ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (322)
  • American Association for the Advancement of Science (AAAS)  (322)
  • Blackwell Publishing Ltd
  • National Academy of Sciences
  • PANGAEA
  • 2005-2009  (143)
  • 1980-1984  (179)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (322)
  • Blackwell Publishing Ltd
  • National Academy of Sciences
  • PANGAEA
  • Nature Publishing Group (NPG)  (35)
Years
Year
  • 1
    Publication Date: 2006-11-18
    Description: Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Revyakin, Andrey -- Liu, Chenyu -- Ebright, Richard H -- Strick, Terence R -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1139-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110577" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomechanical Phenomena ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; RNA/biosynthesis ; Transcription Initiation Site/physiology ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-11-11
    Description: The molecular mechanisms controlling human hair growth and scalp hair loss are poorly understood. By screening about 350,000 individuals in two populations from the Volga-Ural region of Russia, we identified a gene mutation in families who show an inherited form of hair loss and a hair growth defect. Affected individuals were homozygous for a deletion in the LIPH gene on chromosome 3q27, caused by short interspersed nuclear element-retrotransposon-mediated recombination. The LIPH gene is expressed in hair follicles and encodes a phospholipase called lipase H (alternatively known as membrane-associated phosphatidic acid-selective phospholipase A1alpha), an enzyme that regulates the production of bioactive lipids. These results suggest that lipase H participates in hair growth and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kazantseva, Anastasiya -- Goltsov, Andrey -- Zinchenko, Rena -- Grigorenko, Anastasia P -- Abrukova, Anna V -- Moliaka, Yuri K -- Kirillov, Alexander G -- Guo, Zhiru -- Lyle, Stephen -- Ginter, Evgeny K -- Rogaev, Evgeny I -- K08-AR02179/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):982-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095700" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements ; Amino Acid Sequence ; Base Sequence ; Chromosomes, Human, Pair 3/genetics ; Exons ; Female ; Gene Deletion ; Gene Expression ; Genetic Markers ; Hair/*growth & development ; Hair Follicle/enzymology ; Heterozygote ; Homozygote ; Humans ; Hypotrichosis/*genetics ; Lipase/chemistry/*genetics/metabolism ; Lipid Metabolism ; Lod Score ; Male ; Molecular Sequence Data ; Pedigree ; Protein Structure, Tertiary ; Recombination, Genetic ; Retroelements ; Russia ; Tandem Repeat Sequences
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-11-25
    Description: Clostridium novyi-NT is an anaerobic bacterium that can infect hypoxic regions within experimental tumors. Because C. novyi-NT lyses red blood cells, we hypothesized that its membrane-disrupting properties could be exploited to enhance the release of liposome-encapsulated drugs within tumors. Here, we show that treatment of mice bearing large, established tumors with C. novyi-NT plus a single dose of liposomal doxorubicin often led to eradication of the tumors. The bacterial factor responsible for the enhanced drug release was identified as a previously unrecognized protein termed liposomase. This protein could potentially be incorporated into diverse experimental approaches for the specific delivery of chemotherapeutic agents to tumors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheong, Ian -- Huang, Xin -- Bettegowda, Chetan -- Diaz, Luis A Jr -- Kinzler, Kenneth W -- Zhou, Shibin -- Vogelstein, Bert -- CA062924/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1308-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124324" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antineoplastic Agents/*administration & dosage/pharmacokinetics/therapeutic use ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Camptothecin/administration & dosage/analogs & ; derivatives/pharmacokinetics/therapeutic use ; Cell Line, Tumor ; Cloning, Molecular ; Clostridium/*chemistry/genetics ; Colorectal Neoplasms/*drug therapy ; Doxorubicin/*administration & dosage/pharmacokinetics/therapeutic use ; Drug Carriers ; Humans ; Lipase/chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry ; Liposomes/chemistry/*metabolism ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasm Transplantation ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-01-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Normile, Dennis -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):457.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439636" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Birds ; Databases, Nucleic Acid ; Genetic Variation ; *Genome, Viral ; Humans ; Influenza A Virus, H5N1 Subtype/*genetics/*pathogenicity ; Influenza in Birds/*virology ; Influenza, Human/*virology ; Ligands ; Poultry ; RNA, Viral/genetics ; Viral Nonstructural Proteins/chemistry/*genetics/metabolism ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-10-07
    Description: A long-standing debate in evolutionary biology concerns whether species diverge gradually through time or by punctuational episodes at the time of speciation. We found that approximately 22% of substitutional changes at the DNA level can be attributed to punctuational evolution, and the remainder accumulates from background gradual divergence. Punctuational effects occur at more than twice the rate in plants and fungi than in animals, but the proportion of total divergence attributable to punctuational change does not vary among these groups. Punctuational changes cause departures from a clock-like tempo of evolution, suggesting that they should be accounted for in deriving dates from phylogenies. Punctuational episodes of evolution may play a larger role in promoting evolutionary divergence than has previously been appreciated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pagel, Mark -- Venditti, Chris -- Meade, Andrew -- New York, N.Y. -- Science. 2006 Oct 6;314(5796):119-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK. m.pagel@rdg.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17023657" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bayes Theorem ; DNA/*genetics ; DNA, Fungal/genetics ; DNA, Plant/genetics ; *Evolution, Molecular ; Founder Effect ; Fungi/classification/genetics ; *Genetic Speciation ; Genetic Variation ; Likelihood Functions ; Mathematics ; Models, Statistical ; Mutation ; Phylogeny ; Plants/classification/genetics ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-12-16
    Description: A methanogenic archaeon isolated from deep-sea hydrothermal vent fluid was found to reduce N(2) to NH(3) at up to 92 degrees C, which is 28 degrees C higher than the current upper temperature limit of biological nitrogen fixation. The 16S ribosomal RNA gene of the hyperthermophilic nitrogen fixer, designated FS406-22, was 99% similar to that of non-nitrogen fixing Methanocaldococcus jannaschii DSM 2661. At its optimal growth temperature of 90 degrees C, FS406-22 incorporated (15)N(2) and expressed nifH messenger RNA. This increase in the temperature limit of nitrogen fixation could reveal a broader range of conditions for life in the subseafloor biosphere and other nitrogen-limited ecosystems than previously estimated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mehta, Mausmi P -- Baross, John A -- New York, N.Y. -- Science. 2006 Dec 15;314(5806):1783-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Seattle, WA 98195, USA. mausmi@alum.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170307" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/genetics/*isolation & purification/*metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Base Sequence ; *Ecosystem ; Genes, Archaeal ; Genes, rRNA ; Geologic Sediments/microbiology ; *Hot Temperature ; Molecular Sequence Data ; Nitrogen/metabolism ; *Nitrogen Fixation/genetics ; Nitrogenase/chemistry/*genetics/metabolism ; Operon ; Oxidation-Reduction ; Oxidoreductases/chemistry/genetics/metabolism ; Pacific Ocean ; Phylogeny ; RNA, Ribosomal, 16S/genetics ; Seawater/*microbiology ; Volcanic Eruptions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-12-23
    Description: Cartilaginous fishes represent the living group of jawed vertebrates that diverged from the common ancestor of human and teleost fish lineages about 530 million years ago. We generated approximately 1.4x genome sequence coverage for a cartilaginous fish, the elephant shark (Callorhinchus milii), and compared this genome with the human genome to identify conserved noncoding elements (CNEs). The elephant shark sequence revealed twice as many CNEs as were identified by whole-genome comparisons between teleost fishes and human. The ancient vertebrate-specific CNEs in the elephant shark and human genomes are likely to play key regulatory roles in vertebrate gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Venkatesh, Byrappa -- Kirkness, Ewen F -- Loh, Yong-Hwee -- Halpern, Aaron L -- Lee, Alison P -- Johnson, Justin -- Dandona, Nidhi -- Viswanathan, Lakshmi D -- Tay, Alice -- Venter, J Craig -- Strausberg, Robert L -- Brenner, Sydney -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673. mcbbv@imcb.a-star.edu.sg〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Conserved Sequence ; DNA, Intergenic ; Enhancer Elements, Genetic ; Evolution, Molecular ; Genome ; *Genome, Human ; Humans ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sharks/*genetics ; Takifugu/genetics ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-10-27
    Description: We report the cloning of Style2.1, the major quantitative trait locus responsible for a key floral attribute (style length) associated with the evolution of self-pollination in cultivated tomatoes. The gene encodes a putative transcription factor that regulates cell elongation in developing styles. The transition from cross-pollination to self-pollination was accompanied, not by a change in the STYLE2.1 protein, but rather by a mutation in the Style2.1 promoter that results in a down-regulation of Style2.1 expression during flower development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Kai-Yi -- Cong, Bin -- Wing, Rod -- Vrebalov, Julia -- Tanksley, Steven D -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):643-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962563" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Biological Evolution ; Chromosome Mapping ; Cloning, Molecular ; Crosses, Genetic ; Down-Regulation ; Flowers/*anatomy & histology/genetics/growth & development ; Genes, Plant ; Genotype ; Helix-Loop-Helix Motifs ; Lycopersicon esculentum/anatomy & histology/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/metabolism ; Pollen/physiology ; Promoter Regions, Genetic ; Quantitative Trait Loci ; Reproduction ; Sequence Deletion ; Transcription Factors/chemistry/*genetics/metabolism ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-04-14
    Description: A systematic fluorescence in situ hybridization comparison of macaque and human synteny organization disclosed five additional macaque evolutionary new centromeres (ENCs) for a total of nine ENCs. To understand the dynamics of ENC formation and progression, we compared the ENC of macaque chromosome 4 with the human orthologous region, at 6q24.3, that conserves the ancestral genomic organization. A 250-kilobase segment was extensively duplicated around the macaque centromere. These duplications were strictly intrachromosomal. Our results suggest that novel centromeres may trigger only local duplication activity and that the absence of genes in the seeding region may have been important in ENC maintenance and progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ventura, Mario -- Antonacci, Francesca -- Cardone, Maria Francesca -- Stanyon, Roscoe -- D'Addabbo, Pietro -- Cellamare, Angelo -- Sprague, L James -- Eichler, Evan E -- Archidiacono, Nicoletta -- Rocchi, Mariano -- GM58815/GM/NIGMS NIH HHS/ -- HG002385/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):243-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Microbiology, University of Bari, 70126 Bari, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431171" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Centromere ; Chromosomes, Human, Pair 6 ; Dna ; *Evolution, Molecular ; Gene Duplication ; Humans ; Macaca mulatta/*genetics ; Molecular Sequence Data ; Sequence Tagged Sites ; Synteny
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-10-20
    Description: A computational analysis of the nuclear genome of a red alga, Cyanidioschyzon merolae, identified 11 transfer RNA (tRNA) genes in which the 3' half of the tRNA lies upstream of the 5' half in the genome. We verified that these genes are expressed and produce mature tRNAs that are aminoacylated. Analysis of tRNA-processing intermediates for these genes indicates an unusual processing pathway in which the termini of the tRNA precursor are ligated, resulting in formation of a characteristic circular RNA intermediate that is then processed at the acceptor stem to generate the correct termini.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soma, Akiko -- Onodera, Akinori -- Sugahara, Junichi -- Kanai, Akio -- Yachie, Nozomu -- Tomita, Masaru -- Kawamura, Fujio -- Sekine, Yasuhiko -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):450-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima, Tokyo 171-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947580" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Algal/chemistry/genetics ; *Genes ; Methionine-tRNA Ligase/metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/chemistry/genetics/*metabolism ; RNA Processing, Post-Transcriptional ; RNA, Algal/*genetics/metabolism ; RNA, Transfer/*genetics/metabolism ; RNA, Transfer, Amino Acyl/metabolism ; Rhodophyta/*genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-12-16
    Description: Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zarrin, Ali A -- Del Vecchio, Catherine -- Tseng, Eva -- Gleason, Megan -- Zarin, Payam -- Tian, Ming -- Alt, Frederick W -- 2P01AI031541-15/AI/NIAID NIH HHS/ -- P01CA092625-05/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):377-81. Epub 2006 Dec 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17170253" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line ; Cytidine Deaminase/*metabolism ; *DNA Breaks, Double-Stranded ; DNA Repair ; Deoxyribonucleases, Type II Site-Specific/genetics/*metabolism ; Embryonic Stem Cells ; Gene Targeting ; Genes, Immunoglobulin Heavy Chain ; Hybridomas ; *Immunoglobulin Class Switching ; Immunoglobulin G/biosynthesis/genetics ; Immunoglobulin M/biosynthesis/genetics ; *Immunoglobulin Switch Region ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Recombination, Genetic ; Saccharomyces cerevisiae/enzymology ; Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2007-07-14
    Description: The temporal and spatial regulation of gene expression in mammalian development is linked to the establishment of functional chromatin domains. Here, we report that tissue-specific transcription of a retrotransposon repeat in the murine growth hormone locus is required for gene activation. This repeat serves as a boundary to block the influence of repressive chromatin modifications. The repeat element is able to generate short, overlapping Pol II-and Pol III-driven transcripts, both of which are necessary and sufficient to enable a restructuring of the regulated locus into nuclear compartments. These data suggest that transcription of interspersed repetitive sequences may represent a developmental strategy for the establishment of functionally distinct domains within the mammalian genome to control gene activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lunyak, Victoria V -- Prefontaine, Gratien G -- Nunez, Esperanza -- Cramer, Thorsten -- Ju, Bong-Gun -- Ohgi, Kenneth A -- Hutt, Kasey -- Roy, Rosa -- Garcia-Diaz, Angel -- Zhu, Xiaoyan -- Yung, Yun -- Montoliu, Lluis -- Glass, Christopher K -- Rosenfeld, Michael G -- New York, N.Y. -- Science. 2007 Jul 13;317(5835):248-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, 9500 Gilman Drive, Room 345, La Jolla, CA 92093-0648, USA. vlunyak@uscd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17626886" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromatin Immunoprecipitation ; DNA Polymerase II/metabolism ; DNA Polymerase III/metabolism ; *Gene Expression Regulation, Developmental ; Growth Hormone/*genetics ; Histones/metabolism ; *Insulator Elements ; Methylation ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; *Organogenesis ; Pituitary Gland/*embryology/metabolism ; *Short Interspersed Nucleotide Elements ; *Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2007-06-30
    Description: HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an HIV-1 LTR. This evolved recombinase efficiently excised integrated HIV proviral DNA from the genome of infected cells. Although a long way from use in the clinic, we speculate that this type of technology might be adapted in future antiretroviral therapies, among other possible uses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarkar, Indrani -- Hauber, Ilona -- Hauber, Joachim -- Buchholz, Frank -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1912-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600219" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA Shuffling ; DNA, Viral/*metabolism ; *Directed Molecular Evolution ; Escherichia coli/genetics ; Gene Library ; Genome, Human ; *HIV Long Terminal Repeat ; HIV-1/*metabolism ; HeLa Cells ; Humans ; Integrases/*genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Proviruses/metabolism ; Recombination, Genetic ; *Virus Integration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2007-01-16
    Description: A major goal of systems biology is to predict the function of biological networks. Although network topologies have been successfully determined in many cases, the quantitative parameters governing these networks generally have not. Measuring affinities of molecular interactions in high-throughput format remains problematic, especially for transient and low-affinity interactions. We describe a high-throughput microfluidic platform that measures such properties on the basis of mechanical trapping of molecular interactions. With this platform we characterized DNA binding energy landscapes for four eukaryotic transcription factors; these landscapes were used to test basic assumptions about transcription factor binding and to predict their in vivo function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maerkl, Sebastian J -- Quake, Stephen R -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):233-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry and Molecular Biophysics Option, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218526" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Computational Biology ; Computer Simulation ; DNA/*metabolism ; DNA, Fungal/genetics/metabolism ; DNA-Binding Proteins/metabolism ; E-Box Elements ; Gene Expression Regulation, Fungal ; Helix-Loop-Helix Motifs ; Humans ; *Microfluidic Analytical Techniques ; Oligonucleotide Array Sequence Analysis ; Protein Binding ; Protein Isoforms/metabolism ; Regulatory Sequences, Nucleic Acid ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/genetics ; Saccharomyces cerevisiae Proteins/metabolism ; *Systems Biology ; Templates, Genetic ; Thermodynamics ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2008-01-26
    Description: We have synthesized a 582,970-base pair Mycoplasma genitalium genome. This synthetic genome, named M. genitalium JCVI-1.0, contains all the genes of wild-type M. genitalium G37 except MG408, which was disrupted by an antibiotic marker to block pathogenicity and to allow for selection. To identify the genome as synthetic, we inserted "watermarks" at intergenic sites known to tolerate transposon insertions. Overlapping "cassettes" of 5 to 7 kilobases (kb), assembled from chemically synthesized oligonucleotides, were joined by in vitro recombination to produce intermediate assemblies of approximately 24 kb, 72 kb ("1/8 genome"), and 144 kb ("1/4 genome"), which were all cloned as bacterial artificial chromosomes in Escherichia coli. Most of these intermediate clones were sequenced, and clones of all four 1/4 genomes with the correct sequence were identified. The complete synthetic genome was assembled by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae, then isolated and sequenced. A clone with the correct sequence was identified. The methods described here will be generally useful for constructing large DNA molecules from chemically synthesized pieces and also from combinations of natural and synthetic DNA segments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Daniel G -- Benders, Gwynedd A -- Andrews-Pfannkoch, Cynthia -- Denisova, Evgeniya A -- Baden-Tillson, Holly -- Zaveri, Jayshree -- Stockwell, Timothy B -- Brownley, Anushka -- Thomas, David W -- Algire, Mikkel A -- Merryman, Chuck -- Young, Lei -- Noskov, Vladimir N -- Glass, John I -- Venter, J Craig -- Hutchison, Clyde A 3rd -- Smith, Hamilton O -- New York, N.Y. -- Science. 2008 Feb 29;319(5867):1215-20. doi: 10.1126/science.1151721. Epub 2008 Jan 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J. Craig Venter Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218864" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Artificial, Yeast ; *Cloning, Molecular ; DNA, Bacterial/*chemical synthesis ; DNA, Recombinant ; Escherichia coli/genetics ; Genetic Vectors ; *Genome, Bacterial ; Genomics/*methods ; Mycoplasma genitalium/*genetics ; Oligodeoxyribonucleotides/chemical synthesis ; Plasmids ; Recombination, Genetic ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-02-16
    Description: Cadherin-mediated cell adhesion and signaling is essential for metazoan development and yet is absent from all other multicellular organisms. We found cadherin genes at numbers similar to those observed in complex metazoans in one of the closest single-celled relatives of metazoans, the choanoflagellate Monosiga brevicollis. Because the evolution of metazoans from a single-celled ancestor required novel cell adhesion and signaling mechanisms, the discovery of diverse cadherins in choanoflagellates suggests that cadherins may have contributed to metazoan origins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abedin, Monika -- King, Nicole -- New York, N.Y. -- Science. 2008 Feb 15;319(5865):946-8. doi: 10.1126/science.1151084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18276888" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Cadherins/*chemistry/*genetics/physiology ; Cell Adhesion ; Ciona intestinalis/chemistry ; Cnidaria/chemistry ; Drosophila melanogaster/chemistry ; Eukaryota/*chemistry ; Eukaryotic Cells/*chemistry/physiology ; Mice ; Molecular Sequence Data ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Signal Transduction ; Tyrosine/metabolism ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2008-12-20
    Description: Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2695655/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830/GM/NIGMS NIH HHS/ -- R01 GM072830-04/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19095942" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Conjugation, Genetic ; DNA, Bacterial/*genetics/metabolism ; Deoxyribonuclease I/genetics/metabolism ; *Gene Silencing ; *Gene Transfer, Horizontal ; Plasmids/genetics ; RNA Splicing ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics ; Staphylococcus Phages/genetics ; Staphylococcus aureus/genetics ; Staphylococcus epidermidis/*genetics ; *Transformation, Bacterial
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2008-01-19
    Description: Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down alpha-carotene versus beta-carotene branches of the carotenoid pathway. Four natural lcyE polymorphisms explained 58% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2933658/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harjes, Carlos E -- Rocheford, Torbert R -- Bai, Ling -- Brutnell, Thomas P -- Kandianis, Catherine Bermudez -- Sowinski, Stephen G -- Stapleton, Ann E -- Vallabhaneni, Ratnakar -- Williams, Mark -- Wurtzel, Eleanore T -- Yan, Jianbing -- Buckler, Edward S -- S06-GM08225/GM/NIGMS NIH HHS/ -- SC1 GM081160/GM/NIGMS NIH HHS/ -- SC1 GM081160-01/GM/NIGMS NIH HHS/ -- SC1 GM081160-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18202289" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Breeding ; Carotenoids/*analysis/metabolism ; Crosses, Genetic ; Cryptoxanthins ; Gene Expression Regulation, Plant ; *Genetic Variation ; Haplotypes ; Intramolecular Lyases/*genetics/metabolism ; Molecular Sequence Data ; Mutagenesis ; Nutritive Value ; Polymorphism, Genetic ; Quantitative Trait Loci ; Xanthophylls/analysis/metabolism ; Zea mays/chemistry/enzymology/*genetics ; beta Carotene/analysis/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2008-05-24
    Description: Viruses shape microbial community structure and function by altering the fitness of their hosts and by promoting genetic exchange. The complexity of most natural ecosystems has precluded detailed studies of virus-host interactions. We reconstructed virus and host bacterial and archaeal genome sequences from community genomic data from two natural acidophilic biofilms. Viruses were matched to their hosts by analyzing spacer sequences that occur among clustered regularly interspaced short palindromic repeats (CRISPRs) that are a hallmark of virus resistance. Virus population genomic analyses provided evidence that extensive recombination shuffles sequence motifs sufficiently to evade CRISPR spacers. Only the most recently acquired spacers match coexisting viruses, which suggests that community stability is achieved by rapid but compensatory shifts in host resistance levels and virus population structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andersson, Anders F -- Banfield, Jillian F -- New York, N.Y. -- Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Earth and Planetary Science and Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497291" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/*genetics/physiology/*virology ; Archaeal Viruses/genetics/*physiology ; Bacteria/*genetics/*virology ; Bacterial Physiological Phenomena ; Bacteriophages/genetics/*physiology ; Base Sequence ; Biofilms ; DNA, Intergenic ; Ecosystem ; Genome, Archaeal ; Genome, Bacterial ; Genome, Viral ; Hydrogen-Ion Concentration ; Molecular Sequence Data ; Oligodeoxyribonucleotides ; Recombination, Genetic ; *Repetitive Sequences, Nucleic Acid ; Thermoplasmales/genetics/physiology/virology ; Viral Proteins/chemistry/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-01-26
    Description: The statistical methods applied to the analysis of genomic data do not account for uncertainty in the sequence alignment. Indeed, the alignment is treated as an observation, and all of the subsequent inferences depend on the alignment being correct. This may not have been too problematic for many phylogenetic studies, in which the gene is carefully chosen for, among other things, ease of alignment. However, in a comparative genomics study, the same statistical methods are applied repeatedly on thousands of genes, many of which will be difficult to align. Using genomic data from seven yeast species, we show that uncertainty in the alignment can lead to several problems, including different alignment methods resulting in different conclusions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, Karen M -- Suchard, Marc A -- Huelsenbeck, John P -- GM-069801/GM/NIGMS NIH HHS/ -- R01 GM069801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jan 25;319(5862):473-6. doi: 10.1126/science.1151532.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Ecology, Behavior and Evolution, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18218900" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; Evolution, Molecular ; *Genome, Fungal ; *Genomics ; Models, Statistical ; Monte Carlo Method ; Open Reading Frames ; Phylogeny ; Saccharomyces/*genetics ; Selection, Genetic ; Sequence Alignment/*methods ; Software ; Uncertainty
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2008-09-06
    Description: Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81-base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658639/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Visel, Axel -- Akiyama, Jennifer A -- Shoukry, Malak -- Lewis, Keith D -- Holt, Amy -- Plajzer-Frick, Ingrid -- Morrison, Harris -- Fitzpatrick, David R -- Afzal, Veena -- Pennacchio, Len A -- Rubin, Edward M -- Noonan, James P -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367/GM/NIGMS NIH HHS/ -- F32 GM074367-02/GM/NIGMS NIH HHS/ -- HG003988/HG/NHGRI NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- MC_U127561093/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2008 Sep 5;321(5894):1346-50. doi: 10.1126/science.1159974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18772437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Body Patterning/*genetics ; Conserved Sequence ; Embryonic Development ; *Enhancer Elements, Genetic ; Evolution, Molecular ; Extremities/*embryology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Humans ; Limb Buds/embryology/metabolism ; Macaca mulatta/genetics ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Mutation ; PAX9 Transcription Factor/metabolism ; Pan troglodytes/genetics ; Selection, Genetic ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2008-12-06
    Description: Female meiotic drive, in which paired chromosomes compete for access to the egg, is a potentially powerful but rarely documented evolutionary force. In interspecific monkeyflower (Mimulus) hybrids, a driving M. guttatus allele (D) exhibits a 98:2 transmission advantage via female meiosis. We show that extreme interspecific drive is most likely caused by divergence in centromere-associated repeat domains and document cytogenetic and functional polymorphism for drive within a population of M. guttatus. In conspecific crosses, D had a 58:42 transmission advantage over nondriving alternative alleles. However, individuals homozygous for the driving allele suffered reduced pollen viability. These fitness effects and molecular population genetic data suggest that balancing selection prevents the fixation or loss of D and that selfish chromosomal transmission may affect both individual fitness and population genetic load.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fishman, Lila -- Saunders, Arpiar -- New York, N.Y. -- Science. 2008 Dec 5;322(5907):1559-62. doi: 10.1126/science.1161406.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA. lila.fishman@mso.umt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19056989" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Biological Evolution ; Centromere/*physiology ; Chromosome Segregation ; Chromosomes, Plant/*physiology ; Crosses, Genetic ; Genetic Markers ; Heterozygote ; Hybridization, Genetic ; Linkage Disequilibrium ; *Meiosis ; Mimulus/*genetics/physiology ; Molecular Sequence Data ; Polymorphism, Genetic ; Repetitive Sequences, Nucleic Acid ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strasser, Bruno J -- New York, N.Y. -- Science. 2008 Oct 24;322(5901):537-8. doi: 10.1126/science.1163399.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of the History of Medicine, Yale University, New Haven, CT 06520, USA. bruno.strasser@yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948528" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Databases, Nucleic Acid/*history/organization & administration ; Editorial Policies ; History, 20th Century ; History, 21st Century ; National Institutes of Health (U.S.)/*history ; National Library of Medicine (U.S.)/history ; Natural History/history ; Publishing ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2008-07-19
    Description: Cyclic di-guanosine monophosphate (di-GMP) is a circular RNA dinucleotide that functions as a second messenger in diverse species of bacteria to trigger wide-ranging physiological changes, including cell differentiation, conversion between motile and biofilm lifestyles, and virulence gene expression. However, the mechanisms by which cyclic di-GMP regulates gene expression have remained a mystery. We found that cyclic di-GMP in many bacterial species is sensed by a riboswitch class in messenger RNA that controls the expression of genes involved in numerous fundamental cellular processes. A variety of cyclic di-GMP regulons are revealed, including some riboswitches associated with virulence gene expression, pilus formation, and flagellum biosynthesis. In addition, sequences matching the consensus for cyclic di-GMP riboswitches are present in the genome of a bacteriophage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, N -- Lee, E R -- Weinberg, Z -- Moy, R H -- Kim, J N -- Link, K H -- Breaker, R R -- GM 068819/GM/NIGMS NIH HHS/ -- HV28186/HV/NHLBI NIH HHS/ -- R33 DK07027/DK/NIDDK NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- T32GM007223/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 18;321(5887):411-3. doi: 10.1126/science.1159519.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18635805" target="_blank"〉PubMed〈/a〉
    Keywords: Aptamers, Nucleotide/*metabolism ; Bacillus cereus/genetics/metabolism ; Bacteria/*genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Clostridium difficile/genetics/metabolism ; Cyclic GMP/*analogs & derivatives/metabolism ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/*metabolism ; RNA, Messenger/chemistry/*metabolism ; Regulon ; *Second Messenger Systems ; Vibrio cholerae/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2009-03-17
    Description: The three-dimensional molecular structure of DNA, specifically the shape of the backbone and grooves of genomic DNA, can be dramatically affected by nucleotide changes, which can cause differences in protein-binding affinity and phenotype. We developed an algorithm to measure constraint on the basis of similarity of DNA topography among multiple species, using hydroxyl radical cleavage patterns to interrogate the solvent-accessible surface area of DNA. This algorithm found that 12% of bases in the human genome are evolutionarily constrained-double the number detected by nucleotide sequence-based algorithms. Topography-informed constrained regions correlated with functional noncoding elements, including enhancers, better than did regions identified solely on the basis of nucleotide sequence. These results support the idea that the molecular shape of DNA is under selection and can identify evolutionary history.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749491/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Stephen C J -- Hansen, Loren -- Abaan, Hatice Ozel -- Tullius, Thomas D -- Margulies, Elliott H -- R01 HG003541/HG/NHGRI NIH HHS/ -- R01 HG003541-03/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):389-92. doi: 10.1126/science.1169050. Epub 2009 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioinformatics Program, Boston University, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19286520" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Amino Acid Motifs ; Base Sequence ; Binding Sites ; Conserved Sequence ; DNA/*chemistry/genetics ; Deoxyribonuclease I/metabolism ; Early Growth Response Protein 1/genetics/metabolism ; Evolution, Molecular ; *Genome, Human ; Humans ; Mutant Proteins/metabolism ; Nucleic Acid Conformation ; Phenotype ; Polymorphism, Single Nucleotide ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2009-12-08
    Description: Hepatitis delta virus (HDV) and cytoplasmic polyadenylation element-binding protein 3 (CPEB3) ribozymes form a family of self-cleaving RNAs characterized by a conserved nested double-pseudoknot and minimal sequence conservation. Secondary structure-based searches were used to identify sequences capable of forming this fold, and their self-cleavage activity was confirmed in vitro. Active sequences were uncovered in several marine organisms, two nematodes, an arthropod, a bacterium, and an insect virus, often in multiple sequence families and copies. Sequence searches based on identified ribozymes showed that plants, fungi, and a unicellular eukaryote also harbor the ribozymes. In Anopheles gambiae, the ribozymes were found differentially expressed and self-cleaved at basic developmental stages. Our results indicate that HDV-like ribozymes are abundant in nature and suggest that self-cleaving RNAs may play a variety of biological roles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159031/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Webb, Chiu-Ho T -- Riccitelli, Nathan J -- Ruminski, Dana J -- Luptak, Andrej -- R01 GM094929/GM/NIGMS NIH HHS/ -- R01 GM094929-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):953. doi: 10.1126/science.1178084.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697 USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965505" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles/enzymology/*genetics/growth & development ; Base Sequence ; Catalysis ; Eukaryota/enzymology/*genetics ; Expressed Sequence Tags ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2008-11-22
    Description: We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eid, John -- Fehr, Adrian -- Gray, Jeremy -- Luong, Khai -- Lyle, John -- Otto, Geoff -- Peluso, Paul -- Rank, David -- Baybayan, Primo -- Bettman, Brad -- Bibillo, Arkadiusz -- Bjornson, Keith -- Chaudhuri, Bidhan -- Christians, Frederick -- Cicero, Ronald -- Clark, Sonya -- Dalal, Ravindra -- Dewinter, Alex -- Dixon, John -- Foquet, Mathieu -- Gaertner, Alfred -- Hardenbol, Paul -- Heiner, Cheryl -- Hester, Kevin -- Holden, David -- Kearns, Gregory -- Kong, Xiangxu -- Kuse, Ronald -- Lacroix, Yves -- Lin, Steven -- Lundquist, Paul -- Ma, Congcong -- Marks, Patrick -- Maxham, Mark -- Murphy, Devon -- Park, Insil -- Pham, Thang -- Phillips, Michael -- Roy, Joy -- Sebra, Robert -- Shen, Gene -- Sorenson, Jon -- Tomaney, Austin -- Travers, Kevin -- Trulson, Mark -- Vieceli, John -- Wegener, Jeffrey -- Wu, Dawn -- Yang, Alicia -- Zaccarin, Denis -- Zhao, Peter -- Zhong, Frank -- Korlach, Jonas -- Turner, Stephen -- R01HG003710/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 2;323(5910):133-8. doi: 10.1126/science.1162986. Epub 2008 Nov 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Pacific Biosciences, 1505 Adams Drive, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19023044" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Consensus Sequence ; DNA/biosynthesis ; DNA, Circular/chemistry ; DNA, Single-Stranded/chemistry ; DNA-Directed DNA Polymerase/*metabolism ; Deoxyribonucleotides/metabolism ; Enzymes, Immobilized ; Fluorescent Dyes ; Kinetics ; Nanostructures ; Sequence Analysis, DNA/*methods ; Spectrometry, Fluorescence
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2009-05-09
    Description: Despite tremendous progress in understanding the nature of the immune system, the full diversity of an organism's antibody repertoire is unknown. We used high-throughput sequencing of the variable domain of the antibody heavy chain from 14 zebrafish to analyze VDJ usage and antibody sequence. Zebrafish were found to use between 50 and 86% of all possible VDJ combinations and shared a similar frequency distribution, with some correlation of VDJ patterns between individuals. Zebrafish antibodies retained a few thousand unique heavy chains that also exhibited a shared frequency distribution. We found evidence of convergence, in which different individuals made the same antibody. This approach provides insight into the breadth of the expressed antibody repertoire and immunological diversity at the level of an individual organism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinstein, Joshua A -- Jiang, Ning -- White, Richard A 3rd -- Fisher, Daniel S -- Quake, Stephen R -- DP1 OD000251/OD/NIH HHS/ -- DP1 OD000251-04/OD/NIH HHS/ -- DP1 OD000251-05/OD/NIH HHS/ -- DP1 OD000251-06/OD/NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):807-10. doi: 10.1126/science.1170020.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies/genetics ; Antibody Diversity ; Base Sequence ; Complementarity Determining Regions/*genetics ; Computational Biology ; Female ; Gene Library ; *Genes, Immunoglobulin Heavy Chain ; Immunoglobulin Heavy Chains/*genetics ; Immunoglobulin Joining Region/genetics ; Immunoglobulin M/*genetics ; Male ; Molecular Sequence Data ; Recombination, Genetic ; Sequence Analysis, DNA ; VDJ Exons ; Zebrafish/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2009-03-03
    Description: Plants have distinct RNA polymerase complexes (Pol IV and Pol V) with largely unknown roles in maintaining small RNA-associated gene silencing. Curiously, the eudicot Arabidopsis thaliana is not affected when either function is lost. By use of mutation selection and positional cloning, we showed that the largest subunit of the presumed maize Pol IV is involved in paramutation, an inherited epigenetic change facilitated by an interaction between two alleles, as well as normal maize development. Bioinformatics analyses and nuclear run-on transcription assays indicate that Pol IV does not engage in the efficient RNA synthesis typical of the three major eukaryotic DNA-dependent RNA polymerases. These results indicate that Pol IV employs abnormal RNA polymerase activities to achieve genome-wide silencing and that its absence affects both maize development and heritable epigenetic changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erhard, Karl F Jr -- Stonaker, Jennifer L -- Parkinson, Susan E -- Lim, Jana P -- Hale, Christopher J -- Hollick, Jay B -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1201-5. doi: 10.1126/science.1164508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19251626" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Computational Biology ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Epigenesis, Genetic ; Gene Silencing ; Genes, Plant ; Molecular Sequence Data ; *Mutation ; Phylogeny ; Protein Subunits/chemistry/genetics/metabolism ; RNA, Plant/genetics/metabolism ; RNA, Small Interfering/genetics/metabolism ; Transcription, Genetic ; Zea mays/*enzymology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2009-04-18
    Description: Genes are not simply turned on or off, but instead their expression is fine-tuned to meet the needs of a cell. How genes are modulated so precisely is not well understood. The glucocorticoid receptor (GR) regulates target genes by associating with specific DNA binding sites, the sequences of which differ between genes. Traditionally, these binding sites have been viewed only as docking sites. Using structural, biochemical, and cell-based assays, we show that GR binding sequences, differing by as little as a single base pair, differentially affect GR conformation and regulatory activity. We therefore propose that DNA is a sequence-specific allosteric ligand of GR that tailors the activity of the receptor toward specific target genes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meijsing, Sebastiaan H -- Pufall, Miles A -- So, Alex Y -- Bates, Darren L -- Chen, Lin -- Yamamoto, Keith R -- GM08537/GM/NIGMS NIH HHS/ -- R01 CA020535/CA/NCI NIH HHS/ -- R01 CA020535-31/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 17;324(5925):407-10. doi: 10.1126/science.1164265.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19372434" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; Cell Line, Tumor ; Crystallography, X-Ray ; DNA/*chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Mutation ; Protein Conformation ; Protein Isoforms/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rats ; Receptors, Glucocorticoid/chemistry/genetics/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2009-05-16
    Description: Sequence preferences of DNA binding proteins are a primary mechanism by which cells interpret the genome. Despite the central importance of these proteins in physiology, development, and evolution, comprehensive DNA binding specificities have been determined experimentally for only a few proteins. Here, we used microarrays containing all 10-base pair sequences to examine the binding specificities of 104 distinct mouse DNA binding proteins representing 22 structural classes. Our results reveal a complex landscape of binding, with virtually every protein analyzed possessing unique preferences. Roughly half of the proteins each recognized multiple distinctly different sequence motifs, challenging our molecular understanding of how proteins interact with their DNA binding sites. This complexity in DNA recognition may be important in gene regulation and in the evolution of transcriptional regulatory networks.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2905877/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Badis, Gwenael -- Berger, Michael F -- Philippakis, Anthony A -- Talukder, Shaheynoor -- Gehrke, Andrew R -- Jaeger, Savina A -- Chan, Esther T -- Metzler, Genita -- Vedenko, Anastasia -- Chen, Xiaoyu -- Kuznetsov, Hanna -- Wang, Chi-Fong -- Coburn, David -- Newburger, Daniel E -- Morris, Quaid -- Hughes, Timothy R -- Bulyk, Martha L -- R01 HG003985/HG/NHGRI NIH HHS/ -- R01 HG003985-01/HG/NHGRI NIH HHS/ -- R01 HG003985-02/HG/NHGRI NIH HHS/ -- R01 HG003985-03/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1720-3. doi: 10.1126/science.1162327. Epub 2009 May 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19443739" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; Electrophoretic Mobility Shift Assay ; Gene Expression Regulation ; Gene Regulatory Networks ; Humans ; Mice ; Protein Array Analysis ; Protein Binding ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2009-09-12
    Description: Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition. Although not directly related to its autonomous element, the MITE has less affinity for the transposase than does the autonomous element but lacks a motif repressing transposition in the autonomous element. The MITE contains internal sequences that enhance transposition. These findings suggest that MITEs achieve high transposition activity by scavenging transposases encoded by distantly related and self-restrained autonomous elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Guojun -- Nagel, Dawn Holligan -- Feschotte, Cedric -- Hancock, C Nathan -- Wessler, Susan R -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1391-4. doi: 10.1126/science.1175688.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745152" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA Transposable Elements ; *Genome, Plant ; Inverted Repeat Sequences ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oryza/*genetics/metabolism ; Transposases/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2009-12-08
    Description: Although the nematode Caenorhabditis elegans produces self-fertile hermaphrodites, it descended from a male/female species, so hermaphroditism provides a model for the origin of novel traits. In the related species C. remanei, which has only male and female sexes, lowering the activity of tra-2 by RNA interference created XX animals that made spermatids as well as oocytes, but their spermatids could not activate without the addition of male seminal fluid. However, by lowering the expression of both tra-2 and swm-1, a gene that regulates sperm activation in C. elegans, we produced XX animals with active sperm that were self-fertile. Thus, the evolution of hermaphroditism in Caenorhabditis probably required two steps: a mutation in the sex-determination pathway that caused XX spermatogenesis and a mutation that allowed these spermatids to self-activate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldi, Chris -- Cho, Soochin -- Ellis, Ronald E -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):1002-5. doi: 10.1126/science.1176013.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965511" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Biological Evolution ; Caenorhabditis/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans/anatomy & histology/classification/*genetics/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Crosses, Genetic ; Disorders of Sex Development/genetics ; Female ; Genes, Helminth ; Germ Cells/physiology ; Male ; Membrane Proteins/genetics/physiology ; Molecular Sequence Data ; *Mutation ; Oogenesis ; Ovulation ; Phylogeny ; Reproduction ; Selection, Genetic ; Sex Determination Processes ; Spermatids/physiology ; Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2009-07-25
    Description: The toolbox of rat genetics currently lacks the ability to introduce site-directed, heritable mutations into the genome to create knockout animals. By using engineered zinc-finger nucleases (ZFNs) designed to target an integrated reporter and two endogenous rat genes, Immunoglobulin M (IgM) and Rab38, we demonstrate that a single injection of DNA or messenger RNA encoding ZFNs into the one-cell rat embryo leads to a high frequency of animals carrying 25 to 100% disruption at the target locus. These mutations are faithfully and efficiently transmitted through the germline. Our data demonstrate the feasibility of targeted gene disruption in multiple rat strains within 4 months time, paving the way to a humanized monoclonal antibody platform and additional human disease models.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831805/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geurts, Aron M -- Cost, Gregory J -- Freyvert, Yevgeniy -- Zeitler, Bryan -- Miller, Jeffrey C -- Choi, Vivian M -- Jenkins, Shirin S -- Wood, Adam -- Cui, Xiaoxia -- Meng, Xiangdong -- Vincent, Anna -- Lam, Stephen -- Michalkiewicz, Mieczyslaw -- Schilling, Rebecca -- Foeckler, Jamie -- Kalloway, Shawn -- Weiler, Hartmut -- Menoret, Severine -- Anegon, Ignacio -- Davis, Gregory D -- Zhang, Lei -- Rebar, Edward J -- Gregory, Philip D -- Urnov, Fyodor D -- Jacob, Howard J -- Buelow, Roland -- 5P01HL082798-03/HL/NHLBI NIH HHS/ -- 5U01HL066579-08/HL/NHLBI NIH HHS/ -- P01 HL082798/HL/NHLBI NIH HHS/ -- P01 HL082798-03/HL/NHLBI NIH HHS/ -- U01 HL066579/HL/NHLBI NIH HHS/ -- U01 HL066579-08/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):433. doi: 10.1126/science.1172447.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 52336, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19628861" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Dna ; Embryo, Mammalian ; Endodeoxyribonucleases/genetics/*metabolism ; Feasibility Studies ; Female ; *Gene Knockout Techniques ; Green Fluorescent Proteins ; Immunoglobulin M/*genetics ; Male ; *Microinjections ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; RNA, Messenger ; Rats ; *Zinc Fingers/genetics ; rab GTP-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2009-01-20
    Description: Combining biomolecular function with integrated circuit technology could usher in a new era of biologically enabled electronics. A key challenge has been coupling different molecular functions to specific chip locations for communication with the circuit. We used spatially confined electric fields to assemble different populations of DNA-coated nanowires to desired positions with an accuracy that enabled postassembly fabrication of contacts to each individual nanowire, with high yield and without loss of DNA function. This combination of off-chip synthesis and biofunctionalization with high-density, heterogeneous assembly and integration at the individual nanowire level points to new ways of incorporating biological functionality with silicon electronics.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837912/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrow, Thomas J -- Li, Mingwei -- Kim, Jaekyun -- Mayer, Theresa S -- Keating, Christine D -- R01 EB000268/EB/NIBIB NIH HHS/ -- R01 EB000268-08/EB/NIBIB NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):352. doi: 10.1126/science.1165921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19150837" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *DNA/chemistry ; Electricity ; Electronics/*instrumentation/methods ; Nanotechnology/methods ; *Nanowires/chemistry ; Oligodeoxyribonucleotides/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2009-12-08
    Description: We report an improved draft nucleotide sequence of the 2.3-gigabase genome of maize, an important crop plant and model for biological research. Over 32,000 genes were predicted, of which 99.8% were placed on reference chromosomes. Nearly 85% of the genome is composed of hundreds of families of transposable elements, dispersed nonuniformly across the genome. These were responsible for the capture and amplification of numerous gene fragments and affect the composition, sizes, and positions of centromeres. We also report on the correlation of methylation-poor regions with Mu transposon insertions and recombination, and copy number variants with insertions and/or deletions, as well as how uneven gene losses between duplicated regions were involved in returning an ancient allotetraploid to a genetically diploid state. These analyses inform and set the stage for further investigations to improve our understanding of the domestication and agricultural improvements of maize.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnable, Patrick S -- Ware, Doreen -- Fulton, Robert S -- Stein, Joshua C -- Wei, Fusheng -- Pasternak, Shiran -- Liang, Chengzhi -- Zhang, Jianwei -- Fulton, Lucinda -- Graves, Tina A -- Minx, Patrick -- Reily, Amy Denise -- Courtney, Laura -- Kruchowski, Scott S -- Tomlinson, Chad -- Strong, Cindy -- Delehaunty, Kim -- Fronick, Catrina -- Courtney, Bill -- Rock, Susan M -- Belter, Eddie -- Du, Feiyu -- Kim, Kyung -- Abbott, Rachel M -- Cotton, Marc -- Levy, Andy -- Marchetto, Pamela -- Ochoa, Kerri -- Jackson, Stephanie M -- Gillam, Barbara -- Chen, Weizu -- Yan, Le -- Higginbotham, Jamey -- Cardenas, Marco -- Waligorski, Jason -- Applebaum, Elizabeth -- Phelps, Lindsey -- Falcone, Jason -- Kanchi, Krishna -- Thane, Thynn -- Scimone, Adam -- Thane, Nay -- Henke, Jessica -- Wang, Tom -- Ruppert, Jessica -- Shah, Neha -- Rotter, Kelsi -- Hodges, Jennifer -- Ingenthron, Elizabeth -- Cordes, Matt -- Kohlberg, Sara -- Sgro, Jennifer -- Delgado, Brandon -- Mead, Kelly -- Chinwalla, Asif -- Leonard, Shawn -- Crouse, Kevin -- Collura, Kristi -- Kudrna, Dave -- Currie, Jennifer -- He, Ruifeng -- Angelova, Angelina -- Rajasekar, Shanmugam -- Mueller, Teri -- Lomeli, Rene -- Scara, Gabriel -- Ko, Ara -- Delaney, Krista -- Wissotski, Marina -- Lopez, Georgina -- Campos, David -- Braidotti, Michele -- Ashley, Elizabeth -- Golser, Wolfgang -- Kim, HyeRan -- Lee, Seunghee -- Lin, Jinke -- Dujmic, Zeljko -- Kim, Woojin -- Talag, Jayson -- Zuccolo, Andrea -- Fan, Chuanzhu -- Sebastian, Aswathy -- Kramer, Melissa -- Spiegel, Lori -- Nascimento, Lidia -- Zutavern, Theresa -- Miller, Beth -- Ambroise, Claude -- Muller, Stephanie -- Spooner, Will -- Narechania, Apurva -- Ren, Liya -- Wei, Sharon -- Kumari, Sunita -- Faga, Ben -- Levy, Michael J -- McMahan, Linda -- Van Buren, Peter -- Vaughn, Matthew W -- Ying, Kai -- Yeh, Cheng-Ting -- Emrich, Scott J -- Jia, Yi -- Kalyanaraman, Ananth -- Hsia, An-Ping -- Barbazuk, W Brad -- Baucom, Regina S -- Brutnell, Thomas P -- Carpita, Nicholas C -- Chaparro, Cristian -- Chia, Jer-Ming -- Deragon, Jean-Marc -- Estill, James C -- Fu, Yan -- Jeddeloh, Jeffrey A -- Han, Yujun -- Lee, Hyeran -- Li, Pinghua -- Lisch, Damon R -- Liu, Sanzhen -- Liu, Zhijie -- Nagel, Dawn Holligan -- McCann, Maureen C -- SanMiguel, Phillip -- Myers, Alan M -- Nettleton, Dan -- Nguyen, John -- Penning, Bryan W -- Ponnala, Lalit -- Schneider, Kevin L -- Schwartz, David C -- Sharma, Anupma -- Soderlund, Carol -- Springer, Nathan M -- Sun, Qi -- Wang, Hao -- Waterman, Michael -- Westerman, Richard -- Wolfgruber, Thomas K -- Yang, Lixing -- Yu, Yeisoo -- Zhang, Lifang -- Zhou, Shiguo -- Zhu, Qihui -- Bennetzen, Jeffrey L -- Dawe, R Kelly -- Jiang, Jiming -- Jiang, Ning -- Presting, Gernot G -- Wessler, Susan R -- Aluru, Srinivas -- Martienssen, Robert A -- Clifton, Sandra W -- McCombie, W Richard -- Wing, Rod A -- Wilson, Richard K -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Plant Genomics, Iowa State University, Ames, IA 50011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965430" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/genetics ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Copy Number Variations ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/genetics ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Inbreeding ; MicroRNAs/genetics ; Molecular Sequence Data ; Ploidies ; RNA, Plant/genetics ; Recombination, Genetic ; Retroelements ; *Sequence Analysis, DNA ; Zea mays/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2009-06-13
    Description: Several classes of nucleic acid analogs have been reported, but no synthetic informational polymer has yet proven responsive to selection pressures under enzyme-free conditions. Here, we introduce an oligomer family that efficiently self-assembles by means of reversible covalent anchoring of nucleobase recognition units onto simple oligo-dipeptide backbones [thioester peptide nucleic acids (tPNAs)] and undergoes dynamic sequence modification in response to changing templates in solution. The oligomers specifically self-pair with complementary tPNA strands and cross-pair with RNA and DNA in Watson-Crick fashion. Thus, tPNA combines base-pairing interactions with the side-chain functionalities of typical peptides and proteins. These characteristics might prove advantageous for the design or selection of catalytic constructs or biomaterials that are capable of dynamic sequence repair and adaptation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ura, Yasuyuki -- Beierle, John M -- Leman, Luke J -- Orgel, Leslie E -- Ghadiri, M Reza -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):73-7. doi: 10.1126/science.1174577. Epub 2009 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Skaggs Institute for Chemical Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520909" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry ; Amino Acids/chemistry ; Base Pairing ; Base Sequence ; Biotinylation ; DNA/*chemistry ; Dipeptides/chemistry ; Models, Molecular ; Molecular Structure ; Nucleic Acid Conformation ; Oligonucleotides/chemistry ; Peptide Nucleic Acids/*chemistry ; Peptides/chemistry ; RNA/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2009-04-11
    Description: In vertebrates, the readily apparent left/right (L/R) anatomical asymmetries of the internal organs can be traced to molecular events initiated at or near the time of gastrulation. However, the earliest steps of this process do not seem to be universally conserved. In particular, how this axis is first defined in chicks has remained problematic. Here we show that asymmetric cell rearrangements take place within chick embryos, creating a leftward movement of cells around the node. It is the relative displacement of cells expressing sonic hedgehog (Shh) and fibroblast growth factor 8 (Fgf8) that is responsible for establishing their asymmetric expression patterns. The creation of asymmetric expression domains as a passive effect of cell movements represents an alternative strategy for breaking L/R symmetry in gene activity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, Jerome -- Feistel, Kerstin -- Viebahn, Christoph -- Blum, Martin -- Tabin, Clifford J -- R01 HD045499/HD/NICHD NIH HHS/ -- R01 HD045499-06/HD/NICHD NIH HHS/ -- R01-HD045499/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2009 May 15;324(5929):941-4. doi: 10.1126/science.1172478. Epub 2009 Apr 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Body Patterning ; *Cell Movement ; Chick Embryo ; Fibroblast Growth Factor 8/genetics ; *Gastrulation ; *Gene Expression ; Gene Expression Profiling ; Hedgehog Proteins/genetics ; Molecular Sequence Data ; Organizers, Embryonic/*cytology/embryology/*metabolism ; Primitive Streak/*cytology/embryology/metabolism ; Swine/embryology ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2008-12-17
    Description: Might DNA sequence variation reflect germline genetic activity and underlying chromatin structure? We investigated this question using medaka (Japanese killifish, Oryzias latipes), by comparing the genomic sequences of two strains (Hd-rR and HNI) and by mapping approximately 37.3 million nucleosome cores from Hd-rR blastulae and 11,654 representative transcription start sites from six embryonic stages. We observed a distinctive approximately 200-base pair (bp) periodic pattern of genetic variation downstream of transcription start sites; the rate of insertions and deletions longer than 1 bp peaked at positions of approximately +200, +400, and +600 bp, whereas the point mutation rate showed corresponding valleys. This approximately 200-bp periodicity was correlated with the chromatin structure, with nucleosome occupancy minimized at positions 0, +200, +400, and +600 bp. These data exemplify the potential for genetic activity (transcription) and chromatin structure to contribute to molding the DNA sequence on an evolutionary time scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sasaki, Shin -- Mello, Cecilia C -- Shimada, Atsuko -- Nakatani, Yoichiro -- Hashimoto, Shin-Ichi -- Ogawa, Masako -- Matsushima, Kouji -- Gu, Sam Guoping -- Kasahara, Masahiro -- Ahsan, Budrul -- Sasaki, Atsushi -- Saito, Taro -- Suzuki, Yutaka -- Sugano, Sumio -- Kohara, Yuji -- Takeda, Hiroyuki -- Fire, Andrew -- Morishita, Shinichi -- R01 GM037706/GM/NIGMS NIH HHS/ -- R01 GM037706-24/GM/NIGMS NIH HHS/ -- R01 GM37706/GM/NIGMS NIH HHS/ -- T32 CA009151/CA/NCI NIH HHS/ -- T32 CA09151/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2009 Jan 16;323(5912):401-4. doi: 10.1126/science.1163183. Epub 2008 Dec 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, 277-0882, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19074313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; Chromatin/*physiology/ultrastructure ; DNA/chemistry/*genetics ; DNA Repair ; *Genetic Variation ; Genome ; INDEL Mutation ; Mutagenesis ; Mutation ; Nucleosomes/*physiology/ultrastructure ; Oryzias/embryology/*genetics ; Point Mutation ; Promoter Regions, Genetic ; *Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2009-12-08
    Description: To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previously undescribed, mostly noncoding transcripts, 89 of them in antisense configuration to known genes. We identified 341 operons, of which 139 are polycistronic; almost half of the latter show decaying expression in a staircase-like manner. Under various conditions, operons could be divided into 447 smaller transcriptional units, resulting in many alternative transcripts. Frequent antisense transcripts, alternative transcripts, and multiple regulators per gene imply a highly dynamic transcriptome, more similar to that of eukaryotes than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guell, Marc -- van Noort, Vera -- Yus, Eva -- Chen, Wei-Hua -- Leigh-Bell, Justine -- Michalodimitrakis, Konstantinos -- Yamada, Takuji -- Arumugam, Manimozhiyan -- Doerks, Tobias -- Kuhner, Sebastian -- Rode, Michaela -- Suyama, Mikita -- Schmidt, Sabine -- Gavin, Anne-Claude -- Bork, Peer -- Serrano, Luis -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1268-71. doi: 10.1126/science.1176951.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965477" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Gene Expression Profiling ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Mycoplasma pneumoniae/*genetics/metabolism ; Oligonucleotide Array Sequence Analysis ; Operon ; RNA, Antisense/genetics/metabolism ; RNA, Bacterial/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Untranslated/analysis/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-10-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉King, David G -- Kashi, Yechezkel -- New York, N.Y. -- Science. 2009 Oct 9;326(5950):229-30. doi: 10.1126/science.326_229.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, Southern Illinois University, Carbondale, IL 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19815757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA/chemistry/*genetics ; Evolution, Molecular ; Mutation ; *Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-08-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Otterstrom, Jason J -- van Oijen, Antoine M -- R01 GM077248/GM/NIGMS NIH HHS/ -- R01 GM077248-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 31;325(5940):547-8. doi: 10.1126/science.1177311.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19644099" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalytic Domain ; DNA/chemistry/*metabolism ; Diffusion ; Nucleosomes/*metabolism ; Optical Tweezers ; RNA Polymerase II/chemistry/*metabolism ; RNA, Messenger/metabolism ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2009-07-18
    Description: Selenocysteine is the only genetically encoded amino acid in humans whose biosynthesis occurs on its cognate transfer RNA (tRNA). O-Phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS) catalyzes the final step of selenocysteine formation by a poorly understood tRNA-dependent mechanism. The crystal structure of human tRNA(Sec) in complex with SepSecS, phosphoserine, and thiophosphate, together with in vivo and in vitro enzyme assays, supports a pyridoxal phosphate-dependent mechanism of Sec-tRNA(Sec) formation. Two tRNA(Sec) molecules, with a fold distinct from other canonical tRNAs, bind to each SepSecS tetramer through their 13-base pair acceptor-TPsiC arm (where Psi indicates pseudouridine). The tRNA binding is likely to induce a conformational change in the enzyme's active site that allows a phosphoserine covalently attached to tRNA(Sec), but not free phosphoserine, to be oriented properly for the reaction to occur.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palioura, Sotiria -- Sherrer, R Lynn -- Steitz, Thomas A -- Soll, Dieter -- Simonovic, Miljan -- R01 GM022854/GM/NIGMS NIH HHS/ -- R01 GM022854-33/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jul 17;325(5938):321-5. doi: 10.1126/science.1173755.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19608919" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acyl-tRNA Synthetases/*chemistry/*metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Humans ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Phosphates/chemistry/metabolism ; Phosphoserine/chemistry/metabolism ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; RNA, Transfer, Amino Acid-Specific/*chemistry/*metabolism ; RNA, Transfer, Amino Acyl/*metabolism ; Selenocysteine/*biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-09-06
    Description: Large numbers of noncoding RNA transcripts (ncRNAs) are being revealed by complementary DNA cloning and genome tiling array studies in animals. The big and as yet largely unanswered question is whether these transcripts are relevant. A paper by Willingham et al. shows the way forward by developing a strategy for large-scale functional screening of ncRNAs, involving small interfering RNA knockdowns in cell-based screens, which identified a previously unidentified ncRNA repressor of the transcription factor NFAT. It appears likely that ncRNAs constitute a critical hidden layer of gene regulation in complex organisms, the understanding of which requires new approaches in functional genomics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mattick, John S -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1527-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia. j.mattick@imb.uq.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141063" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Conserved Sequence ; DNA-Binding Proteins/antagonists & inhibitors ; *Genomics ; Humans ; Mice ; NFATC Transcription Factors ; Nuclear Proteins/antagonists & inhibitors ; *RNA Interference ; RNA, Untranslated/antagonists & inhibitors/genetics/*physiology ; Transcription Factors/antagonists & inhibitors ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2005-06-11
    Description: In animal societies, chemical communication plays an important role in conflict and cooperation. For ants, cuticular hydrocarbon (CHC) blends produced by non-nestmates elicit overt aggression. We describe a sensory sensillum on the antennae of the carpenter ant Camponotus japonicus that functions in nestmate discrimination. This sensillum is multiporous and responds only to non-nestmate CHC blends. This suggests a role for a peripheral recognition mechanism in detecting colony-specific chemical signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ozaki, Mamiko -- Wada-Katsumata, Ayako -- Fujikawa, Kazuyo -- Iwasaki, Masayuki -- Yokohari, Fumio -- Satoji, Yuji -- Nisimura, Tomoyosi -- Yamaoka, Ryohei -- New York, N.Y. -- Science. 2005 Jul 8;309(5732):311-4. Epub 2005 Jun 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. mamiko@kit.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947139" target="_blank"〉PubMed〈/a〉
    Keywords: Aggression ; Amino Acid Sequence ; Animals ; Ants/*physiology ; Base Sequence ; *Behavior, Animal ; Carrier Proteins/chemistry/isolation & purification/metabolism ; Chemoreceptor Cells/*physiology ; Cues ; Electrophysiology ; *Hydrocarbons ; Insect Proteins/chemistry/isolation & purification/metabolism ; Microscopy, Electron, Scanning ; Molecular Sequence Data ; Neurons, Afferent/*physiology ; Sense Organs/physiology ; Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2005-11-15
    Description: The ancestry of modern Europeans is a subject of debate among geneticists, archaeologists, and anthropologists. A crucial question is the extent to which Europeans are descended from the first European farmers in the Neolithic Age 7500 years ago or from Paleolithic hunter-gatherers who were present in Europe since 40,000 years ago. Here we present an analysis of ancient DNA from early European farmers. We successfully extracted and sequenced intact stretches of maternally inherited mitochondrial DNA (mtDNA) from 24 out of 57 Neolithic skeletons from various locations in Germany, Austria, and Hungary. We found that 25% of the Neolithic farmers had one characteristic mtDNA type and that this type formerly was widespread among Neolithic farmers in Central Europe. Europeans today have a 150-times lower frequency (0.2%) of this mtDNA type, revealing that these first Neolithic farmers did not have a strong genetic influence on modern European female lineages. Our finding lends weight to a proposed Paleolithic ancestry for modern Europeans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haak, Wolfgang -- Forster, Peter -- Bramanti, Barbara -- Matsumura, Shuichi -- Brandt, Guido -- Tanzer, Marc -- Villems, Richard -- Renfrew, Colin -- Gronenborn, Detlef -- Alt, Kurt Werner -- Burger, Joachim -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1016-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Anthropologie, Johannes Gutenberg Universitat Mainz, Saarstrasse 21, D-55099 Mainz, Germany. haakw@uni-mainz.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284177" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture/*history ; Austria ; Base Sequence ; Computer Simulation ; Cultural Evolution ; DNA, Mitochondrial/chemistry/classification/*genetics/history ; Emigration and Immigration ; Europe ; European Continental Ancestry Group/*genetics/history ; Female ; Gene Frequency ; Genetic Drift ; Genetics, Population ; Germany ; Haplotypes ; History, Ancient ; Humans ; Hungary ; Male ; Molecular Sequence Data ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2005-07-30
    Description: To study adaptation, it is essential to identify multiple adaptive mutations and to characterize their molecular, phenotypic, selective, and ecological consequences. Here we describe a genomic screen for adaptive insertions of transposable elements in Drosophila. Using a pilot application of this screen, we have identified an adaptive transposable element insertion, which truncates a gene and apparently generates a functional protein in the process. The insertion of this transposable element confers increased resistance to an organophosphate pesticide and has spread in D. melanogaster recently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aminetzach, Yael T -- Macpherson, J Michael -- Petrov, Dmitri A -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):764-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051794" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Alleles ; Amino Acid Substitution ; Animals ; Azinphosmethyl/pharmacology ; Base Sequence ; Choline/metabolism ; Crosses, Genetic ; *DNA Transposable Elements ; Drosophila/drug effects/genetics/physiology ; Drosophila Proteins/chemistry/*genetics/physiology ; Drosophila melanogaster/drug effects/*genetics/physiology ; *Evolution, Molecular ; Exons ; Female ; Gene Expression ; *Genes, Insect ; Haplotypes ; Insecticide Resistance/*genetics ; Insecticides/pharmacology ; Introns ; Long Interspersed Nucleotide Elements ; Molecular Sequence Data ; Mutation ; Polymorphism, Genetic ; Recombination, Genetic ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-10-15
    Description: Only recently have we begun to characterize fine-scale recombination rates in mammals. In her Perspective, Przeworski discusses the work by Myers et al. in which linkage disequilibrium data have been used to produce a high-resolution recombination map for most of the human genome. More than 25,000 putative hotspots have been identified, as well as the first motifs that appear to influence their intensity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Przeworski, Molly -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):247-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Human Genetics, University of Chicago, 920 East 57th Street, 507F CLSC, Chicago, IL 60637, USA. mfp@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224010" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, X ; Female ; *Genome, Human ; Humans ; Male ; Recombination, Genetic/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2005-06-11
    Description: Repetitive microsatellites mutate at relatively high rates and may contribute to the rapid evolution of species-typical traits. We show that individual alleles of a repetitive polymorphic microsatellite in the 5' region of the prairie vole vasopressin 1a receptor (avpr1a) gene modify gene expression in vitro. In vivo, we observe that this regulatory polymorphism predicts both individual differences in receptor distribution patterns and socio-behavioral traits. These data suggest that individual differences in gene expression patterns may be conferred via polymorphic microsatellites in the cis-regulatory regions of genes and may contribute to normal variation in behavioral traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hammock, Elizabeth A D -- Young, Larry J -- MH56897/MH/NIMH NIH HHS/ -- MH64692/MH/NIMH NIH HHS/ -- MH67397/MH/NIMH NIH HHS/ -- RR00165/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1630-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Psychiatry and Behavioral Sciences, Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15947188" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Anxiety ; Arvicolinae/*genetics/physiology/psychology ; Base Sequence ; *Behavior, Animal ; Brain/metabolism ; *Gene Expression Regulation ; Genes, Reporter ; Genetic Variation ; Genotype ; Grooming ; Male ; *Microsatellite Repeats ; Molecular Sequence Data ; Odors ; Pair Bond ; Paternal Behavior ; Receptors, Vasopressin/*genetics/metabolism ; *Social Behavior
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2005-09-06
    Description: Twin-ribozyme introns are formed by two ribozymes belonging to the group I family and occur in some ribosomal RNA transcripts. The group I-like ribozyme, GIR1, liberates the 5' end of a homing endonuclease messenger RNA in the slime mold Didymium iridis. We demonstrate that this cleavage occurs by a transesterification reaction with the joining of the first and the third nucleotide of the messenger by a 2',5'-phosphodiester linkage. Thus, a group I-like ribozyme catalyzes an RNA branching reaction similar to the first step of splicing in group II introns and spliceosomal introns. The resulting short lariat, by forming a protective 5' cap, might have been useful in a primitive RNA world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nielsen, Henrik -- Westhof, Eric -- Johansen, Steinar -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1584-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Genetics, Panum Institute, University of Copenhagen, DK-2200N Copenhagen, Denmark. hamra@imbg.ku.dk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141078" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Endonucleases/biosynthesis/*genetics ; Esterification ; *Introns ; Molecular Sequence Data ; RNA Caps/*chemistry ; *RNA Splicing ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2005-02-05
    Description: Plants encode subunits for a fourth RNA polymerase (Pol IV) in addition to the well-known DNA-dependent RNA polymerases I, II, and III. By mutation of the two largest subunits (NRPD1a and NRPD2), we show that Pol IV silences certain transposons and repetitive DNA in a short interfering RNA pathway involving RNA-dependent RNA polymerase 2 and Dicer-like 3. The existence of this distinct silencing polymerase may explain the paradoxical involvement of an RNA silencing pathway in maintenance of transcriptional silencing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herr, A J -- Jensen, M B -- Dalmay, T -- Baulcombe, D C -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):118-20. Epub 2005 Feb 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15692015" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/genetics ; Arabidopsis Proteins/chemistry/genetics/metabolism ; Base Sequence ; Chromatin/metabolism ; DNA Methylation ; DNA Transposable Elements ; DNA, Plant/*genetics/metabolism ; DNA-Directed RNA Polymerases/chemistry/genetics/*metabolism ; *Gene Silencing ; Genes, Plant ; Genetic Complementation Test ; Green Fluorescent Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Oryza/enzymology/genetics ; Plants, Genetically Modified ; Protein Subunits/chemistry/genetics/metabolism ; RNA Interference ; RNA Polymerase II/metabolism ; RNA, Plant/metabolism ; RNA, Small Interfering/metabolism ; Repetitive Sequences, Nucleic Acid ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2005-02-01
    Description: DNA translocases are molecular motors that move rapidly along DNA using adenosine triphosphate as the source of energy. We directly observed the movement of purified FtsK, an Escherichia coli translocase, on single DNA molecules. The protein moves at 5 kilobases per second and against forces up to 60 piconewtons, and locally reverses direction without dissociation. On three natural substrates, independent of its initial binding position, FtsK efficiently translocates over long distances to the terminal region of the E. coli chromosome, as it does in vivo. Our results imply that FtsK is a bidirectional motor that changes direction in response to short, asymmetric directing DNA sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pease, Paul J -- Levy, Oren -- Cost, Gregory J -- Gore, Jeff -- Ptacin, Jerod L -- Sherratt, David -- Bustamante, Carlos -- Cozzarelli, Nicholas R -- GM07232-27/GM/NIGMS NIH HHS/ -- GM08295-15/GM/NIGMS NIH HHS/ -- GM31657/GM/NIGMS NIH HHS/ -- GM32543/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):586-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681387" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Bacteriophage lambda ; Base Sequence ; Chromosomes, Bacterial ; DNA, Bacterial/chemistry/*metabolism ; DNA, Superhelical/chemistry/metabolism ; DNA, Viral/chemistry/*metabolism ; Escherichia coli/*metabolism ; Escherichia coli Proteins/isolation & purification/*metabolism ; Kinetics ; Membrane Proteins/isolation & purification/*metabolism ; Models, Biological ; Molecular Motor Proteins/isolation & purification/*metabolism ; Nucleic Acid Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2005-09-06
    Description: This study describes comprehensive polling of transcription start and termination sites and analysis of previously unidentified full-length complementary DNAs derived from the mouse genome. We identify the 5' and 3' boundaries of 181,047 transcripts with extensive variation in transcripts arising from alternative promoter usage, splicing, and polyadenylation. There are 16,247 new mouse protein-coding transcripts, including 5154 encoding previously unidentified proteins. Genomic mapping of the transcriptome reveals transcriptional forests, with overlapping transcription on both strands, separated by deserts in which few transcripts are observed. The data provide a comprehensive platform for the comparative analysis of mammalian transcriptional regulation in differentiation and development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carninci, P -- Kasukawa, T -- Katayama, S -- Gough, J -- Frith, M C -- Maeda, N -- Oyama, R -- Ravasi, T -- Lenhard, B -- Wells, C -- Kodzius, R -- Shimokawa, K -- Bajic, V B -- Brenner, S E -- Batalov, S -- Forrest, A R R -- Zavolan, M -- Davis, M J -- Wilming, L G -- Aidinis, V -- Allen, J E -- Ambesi-Impiombato, A -- Apweiler, R -- Aturaliya, R N -- Bailey, T L -- Bansal, M -- Baxter, L -- Beisel, K W -- Bersano, T -- Bono, H -- Chalk, A M -- Chiu, K P -- Choudhary, V -- Christoffels, A -- Clutterbuck, D R -- Crowe, M L -- Dalla, E -- Dalrymple, B P -- de Bono, B -- Della Gatta, G -- di Bernardo, D -- Down, T -- Engstrom, P -- Fagiolini, M -- Faulkner, G -- Fletcher, C F -- Fukushima, T -- Furuno, M -- Futaki, S -- Gariboldi, M -- Georgii-Hemming, P -- Gingeras, T R -- Gojobori, T -- Green, R E -- Gustincich, S -- Harbers, M -- Hayashi, Y -- Hensch, T K -- Hirokawa, N -- Hill, D -- Huminiecki, L -- Iacono, M -- Ikeo, K -- Iwama, A -- Ishikawa, T -- Jakt, M -- Kanapin, A -- Katoh, M -- Kawasawa, Y -- Kelso, J -- Kitamura, H -- Kitano, H -- Kollias, G -- Krishnan, S P T -- Kruger, A -- Kummerfeld, S K -- Kurochkin, I V -- Lareau, L F -- Lazarevic, D -- Lipovich, L -- Liu, J -- Liuni, S -- McWilliam, S -- Madan Babu, M -- Madera, M -- Marchionni, L -- Matsuda, H -- Matsuzawa, S -- Miki, H -- Mignone, F -- Miyake, S -- Morris, K -- Mottagui-Tabar, S -- Mulder, N -- Nakano, N -- Nakauchi, H -- Ng, P -- Nilsson, R -- Nishiguchi, S -- Nishikawa, S -- Nori, F -- Ohara, O -- Okazaki, Y -- Orlando, V -- Pang, K C -- Pavan, W J -- Pavesi, G -- Pesole, G -- Petrovsky, N -- Piazza, S -- Reed, J -- Reid, J F -- Ring, B Z -- Ringwald, M -- Rost, B -- Ruan, Y -- Salzberg, S L -- Sandelin, A -- Schneider, C -- Schonbach, C -- Sekiguchi, K -- Semple, C A M -- Seno, S -- Sessa, L -- Sheng, Y -- Shibata, Y -- Shimada, H -- Shimada, K -- Silva, D -- Sinclair, B -- Sperling, S -- Stupka, E -- Sugiura, K -- Sultana, R -- Takenaka, Y -- Taki, K -- Tammoja, K -- Tan, S L -- Tang, S -- Taylor, M S -- Tegner, J -- Teichmann, S A -- Ueda, H R -- van Nimwegen, E -- Verardo, R -- Wei, C L -- Yagi, K -- Yamanishi, H -- Zabarovsky, E -- Zhu, S -- Zimmer, A -- Hide, W -- Bult, C -- Grimmond, S M -- Teasdale, R D -- Liu, E T -- Brusic, V -- Quackenbush, J -- Wahlestedt, C -- Mattick, J S -- Hume, D A -- Kai, C -- Sasaki, D -- Tomaru, Y -- Fukuda, S -- Kanamori-Katayama, M -- Suzuki, M -- Aoki, J -- Arakawa, T -- Iida, J -- Imamura, K -- Itoh, M -- Kato, T -- Kawaji, H -- Kawagashira, N -- Kawashima, T -- Kojima, M -- Kondo, S -- Konno, H -- Nakano, K -- Ninomiya, N -- Nishio, T -- Okada, M -- Plessy, C -- Shibata, K -- Shiraki, T -- Suzuki, S -- Tagami, M -- Waki, K -- Watahiki, A -- Okamura-Oho, Y -- Suzuki, H -- Kawai, J -- Hayashizaki, Y -- FANTOM Consortium -- RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) -- TGM03P17/Telethon/Italy -- TGM06S01/Telethon/Italy -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1559-63.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141072" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Base Sequence ; Conserved Sequence ; DNA, Complementary/chemistry ; *Genome ; Genome, Human ; Genomics ; Humans ; Mice/*genetics ; Promoter Regions, Genetic ; Proteins/genetics ; RNA/chemistry/classification ; RNA Splicing ; RNA, Untranslated/chemistry ; Regulatory Sequences, Ribonucleic Acid ; *Terminator Regions, Genetic ; *Transcription Initiation Site ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2005-02-12
    Description: We compared fine-scale recombination rates at orthologous loci in humans and chimpanzees by analyzing polymorphism data in both species. Strong statistical evidence for hotspots of recombination was obtained in both species. Despite approximately 99% identity at the level of DNA sequence, however, recombination hotspots were found rarely (if at all) at the same positions in the two species, and no correlation was observed in estimates of fine-scale recombination rates. Thus, local patterns of recombination rate have evolved rapidly, in a manner disproportionate to the change in DNA sequence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winckler, Wendy -- Myers, Simon R -- Richter, Daniel J -- Onofrio, Robert C -- McDonald, Gavin J -- Bontrop, Ronald E -- McVean, Gilean A T -- Gabriel, Stacey B -- Reich, David -- Donnelly, Peter -- Altshuler, David -- New York, N.Y. -- Science. 2005 Apr 1;308(5718):107-11. Epub 2005 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114-2622, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705809" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human/genetics ; Chromosomes, Mammalian/genetics ; Evolution, Molecular ; *Genome ; *Genome, Human ; Genotype ; Globins/genetics ; HLA Antigens/genetics ; Haplotypes ; Humans ; Linkage Disequilibrium ; Markov Chains ; Monte Carlo Method ; Pan troglodytes/*genetics ; Polymorphism, Single Nucleotide ; *Recombination, Genetic ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2005-09-06
    Description: The determination of the chimpanzee genome sequence provides a means to study both structural and functional aspects of the evolution of the human genome. Here we compare humans and chimpanzees with respect to differences in expression levels and protein-coding sequences for genes active in brain, heart, liver, kidney, and testis. We find that the patterns of differences in gene expression and gene sequences are markedly similar. In particular, there is a gradation of selective constraints among the tissues so that the brain shows the least differences between the species whereas liver shows the most. Furthermore, expression levels as well as amino acid sequences of genes active in more tissues have diverged less between the species than have genes active in fewer tissues. In general, these patterns are consistent with a model of neutral evolution with negative selection. However, for X-chromosomal genes expressed in testis, patterns suggestive of positive selection on sequence changes as well as expression changes are seen. Furthermore, although genes expressed in the brain have changed less than have genes expressed in other tissues, in agreement with previous work we find that genes active in brain have accumulated more changes on the human than on the chimpanzee lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khaitovich, Philipp -- Hellmann, Ines -- Enard, Wolfgang -- Nowick, Katja -- Leinweber, Marcus -- Franz, Henriette -- Weiss, Gunter -- Lachmann, Michael -- Paabo, Svante -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1850-4. Epub 2005 Sep 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141373" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; Animals ; Base Sequence ; Child ; Chromosomes, Human, X/genetics ; Chromosomes, Mammalian/genetics ; *Evolution, Molecular ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; *Genome ; *Genome, Human ; Heart/physiology ; Humans ; Kidney/physiology ; Liver/physiology ; Male ; Middle Aged ; Models, Genetic ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pan troglodytes/*genetics ; Prefrontal Cortex/physiology ; Promoter Regions, Genetic ; Proteins/genetics ; Selection, Genetic ; Sequence Analysis, DNA ; Species Specificity ; Testis/physiology ; *Transcription, Genetic ; X Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2005-11-26
    Description: Thousands of mammalian messenger RNAs are under selective pressure to maintain 7-nucleotide sites matching microRNAs (miRNAs). We found that these conserved targets are often highly expressed at developmental stages before miRNA expression and that their levels tend to fall as the miRNA that targets them begins to accumulate. Nonconserved sites, which outnumber the conserved sites 10 to 1, also mediate repression. As a consequence, genes preferentially expressed at the same time and place as a miRNA have evolved to selectively avoid sites matching the miRNA. This phenomenon of selective avoidance extends to thousands of genes and enables spatial and temporal specificities of miRNAs to be revealed by finding tissues and developmental stages in which messages with corresponding sites are expressed at lower levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farh, Kyle Kai-How -- Grimson, Andrew -- Jan, Calvin -- Lewis, Benjamin P -- Johnston, Wendy K -- Lim, Lee P -- Burge, Christopher B -- Bartel, David P -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1817-21. Epub 2005 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16308420" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Differentiation ; Conserved Sequence ; *Evolution, Molecular ; Gene Expression Profiling ; *Gene Expression Regulation ; Humans ; Mammals/*genetics ; Mice ; MicroRNAs/*metabolism ; Molecular Sequence Data ; Muscle Fibers, Skeletal/cytology/metabolism ; Organ Specificity ; RNA Stability ; RNA, Messenger/*genetics/metabolism ; Rats ; Species Specificity ; Untranslated Regions ; Zebrafish/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2005-08-06
    Description: Recent experiments revealed large-scale differences in the transcription programs of related species, yet little is known about the genetic basis underlying the evolution of gene expression and its contribution to phenotypic diversity. Here we describe a large-scale modulation of the yeast transcription program that is connected to the emergence of the capacity for rapid anaerobic growth. Genes coding for mitochondrial and cytoplasmic ribosomal proteins display a strongly correlated expression pattern in Candida albicans, but this correlation is lost in the fermentative yeast Saccharomyces cerevisiae. We provide evidence that this change in gene expression is connected to the loss of a specific cis-regulatory element from dozens of genes following the apparent whole-genome duplication event. Our results shed new light on the genetic mechanisms underlying the large-scale evolution of transcriptional networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ihmels, Jan -- Bergmann, Sven -- Gerami-Nejad, Maryam -- Yanai, Itai -- McClellan, Mark -- Berman, Judith -- Barkai, Naama -- A150562/PHS HHS/ -- R01 DE/AI 14666/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2005 Aug 5;309(5736):938-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Department of Physics of Complex systems, Weizmann Institute of Science, Rehovot, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16081737" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Base Sequence ; Candida albicans/genetics ; Cytoplasm/genetics ; DNA, Fungal ; *Evolution, Molecular ; Fermentation ; Fungal Proteins/*genetics ; Gene Duplication ; *Gene Expression Regulation, Fungal ; Mitochondrial Proteins/genetics ; Oxygen/metabolism ; Promoter Regions, Genetic ; *Regulatory Sequences, Nucleic Acid ; Ribosomal Proteins/genetics ; Saccharomyces cerevisiae/genetics/metabolism ; *Transcription, Genetic/genetics ; Yeasts/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2005-10-15
    Description: The impact of gene patents on downstream research and innovation are unknown, in part because of a lack of empirical data on the extent and nature of gene patenting. In this Policy Forum, the authors show that 20% of human gene DNA sequences are patented and that some genes are patented as many as 20 times. Unsurprisingly, genes associated with health and disease are more patented than the genome at large. The intellectual property rights for some genes can become highly fragmented between many owners, which suggests that downstream innovators may face considerable costs to gain access to gene-oriented technologies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jensen, Kyle -- Murray, Fiona -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):239-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Engineering, Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224006" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computational Biology ; Databases, Genetic ; *Genome, Human ; Humans ; *Intellectual Property ; Patents as Topic/statistics & numerical data ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2005-12-13
    Description: Practical components for three-dimensional molecular nanofabrication must be simple to produce, stereopure, rigid, and adaptable. We report a family of DNA tetrahedra, less than 10 nanometers on a side, that can self-assemble in seconds with near-quantitative yield of one diastereomer. They can be connected by programmable DNA linkers. Their triangulated architecture confers structural stability; by compressing a DNA tetrahedron with an atomic force microscope, we have measured the axial compressibility of DNA and observed the buckling of the double helix under high loads.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goodman, R P -- Schaap, I A T -- Tardin, C F -- Erben, C M -- Berry, R M -- Schmidt, C F -- Turberfield, A J -- New York, N.Y. -- Science. 2005 Dec 9;310(5754):1661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16339440" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Chemistry, Physical ; DNA/*chemistry ; Dimerization ; Elasticity ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Structure ; *Nanostructures ; *Nanotechnology ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Oligodeoxyribonucleotides/chemistry ; Physicochemical Phenomena ; Stereoisomerism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-07-30
    Description: In mammals, X-inactivation establishes X-chromosome dosage parity between males and females. How X-chromosome counting regulates this process remains elusive, because neither the hypothesized inactivation "blocking factor" nor the required cis-elements have been defined. Here, a mouse knockout and transgenic analysis identified DNA sequences within the noncoding Tsix and Xite genes as numerators. Homozygous deficiency of Tsix resulted in "chaotic choice" and a variable number of inactive X's, whereas overdosage of Tsix/Xite inhibited X-inactivation. Thus, counting was affected by specific Tsix/Xite mutations, suggesting that counting is genetically separable from but molecularly coupled to choice. The mutations affect XX and XY cells differently, demonstrating that counting and choice are regulated not by one "blocking factor," but by both a "blocking" and a "competence" factor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Jeannie T -- R01-GM58839/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Jul 29;309(5735):768-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School Boston, MA 02114, USA. lee@molbio.mgh.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16051795" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blastocyst ; Cell Death ; Cell Differentiation ; Cell Line ; Chromosomes, Mammalian/genetics ; *DNA, Intergenic ; *Dosage Compensation, Genetic ; Female ; Gene Dosage ; Gene Silencing ; In Situ Hybridization, Fluorescence ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Models, Genetic ; RNA, Long Noncoding ; RNA, Untranslated/*genetics/physiology ; X Chromosome/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2005-10-15
    Description: Genetic maps, which document the way in which recombination rates vary over a genome, are an essential tool for many genetic analyses. We present a high-resolution genetic map of the human genome, based on statistical analyses of genetic variation data, and identify more than 25,000 recombination hotspots, together with motifs and sequence contexts that play a role in hotspot activity. Differences between the behavior of recombination rates over large (megabase) and small (kilobase) scales lead us to suggest a two-stage model for recombination in which hotspots are stochastic features, within a framework in which large-scale rates are constrained.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, Simon -- Bottolo, Leonardo -- Freeman, Colin -- McVean, Gil -- Donnelly, Peter -- U54 HG2750/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Oct 14;310(5746):321-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16224025" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Chromosome Mapping ; Chromosomes, Human ; Evolution, Molecular ; Female ; *Genome, Human ; Humans ; Male ; Models, Genetic ; Polymorphism, Single Nucleotide ; Recombination, Genetic/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2005-03-05
    Description: The obligately anaerobic bacterium Bacteroides fragilis, an opportunistic pathogen and inhabitant of the normal human colonic microbiota, exhibits considerable within-strain phase and antigenic variation of surface components. The complete genome sequence has revealed an unusual breadth (in number and in effect) of DNA inversion events that potentially control expression of many different components, including surface and secreted components, regulatory molecules, and restriction-modification proteins. Invertible promoters of two different types (12 group 1 and 11 group 2) were identified. One group has inversion crossover (fix) sites similar to the hix sites of Salmonella typhimurium. There are also four independent intergenic shufflons that potentially alter the expression and function of varied genes. The composition of the 10 different polysaccharide biosynthesis gene clusters identified (7 with associated invertible promoters) suggests a mechanism of synthesis similar to the O-antigen capsules of Escherichia coli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cerdeno-Tarraga, Ana M -- Patrick, Sheila -- Crossman, Lisa C -- Blakely, Garry -- Abratt, Val -- Lennard, Nicola -- Poxton, Ian -- Duerden, Brian -- Harris, Barbara -- Quail, Mike A -- Barron, Andrew -- Clark, Louise -- Corton, Craig -- Doggett, Jonathan -- Holden, Matthew T G -- Larke, Natasha -- Line, Alexandra -- Lord, Angela -- Norbertczak, Halina -- Ormond, Doug -- Price, Claire -- Rabbinowitsch, Ester -- Woodward, John -- Barrell, Bart -- Parkhill, Julian -- New York, N.Y. -- Science. 2005 Mar 4;307(5714):1463-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15746427" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Outer Membrane Proteins/genetics ; Bacteroides fragilis/*genetics/metabolism/pathogenicity ; Base Sequence ; Chromosome Inversion ; DNA, Bacterial/*genetics ; DNA, Intergenic ; *Gene Expression Regulation, Bacterial ; *Genome, Bacterial ; Molecular Sequence Data ; Polysaccharides, Bacterial/biosynthesis/genetics ; Promoter Regions, Genetic ; Recombinases/genetics ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2005-02-01
    Description: Brassinosteroid (BR) homeostasis and signaling are crucial for normal growth and development of plants. BR signaling through cell-surface receptor kinases and intracellular components leads to dephosphorylation and accumulation of the nuclear protein BZR1. How BR signaling regulates gene expression, however, remains unknown. Here we show that BZR1 is a transcriptional repressor that has a previously unknown DNA binding domain and binds directly to the promoters of feedback-regulated BR biosynthetic genes. Microarray analyses identified additional potential targets of BZR1 and illustrated, together with physiological studies, that BZR1 coordinates BR homeostasis and signaling by playing dual roles in regulating BR biosynthesis and downstream growth responses.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925132/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2925132/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Jun-Xian -- Gendron, Joshua M -- Sun, Yu -- Gampala, Srinivas S L -- Gendron, Nathan -- Sun, Catherine Qing -- Wang, Zhi-Yong -- 5T32GM007276/GM/NIGMS NIH HHS/ -- R01 GM066258/GM/NIGMS NIH HHS/ -- R01 GM066258-04/GM/NIGMS NIH HHS/ -- R01 GM66258-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 11;307(5715):1634-8. Epub 2005 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Biology, Carnegie Institution, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681342" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/growth & development/physiology ; Arabidopsis Proteins/genetics/*metabolism ; Base Sequence ; Binding Sites ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/*metabolism ; Feedback, Physiological ; *Gene Expression Regulation, Plant ; Genes, Plant ; Genes, Reporter ; Homeostasis ; Light ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Plant Growth Regulators/biosynthesis/*metabolism/pharmacology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/metabolism ; *Signal Transduction ; Steroids/biosynthesis/*metabolism/pharmacology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2005-09-06
    Description: We report the crystal structure of the catalytic domain of human ADAR2, an RNA editing enzyme, at 1.7 angstrom resolution. The structure reveals a zinc ion in the active site and suggests how the substrate adenosine is recognized. Unexpectedly, inositol hexakisphosphate (IP6) is buried within the enzyme core, contributing to the protein fold. Although there are no reports that adenosine deaminases that act on RNA (ADARs) require a cofactor, we show that IP6 is required for activity. Amino acids that coordinate IP6 in the crystal structure are conserved in some adenosine deaminases that act on transfer RNA (tRNA) (ADATs), related enzymes that edit tRNA. Indeed, IP6 is also essential for in vivo and in vitro deamination of adenosine 37 of tRNAala by ADAT1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850959/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1850959/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macbeth, Mark R -- Schubert, Heidi L -- Vandemark, Andrew P -- Lingam, Arunth T -- Hill, Christopher P -- Bass, Brenda L -- GM44073/GM/NIGMS NIH HHS/ -- GM56775/GM/NIGMS NIH HHS/ -- R01 GM044073/GM/NIGMS NIH HHS/ -- R01 GM056775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1534-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141067" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/metabolism ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Catalytic Domain ; Humans ; Models, Molecular ; Molecular Sequence Data ; Phytic Acid/chemistry/*metabolism ; *RNA Editing ; RNA, Transfer/chemistry/metabolism ; RNA-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2005-04-16
    Description: We used wounded Drosophila embryos to define an evolutionarily conserved pathway for repairing the epidermal surface barrier. This pathway includes a wound response enhancer from the Ddc gene that requires grainy head (grh) function and binding sites for the Grh transcription factor. At the signaling level, tyrosine kinase and extracellular signal-regulated kinase (ERK) activities are induced in epidermal cells near wounds, and activated ERK is required for a robust wound response. The conservation of this Grh-dependent pathway suggests that the repair of insect cuticle and mammal skin is controlled by an ancient, shared control system for constructing and healing the animal body surface barrier.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mace, Kimberly A -- Pearson, Joseph C -- McGinnis, William -- R01HD28315/HD/NICHD NIH HHS/ -- T32GM07240/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):381-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15831751" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Cyclic AMP Response Element-Binding Protein/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Dopa Decarboxylase/*genetics/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/*embryology/genetics/physiology ; Embryo, Nonmammalian/*physiology ; Enhancer Elements, Genetic ; Epidermis/*embryology/physiology ; Epithelium/physiology ; Extracellular Signal-Regulated MAP Kinases/metabolism ; *Gene Expression Regulation ; Genes, Homeobox ; Genes, Insect ; Homeodomain Proteins/genetics ; MAP Kinase Signaling System ; Molecular Sequence Data ; Mutation ; NF-kappa B/metabolism ; Nuclear Proteins/genetics ; Transcription Factor AP-1/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic ; Tyrosine 3-Monooxygenase/genetics/metabolism ; Wound Healing
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2005-09-24
    Description: The polypyrimidine tract binding protein (PTB) is a 58-kilodalton RNA binding protein involved in multiple aspects of messenger RNA metabolism, including the repression of alternative exons. We have determined the solution structures of the four RNA binding domains (RBDs) of PTB, each bound to a CUCUCU oligonucleotide. Each RBD binds RNA with a different binding specificity. RBD3 and RBD4 interact, resulting in an antiparallel orientation of their bound RNAs. Thus, PTB will induce RNA looping when bound to two separated pyrimidine tracts within the same RNA. This leads to structural models for how PTB functions as an alternative-splicing repressor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oberstrass, Florian C -- Auweter, Sigrid D -- Erat, Michele -- Hargous, Yann -- Henning, Anke -- Wenter, Philipp -- Reymond, Luc -- Amir-Ahmady, Batoul -- Pitsch, Stefan -- Black, Douglas L -- Allain, Frederic H-T -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2054-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology, Zurich, ETH-Honggerberg, CH-8093 Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179478" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Base Sequence ; Binding Sites ; Exons ; Heterogeneous-Nuclear Ribonucleoproteins/*chemistry/genetics/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Nuclear Proteins/metabolism ; Oligoribonucleotides ; Polypyrimidine Tract-Binding Protein/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; RNA/*chemistry/*metabolism ; Ribonucleoproteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2005-09-06
    Description: MicroRNAs are small RNA molecules that regulate messenger RNA (mRNA) expression. MicroRNA 122 (miR-122) is specifically expressed and highly abundant in the human liver. We show that the sequestration of miR-122 in liver cells results in marked loss of autonomously replicating hepatitis C viral RNAs. A genetic interaction between miR-122 and the 5' noncoding region of the viral genome was revealed by mutational analyses of the predicted microRNA binding site and ectopic expression of miR-122 molecules containing compensatory mutations. Studies with replication-defective RNAs suggested that miR-122 did not detectably affect mRNA translation or RNA stability. Therefore, miR-122 is likely to facilitate replication of the viral RNA, suggesting that miR-122 may present a target for antiviral intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jopling, Catherine L -- Yi, Minkyung -- Lancaster, Alissa M -- Lemon, Stanley M -- Sarnow, Peter -- AI40035/AI/NIAID NIH HHS/ -- AI47365/AI/NIAID NIH HHS/ -- AI63451/AI/NIAID NIH HHS/ -- GM069007/GM/NIGMS NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Sep 2;309(5740):1577-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16141076" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Binding Sites ; Cell Line ; Gene Expression Regulation ; Hepacivirus/*genetics ; Humans ; Liver/*metabolism/*virology ; Mice ; MicroRNAs/chemistry/metabolism/*physiology ; Molecular Sequence Data ; Mutation ; RNA, Messenger/chemistry/metabolism ; RNA, Viral/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-12-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fontana, Walter -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1552-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard University, Boston, MA 02115, USA. walter@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158311" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; *Biotechnology ; *Computers, Molecular ; *Dna ; Logic ; Nanostructures ; *Nanotechnology ; Nucleic Acid Conformation ; Robotics ; Systems Biology ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2006-08-19
    Description: To understand evolutionary paths connecting diverse biological forms, we defined a three-dimensional genotypic space separating two flower color morphs of Antirrhinum. A hybrid zone between morphs showed a steep cline specifically at genes controlling flower color differences, indicating that these loci are under selection. Antirrhinum species with diverse floral phenotypes formed a U-shaped cloud within the genotypic space. We propose that this cloud defines an evolutionary path that allows flower color to evolve while circumventing less-adaptive regions. Hybridization between morphs located in different arms of the U-shaped path yields low-fitness genotypes, accounting for the observed steep clines at hybrid zones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Whibley, Annabel C -- Langlade, Nicolas B -- Andalo, Christophe -- Hanna, Andrew I -- Bangham, Andrew -- Thebaud, Christophe -- Coen, Enrico -- New York, N.Y. -- Science. 2006 Aug 18;313(5789):963-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16917061" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Alleles ; Antirrhinum/classification/*genetics ; Base Sequence ; *Biological Evolution ; Crosses, Genetic ; Flowers/*genetics ; Gene Flow ; Gene Frequency ; Genes, Plant ; *Genetic Speciation ; Genotype ; Haplotypes ; Hybridization, Genetic ; Models, Genetic ; Molecular Sequence Data ; Phenotype ; Phylogeny ; Pigmentation/*genetics ; Pigments, Biological/genetics ; Principal Component Analysis ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2006-11-04
    Description: Changes in gene regulation likely influenced the profound phenotypic divergence of humans from other mammals, but the extent of adaptive substitution in human regulatory sequences remains unknown. We identified 992 conserved noncoding sequences (CNSs) with a significant excess of human-specific substitutions. These accelerated elements were disproportionately found near genes involved in neuronal cell adhesion. To assess the uniqueness of human noncoding evolution, we examined CNSs accelerated in chimpanzee and mouse. Although we observed a similar enrichment near neuronal adhesion genes in chimpanzee, the accelerated CNSs themselves exhibited almost no overlap with those in human, suggesting independent evolution toward different neuronal phenotypes in each species. CNSs accelerated in mouse showed no bias toward neuronal cell adhesion. Our results indicate that widespread cis-regulatory changes in human evolution may have contributed to uniquely human features of brain development and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Prabhakar, Shyam -- Noonan, James P -- Paabo, Svante -- Rubin, Edward M -- 1-F32-GM074367/GM/NIGMS NIH HHS/ -- HL066681/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Nov 3;314(5800):786.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy (DOE) Joint Genome Institute, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17082449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/physiology ; Cell Adhesion/*genetics ; Cell Adhesion Molecules/genetics ; Cognition ; *Conserved Sequence ; DNA, Intergenic/*genetics ; *Evolution, Molecular ; Genome, Human ; Humans ; Mice ; Neurons/*physiology ; Pan troglodytes/genetics ; *Regulatory Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-11-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujita, Takashi -- New York, N.Y. -- Science. 2006 Nov 10;314(5801):935-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Institute for Virus Research, Kyoto University, Kyoto 606- 8507, Japan. tfujita@virus.kyoto-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17095686" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cytoplasm/metabolism/virology ; DEAD-box RNA Helicases/chemistry/*metabolism ; Humans ; Immunity, Innate ; Interferons/biosynthesis ; Nucleic Acid Conformation ; Phosphates/metabolism ; Phosphorylation ; RNA Caps/metabolism ; RNA, Double-Stranded/chemistry/metabolism ; RNA, Viral/chemistry/*metabolism ; Signal Transduction ; Toll-Like Receptors/metabolism ; Viral Nonstructural Proteins/metabolism ; Virus Diseases/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2006-08-12
    Description: In plants and animals, small peptide ligands that signal in cell-cell communication have been suggested to be a crucial component of development. A bioassay of single-cell transdifferentation demonstrates that a dodecapeptide with two hydroxyproline residues is the functional product of genes from the CLE family, which includes CLAVATA3 in Arabidopsis. The dodecapeptide suppresses xylem cell development at a concentration of 10(-11) M and promotes cell division. An application, corresponding to all 26 Arabidopsis CLE protein family members, of synthetic dodecapeptides reveals two counteracting signaling pathways involved in stem cell fate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Yasuko -- Nakanomyo, Ikuko -- Motose, Hiroyasu -- Iwamoto, Kuninori -- Sawa, Shinichiro -- Dohmae, Naoshi -- Fukuda, Hiroo -- New York, N.Y. -- Science. 2006 Aug 11;313(5788):842-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16902140" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/cytology ; Arabidopsis Proteins/chemistry/metabolism ; Asteraceae/*cytology ; Base Sequence ; Biological Assay ; Cell Communication ; *Cell Differentiation ; Cells, Cultured ; Ligands ; Meristem/cytology ; Molecular Sequence Data ; Oligopeptides/chemistry/isolation & purification/*metabolism/pharmacology ; Plant Proteins/chemistry/*metabolism ; Plant Roots/cytology/growth & development ; Plant Structures/*cytology ; *Signal Transduction ; Stem Cells/*cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2006-07-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kress, Tracy L -- Guthrie, Christine -- New York, N.Y. -- Science. 2006 Jun 30;312(5782):1886-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809518" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*metabolism ; Dimerization ; Dinucleoside Phosphates/metabolism ; *Introns ; Models, Genetic ; Nuclear Proteins/metabolism ; Oncogene Proteins/*metabolism ; Phosphorylation ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Messenger/metabolism ; Recombinant Proteins/metabolism ; Ribonucleoprotein, U2 Small Nuclear/metabolism ; Ribonucleoproteins/metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2006-04-08
    Description: We present a large-scale molecular phylogeny of the ants (Hymenoptera: Formicidae), based on 4.5 kilobases of sequence data from six gene regions extracted from 139 of the 288 described extant genera, representing 19 of the 20 subfamilies. All but two subfamilies are recovered as monophyletic. Divergence time estimates calibrated by minimum age constraints from 43 fossils indicate that most of the subfamilies representing extant ants arose much earlier than previously proposed but only began to diversify during the Late Cretaceous to Early Eocene. This period also witnessed the rise of angiosperms and most herbivorous insects.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moreau, Corrie S -- Bell, Charles D -- Vila, Roger -- Archibald, S Bruce -- Pierce, Naomi E -- New York, N.Y. -- Science. 2006 Apr 7;312(5770):101-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA. cmoreau@oeb.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16601190" target="_blank"〉PubMed〈/a〉
    Keywords: *Angiosperms ; Animals ; Ants/anatomy & histology/*classification/*genetics ; Base Sequence ; Bayes Theorem ; *Biodiversity ; Biological Evolution ; Computational Biology ; Ecosystem ; Environment ; Fossils ; Genes, Insect ; Genes, Mitochondrial ; *Phylogeny ; Time ; Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2006-12-13
    Description: Noncoding small RNAs regulate gene expression in all organisms, in some cases through direct association with RNA polymerase (RNAP). Here we report that the mechanism of 6S RNA inhibition of transcription is through specific, stable interactions with the active site of Escherichia coli RNAP that exclude promoter DNA binding. In fact, the DNA-dependent RNAP uses bound 6S RNA as a template for RNA synthesis, producing 14-to 20-nucleotide RNA products (pRNA). These results demonstrate that 6S RNA is functionally engaged in the active site of RNAP. Synthesis of pRNA destabilizes 6S RNA-RNAP complexes leading to release of the pRNA-6S RNA hybrid. In vivo, 6S RNA-directed RNA synthesis occurs during outgrowth from the stationary phase and likely is responsible for liberating RNAP from 6S RNA in response to nutrient availability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wassarman, Karen M -- Saecker, Ruth M -- GM23467/GM/NIGMS NIH HHS/ -- GM67955/GM/NIGMS NIH HHS/ -- R01 GM067955/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1601-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA. wassarman@bact.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158328" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; DNA, Bacterial/chemistry/metabolism ; DNA-Directed RNA Polymerases/antagonists & inhibitors/chemistry/*metabolism ; Escherichia coli/genetics/growth & development/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; RNA Stability ; RNA, Bacterial/biosynthesis/chemistry/genetics/*metabolism ; RNA, Double-Stranded/chemistry/metabolism ; RNA, Untranslated/chemistry/genetics/*metabolism ; Sigma Factor/*metabolism ; Templates, Genetic ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2006-11-18
    Description: Using fluorescence resonance energy transfer to monitor distances within single molecules of abortively initiating transcription initiation complexes, we show that initial transcription proceeds through a "scrunching" mechanism, in which RNA polymerase (RNAP) remains fixed on promoter DNA and pulls downstream DNA into itself and past its active center. We show further that putative alternative mechanisms for RNAP active-center translocation in initial transcription, involving "transient excursions" of RNAP relative to DNA or "inchworming" of RNAP relative to DNA, do not occur. The results support a model in which a stressed intermediate, with DNA-unwinding stress and DNA-compaction stress, is formed during initial transcription, and in which accumulated stress is used to drive breakage of interactions between RNAP and promoter DNA and between RNAP and initiation factors during promoter escape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754788/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754788/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapanidis, Achillefs N -- Margeat, Emmanuel -- Ho, Sam On -- Kortkhonjia, Ekaterine -- Weiss, Shimon -- Ebright, Richard H -- GM069709-01/GM/NIGMS NIH HHS/ -- GM41376/GM/NIGMS NIH HHS/ -- R01 GM041376/GM/NIGMS NIH HHS/ -- R01 GM041376-15/GM/NIGMS NIH HHS/ -- R01 GM041376-16/GM/NIGMS NIH HHS/ -- R01 GM041376-17/GM/NIGMS NIH HHS/ -- R01 GM041376-18/GM/NIGMS NIH HHS/ -- R01 GM069709/GM/NIGMS NIH HHS/ -- R01 GM069709-01A1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 17;314(5802):1144-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry and Department of Physiology, University of California, Los Angeles, CA 90095, USA. a.kapanidis1@physics.ox.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17110578" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/*metabolism ; Fluorescence Resonance Energy Transfer ; Models, Genetic ; Molecular Sequence Data ; Nucleic Acid Conformation ; *Promoter Regions, Genetic ; Transcription Initiation Site ; Transcription, Genetic/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2006-12-23
    Description: Catechol-O-methyltransferase (COMT) is a key regulator of pain perception, cognitive function, and affective mood. Three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous position, code for differences in COMT enzymatic activity and are associated with pain sensitivity. Haplotypes divergent in synonymous changes exhibited the largest difference in COMT enzymatic activity, due to a reduced amount of translated protein. The major COMT haplotypes varied with respect to messenger RNA local stem-loop structures, such that the most stable structure was associated with the lowest protein levels and enzymatic activity. Site-directed mutagenesis that eliminated the stable structure restored the amount of translated protein. These data highlight the functional significance of synonymous variations and suggest the importance of haplotypes over single-nucleotide polymorphisms for analysis of genetic variations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nackley, A G -- Shabalina, S A -- Tchivileva, I E -- Satterfield, K -- Korchynskyi, O -- Makarov, S S -- Maixner, W -- Diatchenko, L -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1930-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurosensory Disorders, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185601" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Base Pairing ; Base Sequence ; Catechol O-Methyltransferase/*biosynthesis/*genetics/metabolism ; *Haplotypes ; Humans ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; *Nucleic Acid Conformation ; PC12 Cells ; Pain/genetics ; Phenotype ; Polymorphism, Single Nucleotide ; RNA Stability ; RNA, Messenger/*chemistry/genetics/metabolism ; Rats ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2006-01-28
    Description: Microbial life predominates in the ocean, yet little is known about its genomic variability, especially along the depth continuum. We report here genomic analyses of planktonic microbial communities in the North Pacific Subtropical Gyre, from the ocean's surface to near-sea floor depths. Sequence variation in microbial community genes reflected vertical zonation of taxonomic groups, functional gene repertoires, and metabolic potential. The distributional patterns of microbial genes suggested depth-variable community trends in carbon and energy metabolism, attachment and motility, gene mobility, and host-viral interactions. Comparative genomic analyses of stratified microbial communities have the potential to provide significant insight into higher-order community organization and dynamics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeLong, Edward F -- Preston, Christina M -- Mincer, Tracy -- Rich, Virginia -- Hallam, Steven J -- Frigaard, Niels-Ulrik -- Martinez, Asuncion -- Sullivan, Matthew B -- Edwards, Robert -- Brito, Beltran Rodriguez -- Chisholm, Sallie W -- Karl, David M -- New York, N.Y. -- Science. 2006 Jan 27;311(5760):496-503.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Massachusetts Institute of Technology, Cambridge, MA 02139, USA. delong@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16439655" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Archaea/classification/*genetics/metabolism ; Archaeal Proteins/chemistry/genetics/metabolism ; Bacteria/classification/*genetics/metabolism ; Bacterial Proteins/chemistry/genetics/metabolism ; Bacteriophages/genetics ; Base Sequence ; Cloning, Molecular ; Cluster Analysis ; Computational Biology ; Cosmids ; DNA, Viral/chemistry/genetics ; Ecosystem ; Gene Library ; *Genes, Archaeal ; *Genes, Bacterial ; Genes, rRNA ; *Genomics ; Molecular Sequence Data ; Pacific Ocean ; Seawater/*microbiology ; Sequence Analysis, DNA ; Water Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2006-10-14
    Description: Riboswitches are structured RNAs typically located in the 5' untranslated regions of bacterial mRNAs that bind metabolites and control gene expression. Most riboswitches sense one metabolite and function as simple genetic switches. However, we found that the 5' region of the Bacillus clausii metE messenger RNA includes two riboswitches that respond to S-adenosylmethionine and coenzyme B12. This tandem arrangement yields a composite gene control system that functions as a two-input Boolean NOR logic gate. These findings and the discovery of additional tandem riboswitch architectures reveal how simple RNA elements can be assembled to make sophisticated genetic decisions without involving protein factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sudarsan, Narasimhan -- Hammond, Ming C -- Block, Kirsten F -- Welz, Rudiger -- Barrick, Jeffrey E -- Roth, Adam -- Breaker, Ronald R -- GM 068819/GM/NIGMS NIH HHS/ -- GM 07223-31/GM/NIGMS NIH HHS/ -- R01 GM068819/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):300-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, Post Office Box 208103, New Haven, CT 06520-8103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038623" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/*metabolism ; Aptamers, Nucleotide/chemistry/metabolism ; Bacillus/*genetics/growth & development/metabolism ; Base Sequence ; Cobamides/*metabolism/pharmacology ; *Gene Expression Regulation, Bacterial ; Genes, Bacterial ; Ligands ; Methionine/biosynthesis/pharmacology ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Bacterial/chemistry/genetics/metabolism ; RNA, Messenger/chemistry/genetics/metabolism ; S-Adenosylmethionine/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2006-09-23
    Description: Ribozymes are thought to have played a pivotal role in the early evolution of life, but relatively few have been identified in modern organisms. We performed an in vitro selection aimed at isolating self-cleaving RNAs from the human genome. The selection yielded several ribozymes, one of which is a conserved mammalian sequence that resides in an intron of the CPEB3 gene, which belongs to a family of genes regulating messenger RNA polyadenylation. The CPEB3 ribozyme is structurally and biochemically related to the human hepatitis delta virus (HDV) ribozymes. The occurrence of this ribozyme exclusively in mammals suggests that it may have evolved as recently as 200 million years ago. We postulate that HDV arose from the human transcriptome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Salehi-Ashtiani, Kourosh -- Luptak, Andrej -- Litovchick, Alexander -- Szostak, Jack W -- GM53936/GM/NIGMS NIH HHS/ -- HL66678/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1788-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology (CCIB), 7215 Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990549" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Cations, Divalent/metabolism ; Conserved Sequence ; *Evolution, Molecular ; Expressed Sequence Tags ; *Genome, Human ; Genomic Library ; Hepatitis Delta Virus/genetics ; Humans ; Hydrogen-Ion Concentration ; *Introns ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Phosphorylation ; RNA, Catalytic/chemistry/genetics/*isolation & purification/*metabolism ; RNA-Binding Proteins/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2006-10-14
    Description: Monoclonal antibodies have become important therapeutic agents against certain cancers. Many tumor-specific antigens are mutant proteins that are predominantly intracellular and thus not readily accessible to monoclonal antibodies. We found that a wild-type transmembrane protein could be transformed into a tumor-specific antigen. A somatic mutation in the chaperone gene Cosmc abolished function of a glycosyltransferase, disrupting O-glycan Core 1 synthesis and creating a tumor-specific glycopeptidic neo-epitope consisting of a monosaccharide and a specific wild-type protein sequence. This epitope induced a high-affinity, highly specific, syngeneic monoclonal antibody with antitumor activity. Such tumor-specific glycopeptidic neo-epitopes represent potential targets for monoclonal antibody therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schietinger, Andrea -- Philip, Mary -- Yoshida, Barbara A -- Azadi, Parastoo -- Liu, Hui -- Meredith, Stephen C -- Schreiber, Hans -- HD 07009/HD/NICHD NIH HHS/ -- P01-CA97296/CA/NCI NIH HHS/ -- P41RR018502-01/RR/NCRR NIH HHS/ -- R01-CA22677/CA/NCI NIH HHS/ -- R01-CA37516/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2006 Oct 13;314(5797):304-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Committee on Immunology, Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA. aschieti@uchicago.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17038624" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylgalactosamine/analysis ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/*immunology ; Antibody Affinity ; Antigens, Neoplasm/chemistry/*immunology ; Antigens, Tumor-Associated, Carbohydrate/analysis ; Base Sequence ; Cell Line, Tumor ; Epitopes/immunology ; Galactosyltransferases/metabolism ; Glycosylation ; Membrane Glycoproteins/chemistry/*immunology ; Mice ; Molecular Chaperones/chemistry/*genetics/*metabolism ; Molecular Sequence Data ; *Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2006-05-06
    Description: Riboswitches are untranslated regions of messenger RNA, which adopt alternate structures depending on the binding of specific metabolites. Such conformational switching regulates the expression of proteins involved in the biosynthesis of riboswitch substrates. Here, we present the 2.9 angstrom-resolution crystal structure of the eukaryotic Arabidopsis thaliana thiamine pyrophosphate (TPP)-specific riboswitch in complex with its natural ligand. The riboswitch specifically recognizes the TPP via conserved residues located within two highly distorted parallel "sensor" helices. The structure provides the basis for understanding the reorganization of the riboswitch fold upon TPP binding and explains the mechanism of resistance to the antibiotic pyrithiamine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thore, Stephane -- Leibundgut, Marc -- Ban, Nenad -- New York, N.Y. -- Science. 2006 May 26;312(5777):1208-11. Epub 2006 May 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Institute of Molecular Biology and Biophysics, 8092 Zurich, Switzerland. ban@mol.biol.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16675665" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/*chemistry/*metabolism ; Arabidopsis/*chemistry/genetics ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Drug Resistance ; Genes, Plant ; Hydrogen Bonding ; Ligands ; Magnesium/metabolism ; Models, Molecular ; Nucleic Acid Conformation ; Pyrithiamine/pharmacology ; Thiamine Pyrophosphate/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2006-12-23
    Description: Novel, low-abundance microbial species can be easily overlooked in standard polymerase chain reaction (PCR)-based surveys. We used community genomic data obtained without PCR or cultivation to reconstruct DNA fragments bearing unusual 16S ribosomal RNA (rRNA) and protein-coding genes from organisms belonging to novel archaeal lineages. The organisms are minor components of all biofilms growing in pH 0.5 to 1.5 solutions within the Richmond Mine, California. Probes specific for 16S rRNA showed that the fraction less than 0.45 micrometers in diameter is dominated by these organisms. Transmission electron microscope images revealed that the cells are pleomorphic with unusual folded membrane protrusions and have apparent volumes of 〈0.006 cubic micrometer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Brett J -- Tyson, Gene W -- Webb, Richard I -- Flanagan, Judith -- Hugenholtz, Philip -- Allen, Eric E -- Banfield, Jillian F -- New York, N.Y. -- Science. 2006 Dec 22;314(5807):1933-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Sciences, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17185602" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Biofilms ; California ; Cell Membrane/ultrastructure ; DNA Transposable Elements ; DNA, Archaeal ; Databases, Genetic ; *Ecosystem ; *Euryarchaeota/genetics/physiology/ultrastructure ; Genes, Archaeal ; Genes, rRNA ; *Genome, Archaeal ; Hydrogen-Ion Concentration ; Microscopy, Electron, Transmission ; Mining ; Molecular Sequence Data ; Oligonucleotide Probes ; Phylogeny ; Pyrophosphatases/genetics/metabolism ; RNA, Ribosomal, 16S/genetics ; Temperature
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2006-12-13
    Description: Biological organisms perform complex information processing and control tasks using sophisticated biochemical circuits, yet the engineering of such circuits remains ineffective compared with that of electronic circuits. To systematically create complex yet reliable circuits, electrical engineers use digital logic, wherein gates and subcircuits are composed modularly and signal restoration prevents signal degradation. We report the design and experimental implementation of DNA-based digital logic circuits. We demonstrate AND, OR, and NOT gates, signal restoration, amplification, feedback, and cascading. Gate design and circuit construction is modular. The gates use single-stranded nucleic acids as inputs and outputs, and the mechanism relies exclusively on sequence recognition and strand displacement. Biological nucleic acids such as microRNAs can serve as inputs, suggesting applications in biotechnology and bioengineering.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seelig, Georg -- Soloveichik, David -- Zhang, David Yu -- Winfree, Erik -- New York, N.Y. -- Science. 2006 Dec 8;314(5805):1585-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17158324" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; *Biotechnology ; *Computers, Molecular ; *Dna ; *DNA, Single-Stranded ; Logic ; Mice ; MicroRNAs ; Nanostructures ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2006-11-25
    Description: Enhancing the nutritional value of food crops is a means of improving human nutrition and health. We report here the positional cloning of Gpc-B1, a wheat quantitative trait locus associated with increased grain protein, zinc, and iron content. The ancestral wild wheat allele encodes a NAC transcription factor (NAM-B1) that accelerates senescence and increases nutrient remobilization from leaves to developing grains, whereas modern wheat varieties carry a nonfunctional NAM-B1 allele. Reduction in RNA levels of the multiple NAM homologs by RNA interference delayed senescence by more than 3 weeks and reduced wheat grain protein, zinc, and iron content by more than 30%.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4737439/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Uauy, Cristobal -- Distelfeld, Assaf -- Fahima, Tzion -- Blechl, Ann -- Dubcovsky, Jorge -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2006 Nov 24;314(5803):1298-301.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, One Shields Avenue, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17124321" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; Frameshift Mutation ; *Genes, Plant ; Iron/*metabolism ; Molecular Sequence Data ; Plant Leaves/chemistry ; Plant Proteins/*metabolism ; Plants, Genetically Modified ; Protein Structure, Tertiary ; Quantitative Trait Loci ; RNA Interference ; RNA, Plant/genetics/metabolism ; Transcription Factors/chemistry/*genetics/physiology ; Triticum/chemistry/*genetics/*metabolism/physiology ; Zinc/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2006-07-11
    Description: The unfolded protein response (UPR) allows the endoplasmic reticulum (ER) to recover from the accumulation of misfolded proteins, in part by increasing its folding capacity. Inositol-requiring enzyme-1 (IRE1) promotes this remodeling by detecting misfolded ER proteins and activating a transcription factor, X-box-binding protein 1, through endonucleolytic cleavage of its messenger RNA (mRNA). Here, we report that IRE1 independently mediates the rapid degradation of a specific subset of mRNAs, based both on their localization to the ER membrane and on the amino acid sequence they encode. This response is well suited to complement other UPR mechanisms because it could selectively halt production of proteins that challenge the ER and clear the translocation and folding machinery for the subsequent remodeling process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hollien, Julie -- Weissman, Jonathan S -- New York, N.Y. -- Science. 2006 Jul 7;313(5783):104-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California San Francisco, Howard Hughes Medical Institute, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16825573" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; DNA-Binding Proteins/metabolism ; Dithiothreitol/pharmacology ; Down-Regulation ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/genetics/metabolism ; Endoplasmic Reticulum/*metabolism ; Endoribonucleases/genetics/*metabolism ; Exoribonucleases/genetics/metabolism ; Gene Expression Regulation ; Genes, Insect ; Membrane Proteins/genetics/*metabolism ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Protein Biosynthesis ; *Protein Folding ; Protein Sorting Signals ; *RNA Stability ; RNA, Messenger/genetics/*metabolism ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2006-09-23
    Description: The glmS ribozyme is the only natural catalytic RNA known to require a small-molecule activator for catalysis. This catalytic RNA functions as a riboswitch, with activator-dependent RNA cleavage regulating glmS messenger RNA expression. We report crystal structures of the glmS ribozyme in precleavage states that are unliganded or bound to the competitive inhibitor glucose-6-phosphate and in the postcleavage state. All structures superimpose closely, revealing a remarkably rigid RNA that contains a preformed active and coenzyme-binding site. Unlike other riboswitches, the glmS ribozyme binds its activator in an open, solvent-accessible pocket. Our structures suggest that the amine group of the glmS ribozyme-bound coenzyme performs general acid-base and electrostatic catalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klein, Daniel J -- Ferre-D'Amare, Adrian R -- GM63576/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1752-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990543" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Base Pairing ; Base Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Enzyme Inhibitors/metabolism/pharmacology ; Glucosamine/*analogs & derivatives/metabolism ; Glucose-6-Phosphate/*analogs & derivatives/metabolism/pharmacology ; Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/*genetics/metabolism ; Hydrogen Bonding ; Ligands ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/*metabolism ; Thermoanaerobacter/enzymology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):190-1.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932267" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Classification/methods ; Computational Biology ; DNA Probes ; DNA, Chloroplast/*genetics ; DNA, Intergenic/*genetics ; Databases, Nucleic Acid ; Genes, Plant ; Plants/*classification/*genetics ; Plants, Medicinal/classification/genetics ; Sequence Analysis, DNA ; Trees/classification/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2007-01-06
    Description: MicroRNAs (miRNAs) negatively regulate partially complementary target messenger RNAs. Target selection in animals is dictated primarily by sequences at the miRNA 5' end. We demonstrated that despite their small size, specific miRNAs contain additional sequence elements that control their posttranscriptional behavior, including their subcellular localization. We showed that human miR-29b, in contrast to other studied animal miRNAs, is predominantly localized to the nucleus. The distinctive hexanucleotide terminal motif of miR-29b acts as a transferable nuclear localization element that directs nuclear enrichment of miRNAs or small interfering RNAs to which it is attached. Our results indicate that miRNAs sharing common 5' sequences, considered to be largely redundant, might have distinct functions because of the influence of cis-acting regulatory motifs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hwang, Hun-Way -- Wentzel, Erik A -- Mendell, Joshua T -- New York, N.Y. -- Science. 2007 Jan 5;315(5808):97-100.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17204650" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Apoptosis ; Base Sequence ; Cell Nucleus/*metabolism ; HeLa Cells ; Humans ; Mice ; MicroRNAs/*chemistry/*metabolism ; Mitosis ; Mutation ; NIH 3T3 Cells ; Oligoribonucleotides/chemistry/*metabolism ; RNA Processing, Post-Transcriptional ; RNA Stability ; RNA, Small Interfering ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonuclease III/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2007-06-02
    Description: Sponges (phylum Porifera) were prolific reef-building organisms during the Paleozoic and Mesozoic approximately 542 to 65 million years ago. These ancient animals inherited components of the first multicellular skeletogenic toolkit from the last common ancestor of the Metazoa. Using a paleogenomics approach, including gene- and protein-expression techniques and phylogenetic reconstruction, we show that a molecular component of this toolkit was the precursor to the alpha-carbonic anhydrases (alpha-CAs), a gene family used by extant animals in a variety of fundamental physiological processes. We used the coralline demosponge Astrosclera willeyana, a "living fossil" that has survived from the Mesozoic, to provide insight into the evolution of the ability to biocalcify, and show that the alpha-CA family expanded from a single ancestral gene through several independent gene-duplication events in sponges and eumetazoans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, Daniel J -- Macis, Luciana -- Reitner, Joachim -- Degnan, Bernard M -- Worheide, Gert -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1893-5. Epub 2007 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geoscience Centre Gottingen, Department of Geobiology, Goldschmidtstrasse 3, D-37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17540861" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Bicarbonates/metabolism ; *Calcification, Physiologic ; Calcium Carbonate/analysis/metabolism ; Carbonic Anhydrases/chemistry/*genetics/*metabolism ; Computational Biology ; Evolution, Molecular ; Gene Duplication ; Genes ; Genomics ; Molecular Sequence Data ; Porifera/anatomy & histology/enzymology/*genetics/*physiology ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2007-07-21
    Description: The genomes of individuals from the same species vary in sequence as a result of different evolutionary processes. To examine the patterns of, and the forces shaping, sequence variation in Arabidopsis thaliana, we performed high-density array resequencing of 20 diverse strains (accessions). More than 1 million nonredundant single-nucleotide polymorphisms (SNPs) were identified at moderate false discovery rates (FDRs), and approximately 4% of the genome was identified as being highly dissimilar or deleted relative to the reference genome sequence. Patterns of polymorphism are highly nonrandom among gene families, with genes mediating interaction with the biotic environment having exceptional polymorphism levels. At the chromosomal scale, regional variation in polymorphism was readily apparent. A scan for recent selective sweeps revealed several candidate regions, including a notable example in which almost all variation was removed in a 500-kilobase window. Analyzing the polymorphisms we describe in larger sets of accessions will enable a detailed understanding of forces shaping population-wide sequence variation in A. thaliana.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Richard M -- Schweikert, Gabriele -- Toomajian, Christopher -- Ossowski, Stephan -- Zeller, Georg -- Shinn, Paul -- Warthmann, Norman -- Hu, Tina T -- Fu, Glenn -- Hinds, David A -- Chen, Huaming -- Frazer, Kelly A -- Huson, Daniel H -- Scholkopf, Bernhard -- Nordborg, Magnus -- Ratsch, Gunnar -- Ecker, Joseph R -- Weigel, Detlef -- New York, N.Y. -- Science. 2007 Jul 20;317(5836):338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17641193" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Arabidopsis/*genetics ; Base Sequence ; Chromosomes, Plant/genetics ; Computational Biology ; Gene Frequency ; Genes, Plant ; *Genetic Variation ; *Genome, Plant ; Molecular Sequence Data ; *Polymorphism, Genetic ; *Polymorphism, Single Nucleotide ; Selection, Genetic ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2007-01-20
    Description: Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by searching for sporadic selenocysteine-Cys pairs in sequence databases. This method is independent of protein family, structure, and taxon. We used it to selectively detect the majority of known proteins with redox-active Cys and to make additional predictions, one of which was verified. Rapid accumulation of sequence information from genomic and metagenomic projects should allow detection of many additional oxidoreductase families as well as identification of redox-active Cys in these proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fomenko, Dmitri E -- Xing, Weibing -- Adair, Blakely M -- Thomas, David J -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- GM061603/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Jan 19;315(5810):387-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17234949" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry ; Bacterial Proteins/chemistry ; Base Sequence ; Catalysis ; Computational Biology ; Cysteine/analysis/*chemistry ; *Databases, Nucleic Acid ; *Databases, Protein ; Enzymes/*chemistry ; Eukaryotic Cells ; Evolution, Molecular ; Methyltransferases/chemistry ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/chemistry ; Proteins/*chemistry ; Selenocysteine/chemistry ; Selenoproteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2007-06-26
    Description: Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome and show that the human variant of the intrinsic immune protein TRIM5alpha can actively prevent infection by this virus. However, we suggest that selective changes that have occurred in the human lineage during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, Shari M -- Malik, Harmit S -- Emerman, Michael -- New York, N.Y. -- Science. 2007 Jun 22;316(5832):1756-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17588933" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Carrier Proteins/genetics/*physiology ; Cats ; Cell Line ; Dna ; Disease Susceptibility ; Endogenous Retroviruses/genetics/*physiology ; Evolution, Molecular ; Gorilla gorilla ; HIV Infections/genetics/immunology ; Hiv-1 ; Humans ; Immunity, Innate/genetics ; Macaca mulatta ; Molecular Sequence Data ; Pan troglodytes/genetics/virology ; Retroviridae Infections/genetics/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2007-02-27
    Description: Primary transcripts of certain microRNA (miRNA) genes are subject to RNA editing that converts adenosine to inosine. However, the importance of miRNA editing remains largely undetermined. Here we report that tissue-specific adenosine-to-inosine editing of miR-376 cluster transcripts leads to predominant expression of edited miR-376 isoform RNAs. One highly edited site is positioned in the middle of the 5'-proximal half "seed" region critical for the hybridization of miRNAs to targets. We provide evidence that the edited miR-376 RNA silences specifically a different set of genes. Repression of phosphoribosyl pyrophosphate synthetase 1, a target of the edited miR-376 RNA and an enzyme involved in the uric-acid synthesis pathway, contributes to tight and tissue-specific regulation of uric-acid levels, revealing a previously unknown role for RNA editing in miRNA-mediated gene silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawahara, Yukio -- Zinshteyn, Boris -- Sethupathy, Praveen -- Iizasa, Hisashi -- Hatzigeorgiou, Artemis G -- Nishikura, Kazuko -- P01 CA072765/CA/NCI NIH HHS/ -- P01 CA072765-050002/CA/NCI NIH HHS/ -- R01 GM040536/GM/NIGMS NIH HHS/ -- R01 GM040536-16/GM/NIGMS NIH HHS/ -- R01 HL070045/HL/NHLBI NIH HHS/ -- R01 HL070045-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1137-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. ykawahara@wistar.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322061" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/*metabolism ; Adenosine Deaminase/genetics/metabolism ; Animals ; Base Sequence ; Brain/metabolism ; HeLa Cells ; Humans ; Inosine/*metabolism ; Liver/metabolism ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Organ Specificity ; Protein-Serine-Threonine Kinases/genetics/metabolism ; *RNA Editing ; *RNA Interference ; RNA-Binding Proteins ; Ribose-Phosphate Pyrophosphokinase/genetics/metabolism ; Uric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2007-08-11
    Description: Characterization of interspecies differences in gene regulation is crucial for understanding the molecular basis of both phenotypic diversity and evolution. By means of chromatin immunoprecipitation and DNA microarray analysis, the divergence in the binding sites of the pseudohyphal regulators Ste12 and Tec1 was determined in the yeasts Saccharomyces cerevisiae, S. mikatae, and S. bayanus under pseudohyphal conditions. We have shown that most of these sites have diverged across these species, far exceeding the interspecies variation in orthologous genes. A group of Ste12 targets was shown to be bound only in S. mikatae and S. bayanus under pseudohyphal conditions. Many of these genes are targets of Ste12 during mating in S. cerevisiae, indicating that specialization between the two pathways has occurred in this species. Transcription factor binding sites have therefore diverged substantially faster than ortholog content. Thus, gene regulation resulting from transcription factor binding is likely to be a major cause of divergence between related species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borneman, Anthony R -- Gianoulis, Tara A -- Zhang, Zhengdong D -- Yu, Haiyuan -- Rozowsky, Joel -- Seringhaus, Michael R -- Wang, Lu Yong -- Gerstein, Mark -- Snyder, Michael -- New York, N.Y. -- Science. 2007 Aug 10;317(5839):815-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17690298" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Candida albicans/genetics/growth & development/metabolism ; Chromatin Immunoprecipitation ; DNA-Binding Proteins/genetics/metabolism ; *Evolution, Molecular ; Fungal Proteins/genetics/*metabolism ; Gene Expression Regulation, Fungal ; Gene Regulatory Networks ; Genes, Fungal ; Oligonucleotide Array Sequence Analysis ; *Regulatory Sequences, Nucleic Acid ; Saccharomyces/*genetics/growth & development/metabolism ; Saccharomyces cerevisiae/*genetics/growth & development/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2007-10-20
    Description: Hundreds of species of reef-building corals spawn synchronously over a few nights each year, and moonlight regulates this spawning event. However, the molecular elements underpinning the detection of moonlight remain unknown. Here we report the presence of an ancient family of blue-light-sensing photoreceptors, cryptochromes, in the reef-building coral Acropora millepora. In addition to being cryptochrome genes from one of the earliest-diverging eumetazoan phyla, cry1 and cry2 were expressed preferentially in light. Consistent with potential roles in the synchronization of fundamentally important behaviors such as mass spawning, cry2 expression increased on full moon nights versus new moon nights. Our results demonstrate phylogenetically broad roles of these ancient circadian clock-related molecules in the animal kingdom.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, O -- Appelbaum, L -- Leggat, W -- Gothlif, Y -- Hayward, D C -- Miller, D J -- Hoegh-Guldberg, O -- New York, N.Y. -- Science. 2007 Oct 19;318(5849):467-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Marine Studies, University of Queensland, St. Lucia 4072 QLD, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17947585" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/*genetics/*metabolism ; Base Sequence ; Circadian Rhythm ; Cryptochromes ; Flavoproteins/analysis/*genetics/*metabolism ; Gene Expression Regulation ; *Light ; Molecular Sequence Data ; Moon
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2007-06-30
    Description: Circadian and other natural clock-like endogenous rhythms may have evolved to anticipate regular temporal changes in the environment. We report that a mutation in the circadian clock gene timeless in Drosophila melanogaster has arisen and spread by natural selection relatively recently in Europe. We found that, when introduced into different genetic backgrounds, natural and artificial alleles of the timeless gene affect the incidence of diapause in response to changes in light and temperature. The natural mutant allele alters an important life history trait that may enhance the fly's adaptation to seasonal conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tauber, Eran -- Zordan, Mauro -- Sandrelli, Federica -- Pegoraro, Mirko -- Osterwalder, Nicolo -- Breda, Carlo -- Daga, Andrea -- Selmin, Alessandro -- Monger, Karen -- Benna, Clara -- Rosato, Ezio -- Kyriacou, Charalambos P -- Costa, Rodolfo -- New York, N.Y. -- Science. 2007 Jun 29;316(5833):1895-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17600215" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Circadian Rhythm/genetics ; Drosophila Proteins/*genetics/physiology ; Drosophila melanogaster/*genetics/*physiology ; Europe ; Evolution, Molecular ; Female ; Geography ; Haplotypes ; Molecular Sequence Data ; Mutation ; *Photoperiod ; Phylogeny ; Polymorphism, Genetic ; Protein Isoforms/genetics/physiology ; Reproduction ; *Seasons ; *Selection, Genetic ; Temperature ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2007-10-27
    Description: Plant disease resistance (R) proteins recognize matching pathogen avirulence proteins. Alleles of the pepper R gene Bs3 mediate recognition of the Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein AvrBs3 and its deletion derivative AvrBs3Deltarep16. Pepper Bs3 and its allelic variant Bs3-E encode flavin monooxygenases with a previously unknown structure and are transcriptionally activated by the Xcv effector proteins AvrBs3 and AvrBs3Deltarep16, respectively. We found that recognition specificity resides in the Bs3 and Bs3-E promoters and is determined by binding of AvrBs3 or AvrBs3Deltarep16 to a defined promoter region. Our data suggest a recognition mechanism in which the Avr protein binds and activates the promoter of the cognate R gene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romer, Patrick -- Hahn, Simone -- Jordan, Tina -- Strauss, Tina -- Bonas, Ulla -- Lahaye, Thomas -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):645-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, D-06099 Halle (Saale), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962564" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Bacterial Proteins/genetics/*metabolism ; Base Sequence ; Capsicum/*genetics/*microbiology ; Chromosomes, Artificial, Bacterial ; Gene Expression Regulation, Plant ; *Genes, Plant ; Mixed Function Oxygenases/chemistry/*genetics ; Molecular Sequence Data ; Plant Diseases/immunology/microbiology ; Plant Leaves/genetics/metabolism ; Plant Proteins/chemistry/genetics ; *Promoter Regions, Genetic ; Tobacco/genetics ; Transcription, Genetic ; Transformation, Genetic ; Xanthomonas campestris/genetics/metabolism/*pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...