ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-06-10
    Description: Hepatitis C virus (HCV) remains a major medical problem. Antiviral treatment is only partially effective and a vaccine does not exist. Development of more effective therapies has been hampered by the lack of a suitable small animal model. Although xenotransplantation of immunodeficient mice with human hepatocytes has shown promise, these models are subject to important challenges. Building on the previous observation that CD81 and occludin comprise the minimal human factors required to render mouse cells permissive to HCV entry in vitro, we attempted murine humanization via a genetic approach. Here we show that expression of two human genes is sufficient to allow HCV infection of fully immunocompetent inbred mice. We establish a precedent for applying mouse genetics to dissect viral entry and validate the role of scavenger receptor type B class I for HCV uptake. We demonstrate that HCV can be blocked by passive immunization, as well as showing that a recombinant vaccinia virus vector induces humoral immunity and confers partial protection against heterologous challenge. This system recapitulates a portion of the HCV life cycle in an immunocompetent rodent for the first time, opening opportunities for studying viral pathogenesis and immunity and comprising an effective platform for testing HCV entry inhibitors in vivo.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159410/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159410/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Robbins, Justin B -- Barry, Walter T -- Feng, Qian -- Mu, Kathy -- Jones, Christopher T -- Schoggins, John W -- Catanese, Maria Teresa -- Burton, Dennis R -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- F32DK081193/DK/NIDDK NIH HHS/ -- F32DK082155/DK/NIDDK NIH HHS/ -- R01 AI071084/AI/NIAID NIH HHS/ -- R01 AI071084-04/AI/NIAID NIH HHS/ -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI072613-05/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI079031-04/AI/NIAID NIH HHS/ -- R01 DK085713/DK/NIDDK NIH HHS/ -- R01 DK085713-03/DK/NIDDK NIH HHS/ -- R01AI071084/AI/NIAID NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1 DK087193-02/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2011 Jun 8;474(7350):208-11. doi: 10.1038/nature10168.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21654804" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoviridae/genetics/physiology ; Animals ; Antibodies, Blocking/immunology ; Antigens, CD/genetics/metabolism ; Antigens, CD81 ; Cells, Cultured ; Claudin-1 ; *Disease Models, Animal ; Genotype ; Hepacivirus/genetics/metabolism/*physiology ; Hepatitis C/*genetics/*virology ; Hepatocytes/cytology/*metabolism/*virology ; Humans ; Immunization, Passive ; Membrane Proteins/genetics/metabolism ; Mice ; Receptors, Virus/genetics/metabolism ; Scavenger Receptors, Class B/genetics/metabolism ; Transfection ; Viral Tropism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-02
    Description: More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry, we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice. Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo. Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo. Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858853/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dorner, Marcus -- Horwitz, Joshua A -- Donovan, Bridget M -- Labitt, Rachael N -- Budell, William C -- Friling, Tamar -- Vogt, Alexander -- Catanese, Maria Teresa -- Satoh, Takashi -- Kawai, Taro -- Akira, Shizuo -- Law, Mansun -- Rice, Charles M -- Ploss, Alexander -- R01 AI072613/AI/NIAID NIH HHS/ -- R01 AI079031/AI/NIAID NIH HHS/ -- R01 AI099284/AI/NIAID NIH HHS/ -- R01 AI107301/AI/NIAID NIH HHS/ -- R01 CA057973/CA/NCI NIH HHS/ -- R01AI072613/AI/NIAID NIH HHS/ -- R01AI079031/AI/NIAID NIH HHS/ -- R01AI099284/AI/NIAID NIH HHS/ -- R01CA057973/CA/NCI NIH HHS/ -- RC1 DK087193/DK/NIDDK NIH HHS/ -- RC1DK087193/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):237-41. doi: 10.1038/nature12427. Epub 2013 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23903655" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD81/genetics/metabolism ; Cell Line ; Cyclophilin A/genetics/metabolism ; *Disease Models, Animal ; *Genetic Engineering ; Hepacivirus/immunology/*physiology ; Hepatitis C/*genetics/immunology/*virology ; Humans ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Occludin/genetics/metabolism ; STAT1 Transcription Factor/deficiency ; Viremia/virology ; Virion/growth & development/physiology ; *Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-30
    Description: Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy, the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809838/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809838/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Florian -- Halper-Stromberg, Ariel -- Horwitz, Joshua A -- Gruell, Henning -- Scheid, Johannes F -- Bournazos, Stylianos -- Mouquet, Hugo -- Spatz, Linda A -- Diskin, Ron -- Abadir, Alexander -- Zang, Trinity -- Dorner, Marcus -- Billerbeck, Eva -- Labitt, Rachael N -- Gaebler, Christian -- Marcovecchio, Paola M -- Incesu, Reha-Baris -- Eisenreich, Thomas R -- Bieniasz, Paul D -- Seaman, Michael S -- Bjorkman, Pamela J -- Ravetch, Jeffrey V -- Ploss, Alexander -- Nussenzweig, Michel C -- 1UM1AI100663/AI/NIAID NIH HHS/ -- AI081677/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 6;492(7427):118-22. doi: 10.1038/nature11604. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103874" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/immunology/therapeutic use ; Antibodies, Neutralizing/*immunology/*therapeutic use ; Antibody Specificity/immunology ; Disease Models, Animal ; HIV Antibodies/*immunology/*therapeutic use ; HIV Infections/*drug therapy/*immunology/virology ; HIV-1/genetics/growth & development/immunology/isolation & purification ; Half-Life ; Humans ; Immunization, Passive ; Mice ; Mice, Inbred NOD ; Time Factors ; Viral Load/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-21
    Description: Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcgamma receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Ching-Lan -- Murakowski, Dariusz K -- Bournazos, Stylianos -- Schoofs, Till -- Sarkar, Debolina -- Halper-Stromberg, Ariel -- Horwitz, Joshua A -- Nogueira, Lilian -- Golijanin, Jovana -- Gazumyan, Anna -- Ravetch, Jeffrey V -- Caskey, Marina -- Chakraborty, Arup K -- Nussenzweig, Michel C -- 1UM1 AI100663-01/AI/NIAID NIH HHS/ -- 8 UL1 TR000043/TR/NCATS NIH HHS/ -- AI081677-05/AI/NIAID NIH HHS/ -- AI100148-02/AI/NIAID NIH HHS/ -- F31 AI118555-01/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 May 20;352(6288):1001-4. doi: 10.1126/science.aaf1279. Epub 2016 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ; Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. ; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. nussen@rockefeller.edu arupc@mit.edu. ; Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute. nussen@rockefeller.edu arupc@mit.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27199430" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caskey, Marina -- Klein, Florian -- Lorenzi, Julio C C -- Seaman, Michael S -- West, Anthony P -- Buckley, Noreen -- Kremer, Gisela -- Nogueira, Lilian -- Braunschweig, Malte -- Scheid, Johannes F -- Horwitz, Joshua A -- Shimeliovich, Irina -- Ben-Avraham, Sivan -- Witmer-Pack, Maggi -- Platten, Martin -- Lehmann, Clara -- Burke, Leah A -- Hawthorne, Thomas -- Gorelick, Robert J -- Walker, Bruce D -- Keler, Tibor -- Gulick, Roy M -- Fatkenheuer, Gerd -- Schlesinger, Sarah J -- Nussenzweig, Michel C -- Nature. 2016 Mar 23. doi: 10.1038/nature17642.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007847" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-10
    Description: HIV-1 immunotherapy with a combination of first generation monoclonal antibodies was largely ineffective in pre-clinical and clinical settings and was therefore abandoned. However, recently developed single-cell-based antibody cloning methods have uncovered a new generation of far more potent broadly neutralizing antibodies to HIV-1 (refs 4, 5). These antibodies can prevent infection and suppress viraemia in humanized mice and nonhuman primates, but their potential for human HIV-1 immunotherapy has not been evaluated. Here we report the results of a first-in-man dose escalation phase 1 clinical trial of 3BNC117, a potent human CD4 binding site antibody, in uninfected and HIV-1-infected individuals. 3BNC117 infusion was well tolerated and demonstrated favourable pharmacokinetics. A single 30 mg kg(-1) infusion of 3BNC117 reduced the viral load in HIV-1-infected individuals by 0.8-2.5 log10 and viraemia remained significantly reduced for 28 days. Emergence of resistant viral strains was variable, with some individuals remaining sensitive to 3BNC117 for a period of 28 days. We conclude that, as a single agent, 3BNC117 is safe and effective in reducing HIV-1 viraemia, and that immunotherapy should be explored as a new modality for HIV-1 prevention, therapy and cure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caskey, Marina -- Klein, Florian -- Lorenzi, Julio C C -- Seaman, Michael S -- West, Anthony P Jr -- Buckley, Noreen -- Kremer, Gisela -- Nogueira, Lilian -- Braunschweig, Malte -- Scheid, Johannes F -- Horwitz, Joshua A -- Shimeliovich, Irina -- Ben-Avraham, Sivan -- Witmer-Pack, Maggi -- Platten, Martin -- Lehmann, Clara -- Burke, Leah A -- Hawthorne, Thomas -- Gorelick, Robert J -- Walker, Bruce D -- Keler, Tibor -- Gulick, Roy M -- Fatkenheuer, Gerd -- Schlesinger, Sarah J -- Nussenzweig, Michel C -- HHSN261200800001E/PHS HHS/ -- U19AI111825-01/AI/NIAID NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jun 25;522(7557):487-91. doi: 10.1038/nature14411. Epub 2015 Apr 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA. ; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. ; Division of Biology, California Institute of Technology, Pasadena, California 91125, USA. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] Clinical Trials Center Cologne, ZKS Koln, BMBF 01KN1106, University of Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany. ; 1] First Department of Internal Medicine, University Hospital of Cologne, D-50924 Cologne, Germany [2] German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; Celldex Therapeutics, Inc., Hampton, New Jersey 08827, USA. ; AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA. ; Ragon Institute of MGH, MIT and Harvard, Howard Hughes Medical Institute, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA. ; Division of Infectious Diseases, Weill Medical College of Cornell University, New York, New York 10065, USA. ; 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25855300" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Antibodies, Monoclonal/administration & ; dosage/immunology/pharmacokinetics/therapeutic use ; Antibodies, Neutralizing/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; Antigens, CD4/metabolism ; Binding Sites ; Case-Control Studies ; Evolution, Molecular ; Female ; HIV Antibodies/administration & dosage/adverse ; effects/*immunology/pharmacology/therapeutic use ; HIV Envelope Protein gp120/chemistry/immunology ; HIV Infections/immunology/*therapy/virology ; HIV-1/chemistry/drug effects/*immunology ; Humans ; Immunization, Passive/methods ; Male ; Middle Aged ; Molecular Sequence Data ; Time Factors ; Viral Load/drug effects/*immunology ; Viremia/immunology/*therapy/virology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica 70 (1987), S. 177-192 
    ISSN: 1619-6937
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary A theoretical study is made of the onset of steady double-diffusive convection in a circular cylinder of small to moderate aspect ratio. An eigenfunction expansion method is used to derive systems of amplitude equations for weakly nonlinear evolution of critical disturbances. It is shown that the nature of the convective solution near criticality depends strongly on the cylinder's aspect ratio; this is particularly the case at or near aspect ratios where two modes become unstable at the same Rayleigh number. There is also a strong dependence on Prandtl number, which is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2013-10-09
    Description: Effective control of HIV-1 infection in humans is achieved using combinations of antiretroviral therapy (ART) drugs. In humanized mice (hu-mice), control of viremia can be achieved using either ART or by immunotherapy using combinations of broadly neutralizing antibodies (bNAbs). Here we show that treatment of HIV-1–infected hu-mice with a combination...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1987-12-01
    Print ISSN: 0001-5970
    Electronic ISSN: 1619-6937
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...