05-21
    Description: In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus crafting a vital pathophysiological mechanism that protects against cancer. Despite the widespread contribution of OIS to the cessation of tumorigenic expansion in animal models and humans, we have only just begun to define the underlying mechanism and identify key players. Although deregulation of metabolism is intimately linked to the proliferative capacity of cells, and senescent cells are thought to remain metabolically active, little has been investigated in detail about the role of cellular metabolism in OIS. Here we show, by metabolic profiling and functional perturbations, that the mitochondrial gatekeeper pyruvate dehydrogenase (PDH) is a crucial mediator of senescence induced by BRAF(V600E), an oncogene commonly mutated in melanoma and other cancers. BRAF(V600E)-induced senescence was accompanied by simultaneous suppression of the PDH-inhibitory enzyme pyruvate dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate dehydrogenase phosphatase 2 (PDP2). The resulting combined activation of PDH enhanced the use of pyruvate in the tricarboxylic acid cycle, causing increased respiration and redox stress. Abrogation of OIS, a rate-limiting step towards oncogenic transformation, coincided with reversion of these processes. Further supporting a crucial role of PDH in OIS, enforced normalization of either PDK1 or PDP2 expression levels inhibited PDH and abrogated OIS, thereby licensing BRAF(V600E)-driven melanoma development. Finally, depletion of PDK1 eradicated melanoma subpopulations resistant to targeted BRAF inhibition, and caused regression of established melanomas. These results reveal a mechanistic relationship between OIS and a key metabolic signalling axis, which may be exploited therapeutically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplon, Joanna -- Zheng, Liang -- Meissl, Katrin -- Chaneton, Barbara -- Selivanov, Vitaly A -- Mackay, Gillian -- van der Burg, Sjoerd H -- Verdegaal, Elizabeth M E -- Cascante, Marta -- Shlomi, Tomer -- Gottlieb, Eyal -- Peeper, Daniel S -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Jun 6;498(7452):109-12. doi: 10.1038/nature12154. Epub 2013 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23685455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging/*genetics ; Cell Line ; Citric Acid Cycle ; Disease Models, Animal ; Enzyme Activation ; Glycolysis ; Humans ; Melanoma/drug therapy/enzymology/genetics/pathology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitochondria/*enzymology/metabolism ; Molecular Targeted Therapy ; Oncogenes/*genetics ; Oxidative Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/deficiency/metabolism ; Proto-Oncogene Proteins B-raf/genetics ; Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/metabolism ; Pyruvate Dehydrogenase Complex/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-10-18
    Description: Phelan-McDermid syndrome (PMDS) is a complex neurodevelopmental disorder characterized by global developmental delay, severely impaired speech, intellectual disability, and an increased risk of autism spectrum disorders (ASDs). PMDS is caused by heterozygous deletions of chromosome 22q13.3. Among the genes in the deleted region is SHANK3, which encodes a protein in the postsynaptic density (PSD). Rare mutations in SHANK3 have been associated with idiopathic ASDs, non-syndromic intellectual disability, and schizophrenia. Although SHANK3 is considered to be the most likely candidate gene for the neurological abnormalities in PMDS patients, the cellular and molecular phenotypes associated with this syndrome in human neurons are unknown. We generated induced pluripotent stem (iPS) cells from individuals with PMDS and autism and used them to produce functional neurons. We show that PMDS neurons have reduced SHANK3 expression and major defects in excitatory, but not inhibitory, synaptic transmission. Excitatory synaptic transmission in PMDS neurons can be corrected by restoring SHANK3 expression or by treating neurons with insulin-like growth factor 1 (IGF1). IGF1 treatment promotes formation of mature excitatory synapses that lack SHANK3 but contain PSD95 and N-methyl-D-aspartate (NMDA) receptors with fast deactivation kinetics. Our findings provide direct evidence for a disruption in the ratio of cellular excitation and inhibition in PMDS neurons, and point to a molecular pathway that can be recruited to restore it.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shcheglovitov, Aleksandr -- Shcheglovitova, Olesya -- Yazawa, Masayuki -- Portmann, Thomas -- Shu, Rui -- Sebastiano, Vittorio -- Krawisz, Anna -- Froehlich, Wendy -- Bernstein, Jonathan A -- Hallmayer, Joachim F -- Dolmetsch, Ricardo E -- 5DP1OD3889/OD/NIH HHS/ -- DP1 OD003889/OD/NIH HHS/ -- R33MH087898/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):267-71. doi: 10.1038/nature12618. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132240" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Child ; Chromosome Deletion ; Chromosome Disorders/genetics/*physiopathology ; Chromosomes, Human, Pair 22/genetics ; Female ; GABA Agents/pharmacology ; Gene Expression Regulation/drug effects ; Humans ; Insulin-Like Growth Factor I/*pharmacology ; Lentivirus/genetics ; Male ; Nerve Tissue Proteins/*genetics/*metabolism ; Neurons/cytology/drug effects/*physiology ; Pluripotent Stem Cells/cytology ; Receptors, Glutamate/genetics ; Sequence Deletion ; Synapses/*drug effects/genetics/*physiology ; Synaptic Transmission/drug effects/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-09-21
    Description: Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type 1 (HIV-1), these include widely expressed restriction factors, such as APOBEC3 proteins, TRIM5-alpha, BST2 (refs 4, 5) and SAMHD1 (refs 6, 7), as well as additional factors that are stimulated by type 1 interferon (IFN). Here we use both ectopic expression and gene-silencing experiments to define the human dynamin-like, IFN-induced myxovirus resistance 2 (MX2, also known as MXB) protein as a potent inhibitor of HIV-1 infection and as a key effector of IFN-alpha-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has equivalent or reduced effects on divergent simian immunodeficiency viruses, and does not inhibit other retroviruses such as murine leukaemia virus. The Capsid region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step, with both the nuclear accumulation and chromosomal integration of nascent viral complementary DNA suppressed. Finally, human MX1 (also known as MXA), a closely related protein that has long been recognized as a broadly acting inhibitor of RNA and DNA viruses, including the orthomyxovirus influenza A virus, does not affect HIV-1, whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilization may represent a new therapeutic approach for the treatment of HIV/AIDS.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808269/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808269/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goujon, Caroline -- Moncorge, Olivier -- Bauby, Helene -- Doyle, Tomas -- Ward, Christopher C -- Schaller, Torsten -- Hue, Stephane -- Barclay, Wendy S -- Schulz, Reiner -- Malim, Michael H -- 098850/Wellcome Trust/United Kingdom -- DA033773/DA/NIDA NIH HHS/ -- G1000196/Medical Research Council/United Kingdom -- G1001081/Medical Research Council/United Kingdom -- R01 DA033773/DA/NIDA NIH HHS/ -- Department of Health/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Oct 24;502(7472):559-62. doi: 10.1038/nature12542. Epub 2013 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, King's College London, London SE1 9RT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24048477" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cell Nucleus/genetics/virology ; Cells, Cultured ; HIV Infections/immunology/metabolism/*prevention & control/*virology ; HIV-1/classification/enzymology/genetics/*physiology ; Humans ; Interferons/*immunology ; Myxovirus Resistance Proteins/deficiency/genetics/*metabolism ; RNA, Viral/biosynthesis/genetics/metabolism ; Reverse Transcription/genetics ; Species Specificity ; Substrate Specificity ; Virus Integration ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-06
    Description: Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Angelo, Giovanni -- Uemura, Takefumi -- Chuang, Chia-Chen -- Polishchuk, Elena -- Santoro, Michele -- Ohvo-Rekila, Henna -- Sato, Takashi -- Di Tullio, Giuseppe -- Varriale, Antonio -- D'Auria, Sabato -- Daniele, Tiziana -- Capuani, Fabrizio -- Johannes, Ludger -- Mattjus, Peter -- Monti, Maria -- Pucci, Piero -- Williams, Roger L -- Burke, John E -- Platt, Frances M -- Harada, Akihiro -- De Matteis, Maria Antonietta -- MC_U105184308/Medical Research Council/United Kingdom -- PG/11/109/29247/British Heart Foundation/United Kingdom -- TGM11CB1/Telethon/Italy -- England -- Nature. 2013 Sep 5;501(7465):116-20. doi: 10.1038/nature12423. Epub 2013 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine, Via Pietro Castellino 111, 80131 Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23913272" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Biological Transport ; Cell Line ; Globosides/biosynthesis/chemistry/metabolism ; Glucosylceramides/chemistry/*metabolism ; Glycosphingolipids/biosynthesis/chemistry/metabolism ; *Glycosylation ; Golgi Apparatus/*metabolism ; Humans ; Mice ; Mice, Inbred C57BL ; Phosphatidylinositol Phosphates/metabolism ; trans-Golgi Network/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-10-18
    Description: Cell migration requires the generation of branched actin networks that power the protrusion of the plasma membrane in lamellipodia. The actin-related proteins 2 and 3 (Arp2/3) complex is the molecular machine that nucleates these branched actin networks. This machine is activated at the leading edge of migrating cells by Wiskott-Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE, also known as SCAR). The WAVE complex is itself directly activated by the small GTPase Rac, which induces lamellipodia. However, how cells regulate the directionality of migration is poorly understood. Here we identify a new protein, Arpin, that inhibits the Arp2/3 complex in vitro, and show that Rac signalling recruits and activates Arpin at the lamellipodial tip, like WAVE. Consistently, after depletion of the inhibitory Arpin, lamellipodia protrude faster and cells migrate faster. A major role of this inhibitory circuit, however, is to control directional persistence of migration. Indeed, Arpin depletion in both mammalian cells and Dictyostelium discoideum amoeba resulted in straighter trajectories, whereas Arpin microinjection in fish keratocytes, one of the most persistent systems of cell migration, induced these cells to turn. The coexistence of the Rac-Arpin-Arp2/3 inhibitory circuit with the Rac-WAVE-Arp2/3 activatory circuit can account for this conserved role of Arpin in steering cell migration.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Irene -- Gorelik, Roman -- Sousa-Blin, Carla -- Derivery, Emmanuel -- Guerin, Christophe -- Linkner, Joern -- Nemethova, Maria -- Dumortier, Julien G -- Giger, Florence A -- Chipysheva, Tamara A -- Ermilova, Valeria D -- Vacher, Sophie -- Campanacci, Valerie -- Herrada, Isaline -- Planson, Anne-Gaelle -- Fetics, Susan -- Henriot, Veronique -- David, Violaine -- Oguievetskaia, Ksenia -- Lakisic, Goran -- Pierre, Fabienne -- Steffen, Anika -- Boyreau, Adeline -- Peyrieras, Nadine -- Rottner, Klemens -- Zinn-Justin, Sophie -- Cherfils, Jacqueline -- Bieche, Ivan -- Alexandrova, Antonina Y -- David, Nicolas B -- Small, J Victor -- Faix, Jan -- Blanchoin, Laurent -- Gautreau, Alexis -- England -- Nature. 2013 Nov 14;503(7475):281-4. doi: 10.1038/nature12611. Epub 2013 Oct 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Group Cytoskeleton in Cell Morphogenesis, Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, Gif-sur-Yvette 91190, France [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24132237" target="_blank"〉PubMed〈/a〉
    Keywords: Actin-Related Protein 2-3 Complex/*metabolism ; Animals ; Carrier Proteins/genetics/metabolism ; Cell Line ; Cell Movement/*genetics ; Dictyostelium/genetics/metabolism ; Embryo, Nonmammalian ; Gene Knockout Techniques ; HEK293 Cells ; Humans ; Mice ; Proteins/genetics/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Pseudopodia/*genetics/*metabolism ; *Signal Transduction ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-12-20
    Description: Currently, there is little evidence for a notable role of the vertebrate microRNA (miRNA) system in the pathogenesis of RNA viruses. This is primarily attributed to the ease with which these viruses mutate to disrupt recognition and growth suppression by host miRNAs. Here we report that the haematopoietic-cell-specific miRNA miR-142-3p potently restricts the replication of the mosquito-borne North American eastern equine encephalitis virus in myeloid-lineage cells by binding to sites in the 3' non-translated region of its RNA genome. However, by limiting myeloid cell tropism and consequent innate immunity induction, this restriction directly promotes neurologic disease manifestations characteristic of eastern equine encephalitis virus infection in humans. Furthermore, the region containing the miR-142-3p binding sites is essential for efficient virus infection of mosquito vectors. We propose that RNA viruses can adapt to use antiviral properties of vertebrate miRNAs to limit replication in particular cell types and that this restriction can lead to exacerbation of disease severity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349380/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349380/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trobaugh, Derek W -- Gardner, Christina L -- Sun, Chengqun -- Haddow, Andrew D -- Wang, Eryu -- Chapnik, Elik -- Mildner, Alexander -- Weaver, Scott C -- Ryman, Kate D -- Klimstra, William B -- AI049820-10/AI/NIAID NIH HHS/ -- AI060525-08/AI/NIAID NIH HHS/ -- AI083383/AI/NIAID NIH HHS/ -- AI095436/AI/NIAID NIH HHS/ -- R01 AI083383/AI/NIAID NIH HHS/ -- R01 AI095436/AI/NIAID NIH HHS/ -- T32 AI060525/AI/NIAID NIH HHS/ -- U54 AI081680/AI/NIAID NIH HHS/ -- England -- Nature. 2014 Feb 13;506(7487):245-8. doi: 10.1038/nature12869. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. ; Institute for Human Infections and Immunity, Center for Biodefense and Emerging Infectious Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA. ; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel. ; Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352241" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/genetics ; Alphavirus Infections/immunology/pathology/virology ; Animals ; Binding Sites/genetics ; Cell Line ; Cricetinae ; Culicidae/virology ; Disease Models, Animal ; Encephalitis Virus, Eastern Equine/genetics/growth & ; development/*immunology/*pathogenicity ; Female ; *Host-Pathogen Interactions/immunology ; *Immune Evasion/genetics ; Immunity, Innate/genetics/*immunology ; Insect Vectors/virology ; Male ; Mice ; MicroRNAs/*genetics/metabolism ; Myeloid Cells/immunology/virology ; Organ Specificity ; Virus Replication/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-10-12
    Description: Regulator of telomere length 1 (RTEL1) is an essential DNA helicase that disassembles telomere loops (T loops) and suppresses telomere fragility to maintain the integrity of chromosome ends. We established that RTEL1 also associates with the replisome through binding to proliferating cell nuclear antigen (PCNA). Mouse cells disrupted for the RTEL1-PCNA interaction (PIP mutant) exhibited accelerated senescence, replication fork instability, reduced replication fork extension rates, and increased origin usage. Although T-loop disassembly at telomeres was unaffected in the mutant cells, telomere replication was compromised, leading to fragile sites at telomeres. RTEL1-PIP mutant mice were viable, but loss of the RTEL1-PCNA interaction accelerated the onset of tumorigenesis in p53-deficient mice. We propose that RTEL1 plays a critical role in both telomere and genome-wide replication, which is crucial for genetic stability and tumor avoidance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vannier, Jean-Baptiste -- Sandhu, Sumit -- Petalcorin, Mark I R -- Wu, Xiaoli -- Nabi, Zinnatun -- Ding, Hao -- Boulton, Simon J -- Canadian Institutes of Health Research/Canada -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2013 Oct 11;342(6155):239-42. doi: 10.1126/science.1241779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24115439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Transformation, Neoplastic/genetics/*metabolism ; DNA Helicases/genetics/*metabolism ; *DNA Replication ; Genome/*genetics ; Mice ; Mice, Mutant Strains ; Proliferating Cell Nuclear Antigen/*metabolism ; Telomere/*genetics ; Tumor Suppressor Protein p53/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-03-09
    Description: Cell-cell fusion is critical for the conception, development, and physiology of multicellular organisms. Although cellular fusogenic proteins and the actin cytoskeleton are implicated in cell-cell fusion, it remains unclear whether and how they coordinate to promote plasma membrane fusion. We reconstituted a high-efficiency, inducible cell fusion culture system in the normally nonfusing Drosophila S2R+ cells. Both fusogenic proteins and actin cytoskeletal rearrangements were necessary for cell fusion, and in combination they were sufficient to impart fusion competence. Localized actin polymerization triggered by specific cell-cell or cell-matrix adhesion molecules propelled invasive cell membrane protrusions, which in turn promoted fusogenic protein engagement and plasma membrane fusion. This de novo cell fusion culture system reveals a general role for actin-propelled invasive membrane protrusions in driving fusogenic protein engagement during cell-cell fusion.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shilagardi, Khurts -- Li, Shuo -- Luo, Fengbao -- Marikar, Faiz -- Duan, Rui -- Jin, Peng -- Kim, Ji Hoon -- Murnen, Katherine -- Chen, Elizabeth H -- R01 GM098816/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Apr 19;340(6130):359-63. doi: 10.1126/science.1234781. Epub 2013 Mar 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23470732" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/*metabolism ; Animals ; Caenorhabditis elegans Proteins/genetics/*metabolism ; Cell Adhesion Molecules/genetics/*metabolism ; *Cell Communication ; Cell Culture Techniques ; *Cell Fusion ; Cell Line ; Cell Surface Extensions/metabolism/physiology ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/cytology ; Immunoglobulins/genetics/metabolism ; Membrane Glycoproteins/genetics/*metabolism ; Membrane Proteins/genetics/metabolism ; Muscle Proteins/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-07-28
    Description: The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Seong A -- Pacold, Michael E -- Cervantes, Christopher L -- Lim, Daniel -- Lou, Hua Jane -- Ottina, Kathleen -- Gray, Nathanael S -- Turk, Benjamin E -- Yaffe, Michael B -- Sabatini, David M -- AI047389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM59281/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):1236566. doi: 10.1126/science.1236566.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888043" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acids/metabolism ; Animals ; Cell Line ; Culture Media ; Humans ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Peptides/chemistry/*metabolism ; Phosphorylation ; Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Sirolimus/*pharmacology ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gura, Trisha -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1390. doi: 10.1126/science.340.6139.1390.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23788774" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; *Cloning, Organism ; DNA Methylation ; *Embryonic Stem Cells/physiology ; Humans ; Induced Pluripotent Stem Cells/physiology ; Nuclear Transfer Techniques ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-07-28
    Description: Loss of function of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the phosphatidylinositol 3-kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO, small ubiquitin-like modifier) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, whereas PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small-molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bassi, C -- Ho, J -- Srikumar, T -- Dowling, R J O -- Gorrini, C -- Miller, S J -- Mak, T W -- Neel, B G -- Raught, B -- Stambolic, V -- R37 CA49152/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):395-9. doi: 10.1126/science.1236188.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23888040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Aminopyridines/pharmacology ; Animals ; Antineoplastic Agents/pharmacology ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/*enzymology/metabolism ; Cisplatin/pharmacology ; DNA Breaks, Double-Stranded ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins/metabolism ; Doxorubicin/pharmacology ; Enzyme Inhibitors/pharmacology ; Female ; Humans ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Morpholines/pharmacology ; Neoplasm Transplantation ; PTEN Phosphohydrolase/genetics/*metabolism ; Phosphatidylinositol 3-Kinase/antagonists & inhibitors ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Sumoylation ; Transplantation, Heterologous ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-06-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couzin-Frankel, Jennifer -- Vogel, Gretchen -- New York, N.Y. -- Science. 2013 May 31;340(6136):1026-7. doi: 10.1126/science.340.6136.1026.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23723209" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Culture Techniques ; Cell Line ; *Cloning, Organism ; Embryonic Stem Cells/*cytology ; Humans ; Oregon ; Peer Review, Research/*standards ; Scientific Misconduct ; Skin/*cytology ; Software ; *Stem Cell Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-07-13
    Description: A classic feature of apoptotic cells is the cell-surface exposure of phosphatidylserine (PtdSer) as an "eat me" signal for engulfment. We show that the Xk-family protein Xkr8 mediates PtdSer exposure in response to apoptotic stimuli. Mouse Xkr8(-/-) cells or human cancer cells in which Xkr8 expression was repressed by hypermethylation failed to expose PtdSer during apoptosis and were inefficiently engulfed by phagocytes. Xkr8 was activated directly by caspases and required a caspase-3 cleavage site for its function. CED-8, the only Caenorhabditis elegans Xk-family homolog, also promoted apoptotic PtdSer exposure and cell-corpse engulfment. Thus, Xk-family proteins have evolutionarily conserved roles in promoting the phagocytosis of dying cells by altering the phospholipid distribution in the plasma membrane.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Suzuki, Jun -- Denning, Daniel P -- Imanishi, Eiichi -- Horvitz, H Robert -- Nagata, Shigekazu -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2013 Jul 26;341(6144):403-6. doi: 10.1126/science.1236758. Epub 2013 Jul 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Yoshida-Konoe, Sakyo-ku, Kyoto, Kyoto 606-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23845944" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis ; Apoptosis Regulatory Proteins/chemistry/genetics/*metabolism ; Caenorhabditis elegans Proteins/*metabolism ; Calcium/metabolism ; Caspases/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Membrane/*metabolism ; CpG Islands ; Humans ; Macrophages/physiology ; Membrane Proteins/chemistry/genetics/*metabolism ; Mice ; Mice, Knockout ; Molecular Sequence Data ; *Phagocytosis ; Phosphatidylserines/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-12-07
    Description: The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D-induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8(+) T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4(+) and CD8(+) T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4048998/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ravindran, Rajesh -- Khan, Nooruddin -- Nakaya, Helder I -- Li, Shuzhao -- Loebbermann, Jens -- Maddur, Mohan S -- Park, Youngja -- Jones, Dean P -- Chappert, Pascal -- Davoust, Jean -- Weiss, David S -- Virgin, Herbert W -- Ron, David -- Pulendran, Bali -- 084812/Wellcome Trust/United Kingdom -- 084812/Z/08/Z/Wellcome Trust/United Kingdom -- N01 AI50019/AI/NIAID NIH HHS/ -- N01 AI50025/AI/NIAID NIH HHS/ -- P51 OD011132/OD/NIH HHS/ -- R37 AI048638/AI/NIAID NIH HHS/ -- R37 DK057665/DK/NIDDK NIH HHS/ -- R56 AI048638/AI/NIAID NIH HHS/ -- U19 AI057266/AI/NIAID NIH HHS/ -- U19 AI090023/AI/NIAID NIH HHS/ -- U54 AI057157/AI/NIAID NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):313-7. doi: 10.1126/science.1246829. Epub 2013 Dec 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24310610" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Antigen Presentation ; CD4-Positive T-Lymphocytes/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line ; Cricetinae ; Dendritic Cells/enzymology/*immunology ; Enzyme Activation ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microtubule-Associated Proteins/genetics ; Protein-Serine-Threonine Kinases/*biosynthesis/genetics ; Yellow Fever Vaccine/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...