ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-04-12
    Description: Pluripotent stem cells are derived from culture of early embryos or the germline and can be induced by reprogramming of somatic cells. Barriers to reprogramming that stabilize the differentiated state and have tumor suppression functions are expected to exist. However, we have a limited understanding of what such barriers might be. To find novel barriers to reprogramming to pluripotency, we compared the transcriptional profiles of the mouse germline with pluripotent and somatic cells, in vivo and in vitro . There is a remarkable global expression of the transcriptional program for pluripotency in primordial germ cells (PGCs). We identify parallels between PGC reprogramming to pluripotency and human germ cell tumorigenesis, including the loss of LATS2, a tumor suppressor kinase of the Hippo pathway. We show that knockdown of LATS2 increases the efficiency of induction of pluripotency in human cells. LATS2 RNAi, unlike p53 RNAi, specifically enhances the generation of fully reprogrammed iPS cells without accelerating cell proliferation. We further show that LATS2 represses reprogramming in human cells by post-transcriptionally antagonizing TAZ but not YAP, two downstream effectors of the Hippo pathway. These results reveal transcriptional parallels between germ cell transformation and the generation of iPS cells and indicate that the Hippo pathway constitutes a barrier to cellular reprogramming.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-21
    Description: The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266106/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4266106/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yue, Feng -- Cheng, Yong -- Breschi, Alessandra -- Vierstra, Jeff -- Wu, Weisheng -- Ryba, Tyrone -- Sandstrom, Richard -- Ma, Zhihai -- Davis, Carrie -- Pope, Benjamin D -- Shen, Yin -- Pervouchine, Dmitri D -- Djebali, Sarah -- Thurman, Robert E -- Kaul, Rajinder -- Rynes, Eric -- Kirilusha, Anthony -- Marinov, Georgi K -- Williams, Brian A -- Trout, Diane -- Amrhein, Henry -- Fisher-Aylor, Katherine -- Antoshechkin, Igor -- DeSalvo, Gilberto -- See, Lei-Hoon -- Fastuca, Meagan -- Drenkow, Jorg -- Zaleski, Chris -- Dobin, Alex -- Prieto, Pablo -- Lagarde, Julien -- Bussotti, Giovanni -- Tanzer, Andrea -- Denas, Olgert -- Li, Kanwei -- Bender, M A -- Zhang, Miaohua -- Byron, Rachel -- Groudine, Mark T -- McCleary, David -- Pham, Long -- Ye, Zhen -- Kuan, Samantha -- Edsall, Lee -- Wu, Yi-Chieh -- Rasmussen, Matthew D -- Bansal, Mukul S -- Kellis, Manolis -- Keller, Cheryl A -- Morrissey, Christapher S -- Mishra, Tejaswini -- Jain, Deepti -- Dogan, Nergiz -- Harris, Robert S -- Cayting, Philip -- Kawli, Trupti -- Boyle, Alan P -- Euskirchen, Ghia -- Kundaje, Anshul -- Lin, Shin -- Lin, Yiing -- Jansen, Camden -- Malladi, Venkat S -- Cline, Melissa S -- Erickson, Drew T -- Kirkup, Vanessa M -- Learned, Katrina -- Sloan, Cricket A -- Rosenbloom, Kate R -- Lacerda de Sousa, Beatriz -- Beal, Kathryn -- Pignatelli, Miguel -- Flicek, Paul -- Lian, Jin -- Kahveci, Tamer -- Lee, Dongwon -- Kent, W James -- Ramalho Santos, Miguel -- Herrero, Javier -- Notredame, Cedric -- Johnson, Audra -- Vong, Shinny -- Lee, Kristen -- Bates, Daniel -- Neri, Fidencio -- Diegel, Morgan -- Canfield, Theresa -- Sabo, Peter J -- Wilken, Matthew S -- Reh, Thomas A -- Giste, Erika -- Shafer, Anthony -- Kutyavin, Tanya -- Haugen, Eric -- Dunn, Douglas -- Reynolds, Alex P -- Neph, Shane -- Humbert, Richard -- Hansen, R Scott -- De Bruijn, Marella -- Selleri, Licia -- Rudensky, Alexander -- Josefowicz, Steven -- Samstein, Robert -- Eichler, Evan E -- Orkin, Stuart H -- Levasseur, Dana -- Papayannopoulou, Thalia -- Chang, Kai-Hsin -- Skoultchi, Arthur -- Gosh, Srikanta -- Disteche, Christine -- Treuting, Piper -- Wang, Yanli -- Weiss, Mitchell J -- Blobel, Gerd A -- Cao, Xiaoyi -- Zhong, Sheng -- Wang, Ting -- Good, Peter J -- Lowdon, Rebecca F -- Adams, Leslie B -- Zhou, Xiao-Qiao -- Pazin, Michael J -- Feingold, Elise A -- Wold, Barbara -- Taylor, James -- Mortazavi, Ali -- Weissman, Sherman M -- Stamatoyannopoulos, John A -- Snyder, Michael P -- Guigo, Roderic -- Gingeras, Thomas R -- Gilbert, David M -- Hardison, Ross C -- Beer, Michael A -- Ren, Bing -- Mouse ENCODE Consortium -- 095908/Wellcome Trust/United Kingdom -- 1U54HG007004/HG/NHGRI NIH HHS/ -- 3RC2HG005602/HG/NHGRI NIH HHS/ -- F31CA165863/CA/NCI NIH HHS/ -- F32HL110473/HL/NHLBI NIH HHS/ -- GM083337/GM/NIGMS NIH HHS/ -- GM085354/GM/NIGMS NIH HHS/ -- K99HL119617/HL/NHLBI NIH HHS/ -- P01 GM085354/GM/NIGMS NIH HHS/ -- P01 HL064190/HL/NHLBI NIH HHS/ -- P01 HL110860/HL/NHLBI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 CA045508/CA/NCI NIH HHS/ -- R01 DK065806/DK/NIDDK NIH HHS/ -- R01 DK096266/DK/NIDDK NIH HHS/ -- R01 ES024992/ES/NIEHS NIH HHS/ -- R01 EY021482/EY/NEI NIH HHS/ -- R01 GM083337/GM/NIGMS NIH HHS/ -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG007175/HG/NHGRI NIH HHS/ -- R01 HG007348/HG/NHGRI NIH HHS/ -- R01 HG007354/HG/NHGRI NIH HHS/ -- R01DK065806/DK/NIDDK NIH HHS/ -- R01HD043997-09/HD/NICHD NIH HHS/ -- R01HG003991/HG/NHGRI NIH HHS/ -- R37 DK044746/DK/NIDDK NIH HHS/ -- R56 DK065806/DK/NIDDK NIH HHS/ -- RC2 HG005573/HG/NHGRI NIH HHS/ -- RC2HG005573/HG/NHGRI NIH HHS/ -- T32 GM081739/GM/NIGMS NIH HHS/ -- U01 HL099656/HL/NHLBI NIH HHS/ -- U01 HL099993/HL/NHLBI NIH HHS/ -- U54 HG006997/HG/NHGRI NIH HHS/ -- U54 HG006998/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Nov 20;515(7527):355-64. doi: 10.1038/nature13992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. [2] Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA. ; Department of Genetics, Stanford University, 300 Pasteur Drive, MC-5477 Stanford, California 94305, USA. ; Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. ; Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA. ; Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Department of Biological Science, 319 Stadium Drive, Florida State University, Tallahassee, Florida 32306-4295, USA. ; Functional Genomics, Cold Spring Harbor Laboratory, Bungtown Road, Cold Spring Harbor, New York 11724, USA. ; Ludwig Institute for Cancer Research and University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Division of Biology, California Institute of Technology, Pasadena, California 91125, USA. ; 1] Bioinformatics and Genomics, Centre for Genomic Regulation (CRG) and UPF, Doctor Aiguader, 88, 08003 Barcelona, Catalonia, Spain. [2] Department of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 17/3/303, A-1090 Vienna, Austria. ; Departments of Biology and Mathematics and Computer Science, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road NE, Atlanta, Georgia 30322, USA. ; 1] Department of Pediatrics, University of Washington, Seattle, Washington 98195, USA. [2] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; 1] Basic Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. [2] Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA. ; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. ; 1] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA. [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, USA. ; Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz (UCSC), Santa Cruz, California 95064, USA. ; Departments of Obstetrics/Gynecology and Pathology, and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA. ; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. ; Yale University, Department of Genetics, PO Box 208005, 333 Cedar Street, New Haven, Connecticut 06520-8005, USA. ; Computer &Information Sciences &Engineering, University of Florida, Gainesville, Florida 32611, USA. ; McKusick-Nathans Institute of Genetic Medicine and Department of Biomedical Engineering, Johns Hopkins University, 733 N. Broadway, BRB 573 Baltimore, Maryland 21205, USA. ; 1] European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. [2] Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK. ; Department of Biological Structure, University of Washington, HSB I-516, 1959 NE Pacific Street, Seattle, Washington 98195, USA. ; MRC Molecular Haemotology Unit, University of Oxford, Oxford OX3 9DS, UK. ; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065, USA. ; HHMI and Ludwig Center at Memorial Sloan Kettering Cancer Center, Immunology Program, Memorial Sloan Kettering Cancer Canter, New York, New York 10065, USA. ; Dana Farber Cancer Institute, Harvard Medical School, Cambridge, Massachusetts 02138, USA. ; University of Iowa Carver College of Medicine, Department of Internal Medicine, Iowa City, Iowa 52242, USA. ; Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA. ; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA. ; Department of Pathology, University of Washington, Seattle, Washington 98195, USA. ; Department of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA. ; Bioinformatics and Genomics program, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ; Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA. ; 1] Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA. [2] Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA. ; Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA. ; NHGRI, National Institutes of Health, 5635 Fishers Lane, Bethesda, Maryland 20892-9307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409824" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage/genetics ; Chromatin/genetics/metabolism ; Conserved Sequence/genetics ; DNA Replication/genetics ; Deoxyribonuclease I/metabolism ; Gene Expression Regulation/genetics ; Gene Regulatory Networks/genetics ; Genome/*genetics ; Genome-Wide Association Study ; *Genomics ; Humans ; Mice/*genetics ; *Molecular Sequence Annotation ; RNA/genetics ; Regulatory Sequences, Nucleic Acid/genetics ; Species Specificity ; Transcription Factors/metabolism ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2002-09-14
    Description: The transcriptional profiles of mouse embryonic, neural, and hematopoietic stem cells were compared to define a genetic program for stem cells. A total of 216 genes are enriched in all three types of stem cells, and several of these genes are clustered in the genome. When compared to differentiated cell types, stem cells express a significantly higher number of genes (represented by expressed sequence tags) whose functions are unknown. Embryonic and neural stem cells have many similarities at the transcriptional level. These results provide a foundation for a more detailed understanding of stem cell biology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ramalho-Santos, Miguel -- Yoon, Soonsang -- Matsuzaki, Yumi -- Mulligan, Richard C -- Melton, Douglas A -- P60 HL54785/HL/NHLBI NIH HHS/ -- R24 DK56947/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2002 Oct 18;298(5593):597-600. Epub 2002 Sep 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Biology and Howard Hughes Medical Institute (HHMI), Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228720" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/metabolism ; Animals ; Bone Marrow Cells/physiology ; Cell Differentiation ; DNA Helicases/genetics/metabolism ; Embryo, Mammalian/*cytology ; Expressed Sequence Tags ; *Gene Expression ; *Gene Expression Profiling ; Gene Expression Regulation ; Hematopoietic Stem Cells/*physiology ; Lateral Ventricles/cytology ; Mice ; Mice, Inbred C57BL ; Neurons/*cytology ; Oligonucleotide Array Sequence Analysis ; Oxidative Stress ; Reproducibility of Results ; Signal Transduction ; Stem Cells/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-10
    Description: An open chromatin largely devoid of heterochromatin is a hallmark of stem cells. It remains unknown whether an open chromatin is necessary for the differentiation potential of stem cells, and which molecules are needed to maintain open chromatin. Here we show that the chromatin remodelling factor Chd1 is required to maintain the open chromatin of pluripotent mouse embryonic stem cells. Chd1 is a euchromatin protein that associates with the promoters of active genes, and downregulation of Chd1 leads to accumulation of heterochromatin. Chd1-deficient embryonic stem cells are no longer pluripotent, because they are incapable of giving rise to primitive endoderm and have a high propensity for neural differentiation. Furthermore, Chd1 is required for efficient reprogramming of fibroblasts to the pluripotent stem cell state. Our results indicate that Chd1 is essential for open chromatin and pluripotency of embryonic stem cells, and for somatic cell reprogramming to the pluripotent state.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891576/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891576/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gaspar-Maia, Alexandre -- Alajem, Adi -- Polesso, Fanny -- Sridharan, Rupa -- Mason, Mike J -- Heidersbach, Amy -- Ramalho-Santos, Joao -- McManus, Michael T -- Plath, Kathrin -- Meshorer, Eran -- Ramalho-Santos, Miguel -- DP2 OD004698/OD/NIH HHS/ -- R01 GM080783/GM/NIGMS NIH HHS/ -- R01 GM080783-01/GM/NIGMS NIH HHS/ -- R01 GM080783-02/GM/NIGMS NIH HHS/ -- R01 GM080783-03/GM/NIGMS NIH HHS/ -- R01 GM080783-04/GM/NIGMS NIH HHS/ -- R01 GM080783-05/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):863-8. doi: 10.1038/nature08212. Epub 2009 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ob/Gyn and Pathology, Center for Reproductive Sciences and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, California 94143-0525, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587682" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biomarkers ; Cell Proliferation ; Cells, Cultured ; Cellular Reprogramming ; *Chromatin Assembly and Disassembly ; DNA-Binding Proteins/deficiency/genetics/*metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Endoderm/metabolism ; Euchromatin/genetics/*metabolism ; Fibroblasts/cytology/metabolism ; GATA6 Transcription Factor/genetics/metabolism ; Histones/metabolism ; Methylation ; Mice ; Neurogenesis ; Neurons/cytology/metabolism ; Octamer Transcription Factor-3/genetics ; Pluripotent Stem Cells/*cytology/*metabolism ; Promoter Regions, Genetic/genetics ; RNA Interference
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-03
    Description: DNA methylation is a heritable epigenetic modification involved in gene silencing, imprinting, and the suppression of retrotransposons. Global DNA demethylation occurs in the early embryo and the germ line, and may be mediated by Tet (ten eleven translocation) enzymes, which convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Tet enzymes have been studied extensively in mouse embryonic stem (ES) cells, which are generally cultured in the absence of vitamin C, a potential cofactor for Fe(II) 2-oxoglutarate dioxygenase enzymes such as Tet enzymes. Here we report that addition of vitamin C to mouse ES cells promotes Tet activity, leading to a rapid and global increase in 5hmC. This is followed by DNA demethylation of many gene promoters and upregulation of demethylated germline genes. Tet1 binding is enriched near the transcription start site of genes affected by vitamin C treatment. Importantly, vitamin C, but not other antioxidants, enhances the activity of recombinant Tet1 in a biochemical assay, and the vitamin-C-induced changes in 5hmC and 5mC are entirely suppressed in Tet1 and Tet2 double knockout ES cells. Vitamin C has a stronger effect on regions that gain methylation in cultured ES cells compared to blastocysts, and in vivo are methylated only after implantation. In contrast, imprinted regions and intracisternal A particle retroelements, which are resistant to demethylation in the early embryo, are resistant to vitamin-C-induced DNA demethylation. Collectively, the results of this study establish vitamin C as a direct regulator of Tet activity and DNA methylation fidelity in ES cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3893718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blaschke, Kathryn -- Ebata, Kevin T -- Karimi, Mohammad M -- Zepeda-Martinez, Jorge A -- Goyal, Preeti -- Mahapatra, Sahasransu -- Tam, Angela -- Laird, Diana J -- Hirst, Martin -- Rao, Anjana -- Lorincz, Matthew C -- Ramalho-Santos, Miguel -- 92093/Canadian Institutes of Health Research/Canada -- CA151535/CA/NCI NIH HHS/ -- DP2 OD007420/OD/NIH HHS/ -- DP2OD004698/OD/NIH HHS/ -- HD065812/HD/NICHD NIH HHS/ -- P30 DK063720/DK/NIDDK NIH HHS/ -- R01 AI044432/AI/NIAID NIH HHS/ -- R01 CA151535/CA/NCI NIH HHS/ -- R01 HD065812/HD/NICHD NIH HHS/ -- R01 OD012204/OD/NIH HHS/ -- England -- Nature. 2013 Aug 8;500(7461):222-6. doi: 10.1038/nature12362. Epub 2013 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics and Gynecology and Center for Reproductive Sciences, University of California San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23812591" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antioxidants/pharmacology ; Ascorbic Acid/*pharmacology ; Blastocyst/metabolism ; Cell Line ; Culture Media/chemistry ; Cytosine/analogs & derivatives/metabolism ; DNA Methylation/*drug effects ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells/*drug effects/metabolism ; Gene Expression Regulation, Developmental/drug effects ; Gene Knockout Techniques ; Mice ; Protein Binding/drug effects ; Proto-Oncogene Proteins/genetics/*metabolism ; Recombinant Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-18
    Description: Genetic screens of an unprecedented scale have recently been made possible by the availability of high-complexity libraries of synthetic oligonucleotides designed to mediate either gene knockdown or gene knockout, coupled with next-generation sequencing. However, several sources of random noise and statistical biases complicate the interpretation of the resulting high-throughput data. We developed HiTSelect, a comprehensive analysis pipeline for rigorously selecting screen hits and identifying functionally relevant genes and pathways by addressing off-target effects, controlling for variance in both gene silencing efficiency and sequencing depth of coverage and integrating relevant metadata. We document the superior performance of HiTSelect using data from both genome-wide RNAi and CRISPR/Cas9 screens. HiTSelect is implemented as an open-source package, with a user-friendly interface for data visualization and pathway exploration. Binary executables are available at http://sourceforge.net/projects/hitselect/ , and the source code is available at https://github.com/diazlab/HiTSelect .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-08
    Description: Lineage specification during development involves reprogramming of transcriptional states, but little is known about how this is regulated in vivo. The chromatin remodeler chomodomain helicase DNA-binding protein 1 (Chd1) promotes an elevated transcriptional output in mouse embryonic stem cells. Here we report that endothelial-specific deletion of Chd1 leads to loss...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...