ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-24
    Description: Exposure to microbes during early childhood is associated with protection from immune-mediated diseases such as inflammatory bowel disease (IBD) and asthma. Here, we show that in germ-free (GF) mice, invariant natural killer T (iNKT) cells accumulate in the colonic lamina propria and lung, resulting in increased morbidity in models of IBD and allergic asthma as compared with that of specific pathogen-free mice. This was associated with increased intestinal and pulmonary expression of the chemokine ligand CXCL16, which was associated with increased mucosal iNKT cells. Colonization of neonatal-but not adult-GF mice with a conventional microbiota protected the animals from mucosal iNKT accumulation and related pathology. These results indicate that age-sensitive contact with commensal microbes is critical for establishing mucosal iNKT cell tolerance to later environmental exposures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437652/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437652/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Olszak, Torsten -- An, Dingding -- Zeissig, Sebastian -- Vera, Miguel Pinilla -- Richter, Julia -- Franke, Andre -- Glickman, Jonathan N -- Siebert, Reiner -- Baron, Rebecca M -- Kasper, Dennis L -- Blumberg, Richard S -- AI090102/AI/NIAID NIH HHS/ -- DK034854/DK/NIDDK NIH HHS/ -- DK44319/DK/NIDDK NIH HHS/ -- DK51362/DK/NIDDK NIH HHS/ -- DK53056/DK/NIDDK NIH HHS/ -- DK88199/DK/NIDDK NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- R01 DK044319/DK/NIDDK NIH HHS/ -- R01 DK088199/DK/NIDDK NIH HHS/ -- R37 DK044319/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):489-93. doi: 10.1126/science.1219328. Epub 2012 Mar 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22442383" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Animals, Newborn ; Antigens, CD1d/immunology ; Asthma/*immunology ; Bacteria/*growth & development ; Chemokine CXCL6/genetics/metabolism ; Colitis, Ulcerative/chemically induced/*immunology ; Colon/immunology/microbiology ; DNA Methylation ; Disease Models, Animal ; Disease Susceptibility ; Germ-Free Life ; Intestinal Mucosa/*immunology ; Intestines/immunology/*microbiology ; Lung/*immunology ; Mice ; Mice, Inbred C57BL ; Natural Killer T-Cells/*immunology ; Oxazolone ; Receptors, CXCR/genetics/metabolism ; Specific Pathogen-Free Organisms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-12
    Description: Human asthma is associated with airway infiltration by T helper 2 (TH2) lymphocytes. We observed reduced expression of the TH1 transcription factor, T-bet, in T cells from airways of patients with asthma compared with that in T cells from airways of nonasthmatic patients, suggesting that loss of T-bet might be associated with asthma. Mice with a targeted deletion of the T-bet gene and severe combined immunodeficient mice receiving CD4+ cells from T-bet knockout mice spontaneously demonstrated multiple physiological and inflammatory features characteristic of asthma. Thus, T-bet deficiency, in the absence of allergen exposure, induces a murine phenotype reminiscent of both acute and chronic human asthma.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Finotto, Susetta -- Neurath, Markus F -- Glickman, Jonathan N -- Qin, Shixin -- Lehr, Hans A -- Green, Francis H Y -- Ackerman, Kate -- Haley, Kathleen -- Galle, Peter R -- Szabo, Susanne J -- Drazen, Jeffrey M -- De Sanctis, George T -- Glimcher, Laurie H -- HL-36110/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):336-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Critical Care and Pulmonary Division, Division of Gastroenterology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11786643" target="_blank"〉PubMed〈/a〉
    Keywords: Adoptive Transfer ; Allergens/immunology ; Animals ; *Asthma/immunology/metabolism/pathology ; Bronchial Hyperreactivity/immunology/metabolism/pathology ; Bronchoalveolar Lavage Fluid/immunology ; CD4-Positive T-Lymphocytes/immunology/transplantation ; Collagen Type III/metabolism ; Cytokines/metabolism ; Disease Models, Animal ; Gene Targeting ; Humans ; Interleukin-4/metabolism ; Interleukin-5/metabolism ; Lung/immunology/metabolism/pathology ; Mice ; Mice, Knockout ; Mice, SCID ; T-Box Domain Proteins ; Transcription Factors/deficiency/*genetics/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-04
    Description: The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(DeltaIEC)) or autophagy function (Atg16l1(DeltaIEC) or Atg7(DeltaIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(DeltaIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2alpha (eIF2alpha) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1alpha (IRE1alpha)-regulated NF-kappaB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1alpha activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-kappaB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3862182/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Adolph, Timon E -- Tomczak, Michal F -- Niederreiter, Lukas -- Ko, Hyun-Jeong -- Bock, Janne -- Martinez-Naves, Eduardo -- Glickman, Jonathan N -- Tschurtschenthaler, Markus -- Hartwig, John -- Hosomi, Shuhei -- Flak, Magdalena B -- Cusick, Jennifer L -- Kohno, Kenji -- Iwawaki, Takao -- Billmann-Born, Susanne -- Raine, Tim -- Bharti, Richa -- Lucius, Ralph -- Kweon, Mi-Na -- Marciniak, Stefan J -- Choi, Augustine -- Hagen, Susan J -- Schreiber, Stefan -- Rosenstiel, Philip -- Kaser, Arthur -- Blumberg, Richard S -- 100140/Wellcome Trust/United Kingdom -- 260961/European Research Council/International -- DK0034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- G1002610/Medical Research Council/United Kingdom -- R01 DK044319/DK/NIDDK NIH HHS/ -- R01 DK051362/DK/NIDDK NIH HHS/ -- R01 DK053056/DK/NIDDK NIH HHS/ -- R01 DK088199/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Nov 14;503(7475):272-6. doi: 10.1038/nature12599. Epub 2013 Oct 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Gastroenterology and Hepatology, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24089213" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/genetics ; Carrier Proteins/genetics/metabolism ; Cell Line ; DNA-Binding Proteins/genetics/metabolism ; Endoplasmic Reticulum Stress/genetics ; Inflammation ; Intestinal Diseases/genetics/*physiopathology ; Intestinal Mucosa/cytology/*pathology ; Mice ; Paneth Cells/*pathology ; Signal Transduction ; Transcription Factors/genetics/metabolism ; Unfolded Protein Response/physiology ; eIF-2 Kinase/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-05
    Description: T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297519/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297519/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yu-Hwa -- Zhu, Chen -- Kondo, Yasuyuki -- Anderson, Ana C -- Gandhi, Amit -- Russell, Andrew -- Dougan, Stephanie K -- Petersen, Britt-Sabina -- Melum, Espen -- Pertel, Thomas -- Clayton, Kiera L -- Raab, Monika -- Chen, Qiang -- Beauchemin, Nicole -- Yazaki, Paul J -- Pyzik, Michal -- Ostrowski, Mario A -- Glickman, Jonathan N -- Rudd, Christopher E -- Ploegh, Hidde L -- Franke, Andre -- Petsko, Gregory A -- Kuchroo, Vijay K -- Blumberg, Richard S -- AI039671/AI/NIAID NIH HHS/ -- AI056299/AI/NIAID NIH HHS/ -- AI073748/AI/NIAID NIH HHS/ -- DK0034854/DK/NIDDK NIH HHS/ -- DK044319/DK/NIDDK NIH HHS/ -- DK051362/DK/NIDDK NIH HHS/ -- DK053056/DK/NIDDK NIH HHS/ -- DK088199/DK/NIDDK NIH HHS/ -- GM32415/GM/NIGMS NIH HHS/ -- MOP-93787/Canadian Institutes of Health Research/Canada -- NS045937/NS/NINDS NIH HHS/ -- P01 AI039671/AI/NIAID NIH HHS/ -- P01 AI056299/AI/NIAID NIH HHS/ -- P01 AI073748/AI/NIAID NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- P41 GM111244/GM/NIGMS NIH HHS/ -- R01 DK051362/DK/NIDDK NIH HHS/ -- R01 GM026788/GM/NIGMS NIH HHS/ -- R01 NS045937/NS/NINDS NIH HHS/ -- T32 GM007122/GM/NIGMS NIH HHS/ -- UL1 TR001102/TR/NCATS NIH HHS/ -- England -- Nature. 2015 Jan 15;517(7534):386-90. doi: 10.1038/nature13848. Epub 2014 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA. ; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA. ; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA. ; Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105, Germany. ; 1] Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA [2] Norwegian PSC Research Center, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo 0424, Norway. ; Department of Immunology, University of Toronto, Toronto, Ontario M5S1A8, Canada. ; Cell Signalling Section, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK. ; State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; Goodman Cancer Research Centre, McGill University, Montreal H3G 1Y6, Canada. ; Beckman Institute, City of Hope, Duarte, California 91010, USA. ; 1] Department of Immunology, University of Toronto, Toronto, Ontario M5S1A8, Canada [2] Keenan Research Centre of St. Michael's Hospital, Toronto, Ontario M5S1A8, Canada. ; GI Pathology, Miraca Life Sciences, Newton, Massachusetts 02464, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363763" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/chemistry/immunology/*metabolism ; Autoimmunity/immunology ; Cell Adhesion Molecules/chemistry/immunology/*metabolism ; Cell Line ; Colorectal Neoplasms/immunology ; Disease Models, Animal ; Female ; Humans ; Immune Tolerance/*immunology ; Inflammation/immunology/pathology ; Ligands ; Male ; Membrane Proteins/chemistry/immunology/*metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Models, Molecular ; Mucous Membrane/immunology/pathology ; Protein Conformation ; Protein Multimerization ; Receptors, Virus/chemistry/immunology/*metabolism ; T-Lymphocytes/*immunology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-06
    Description: Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Patrick M -- Howitt, Michael R -- Panikov, Nicolai -- Michaud, Monia -- Gallini, Carey Ann -- Bohlooly-Y, Mohammad -- Glickman, Jonathan N -- Garrett, Wendy S -- F32 DK095506/DK/NIDDK NIH HHS/ -- F32 DK098826/DK/NIDDK NIH HHS/ -- F32DK095506/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- K08 AI078942/AI/NIAID NIH HHS/ -- K08AI078942/AI/NIAID NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099537/GM/NIGMS NIH HHS/ -- R01CA154426/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):569-73. doi: 10.1126/science.1241165. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*metabolism ; Colitis/metabolism ; Colon/*microbiology ; DNA-Binding Proteins/genetics ; Fatty Acids, Volatile/administration & dosage/*metabolism ; Fermentation ; Germ-Free Life ; *Homeostasis ; Humans ; *Metagenome ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Receptors, G-Protein-Coupled/genetics/metabolism ; T-Lymphocytes, Regulatory/*physiology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yu-Hwa -- Zhu, Chen -- Kondo, Yasuyuki -- Anderson, Ana C -- Gandhi, Amit -- Russell, Andrew -- Dougan, Stephanie K -- Petersen, Britt-Sabina -- Melum, Espen -- Pertel, Thomas -- Clayton, Kiera L -- Raab, Monika -- Chen, Qiang -- Beauchemin, Nicole -- Yazaki, Paul J -- Pyzik, Michal -- Ostrowski, Mario A -- Glickman, Jonathan N -- Rudd, Christopher E -- Ploegh, Hidde L -- Franke, Andre -- Petsko, Gregory A -- Kuchroo, Vijay K -- Blumberg, Richard S -- Nature. 2016 Mar 16. doi: 10.1038/nature17421.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26982724" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2001-02-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...