ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frezza, Christian -- Zheng, Liang -- Folger, Ori -- Rajagopalan, Kartik N -- MacKenzie, Elaine D -- Jerby, Livnat -- Micaroni, Massimo -- Chaneton, Barbara -- Adam, Julie -- Hedley, Ann -- Kalna, Gabriela -- Tomlinson, Ian P M -- Pollard, Patrick J -- Watson, Dave G -- Deberardinis, Ralph J -- Shlomi, Tomer -- Ruppin, Eytan -- Gottlieb, Eyal -- 090532/Wellcome Trust/United Kingdom -- DK072565-05/DK/NIDDK NIH HHS/ -- WT091112MA/Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Aug 17;477(7363):225-8. doi: 10.1038/nature10363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21849978" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bilirubin/metabolism ; Cell Line ; Cells, Cultured ; Citric Acid Cycle ; Computer Simulation ; Fumarate Hydratase/deficiency/*genetics/*metabolism ; Fumarates/metabolism ; Genes, Lethal/*genetics ; *Genes, Tumor Suppressor ; Glutamine/metabolism ; Heme/metabolism ; Heme Oxygenase (Decyclizing)/antagonists & inhibitors/*genetics/*metabolism ; Kidney Neoplasms/drug therapy/enzymology/genetics/metabolism ; Leiomyomatosis/congenital/drug therapy/enzymology/genetics/metabolism ; Mice ; Mitochondria/metabolism ; Mutation/*genetics ; NAD/metabolism ; Neoplastic Syndromes, Hereditary ; Skin Neoplasms ; Uterine Neoplasms
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-16
    Description: Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation. Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of serine and glycine. Here we describe a new rheostat-like mechanistic relationship between PKM2 activity and serine biosynthesis. We show that serine can bind to and activate human PKM2, and that PKM2 activity in cells is reduced in response to serine deprivation. This reduction in PKM2 activity shifts cells to a fuel-efficient mode in which more pyruvate is diverted to the mitochondria and more glucose-derived carbon is channelled into serine biosynthesis to support cell proliferation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894725/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894725/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chaneton, Barbara -- Hillmann, Petra -- Zheng, Liang -- Martin, Agnes C L -- Maddocks, Oliver D K -- Chokkathukalam, Achuthanunni -- Coyle, Joseph E -- Jankevics, Andris -- Holding, Finn P -- Vousden, Karen H -- Frezza, Christian -- O'Reilly, Marc -- Gottlieb, Eyal -- A12477/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Nov 15;491(7424):458-62. doi: 10.1038/nature11540. Epub 2012 Oct 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK, The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, Scotland, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23064226" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line, Tumor ; Cell Proliferation ; Enzyme Activation/drug effects ; Enzyme Activators/pharmacology ; Glucose/metabolism ; Glycine/metabolism/pharmacology ; Humans ; *Ligands ; Pyruvate Kinase/genetics/*metabolism ; Pyruvic Acid/metabolism ; Recombinant Proteins/metabolism ; Serine/*metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-21
    Description: In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus crafting a vital pathophysiological mechanism that protects against cancer. Despite the widespread contribution of OIS to the cessation of tumorigenic expansion in animal models and humans, we have only just begun to define the underlying mechanism and identify key players. Although deregulation of metabolism is intimately linked to the proliferative capacity of cells, and senescent cells are thought to remain metabolically active, little has been investigated in detail about the role of cellular metabolism in OIS. Here we show, by metabolic profiling and functional perturbations, that the mitochondrial gatekeeper pyruvate dehydrogenase (PDH) is a crucial mediator of senescence induced by BRAF(V600E), an oncogene commonly mutated in melanoma and other cancers. BRAF(V600E)-induced senescence was accompanied by simultaneous suppression of the PDH-inhibitory enzyme pyruvate dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate dehydrogenase phosphatase 2 (PDP2). The resulting combined activation of PDH enhanced the use of pyruvate in the tricarboxylic acid cycle, causing increased respiration and redox stress. Abrogation of OIS, a rate-limiting step towards oncogenic transformation, coincided with reversion of these processes. Further supporting a crucial role of PDH in OIS, enforced normalization of either PDK1 or PDP2 expression levels inhibited PDH and abrogated OIS, thereby licensing BRAF(V600E)-driven melanoma development. Finally, depletion of PDK1 eradicated melanoma subpopulations resistant to targeted BRAF inhibition, and caused regression of established melanomas. These results reveal a mechanistic relationship between OIS and a key metabolic signalling axis, which may be exploited therapeutically.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplon, Joanna -- Zheng, Liang -- Meissl, Katrin -- Chaneton, Barbara -- Selivanov, Vitaly A -- Mackay, Gillian -- van der Burg, Sjoerd H -- Verdegaal, Elizabeth M E -- Cascante, Marta -- Shlomi, Tomer -- Gottlieb, Eyal -- Peeper, Daniel S -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Jun 6;498(7452):109-12. doi: 10.1038/nature12154. Epub 2013 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23685455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Aging/*genetics ; Cell Line ; Citric Acid Cycle ; Disease Models, Animal ; Enzyme Activation ; Glycolysis ; Humans ; Melanoma/drug therapy/enzymology/genetics/pathology ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Mitochondria/*enzymology/metabolism ; Molecular Targeted Therapy ; Oncogenes/*genetics ; Oxidative Phosphorylation ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/deficiency/metabolism ; Proto-Oncogene Proteins B-raf/genetics ; Pyruvate Dehydrogenase (Lipoamide)-Phosphatase/metabolism ; Pyruvate Dehydrogenase Complex/*metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...