ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-06
    Description: Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function--it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1-4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224642/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4224642/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlile, Thomas M -- Rojas-Duran, Maria F -- Zinshteyn, Boris -- Shin, Hakyung -- Bartoli, Kristen M -- Gilbert, Wendy V -- GM081399/GM/NIGMS NIH HHS/ -- GM094303/GM/NIGMS NIH HHS/ -- R00 GM081399/GM/NIGMS NIH HHS/ -- R01 GM094303/GM/NIGMS NIH HHS/ -- R01 GM101316/GM/NIGMS NIH HHS/ -- T32 GM007287/GM/NIGMS NIH HHS/ -- T32GM007287/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Nov 6;515(7525):143-6. doi: 10.1038/nature13802. Epub 2014 Sep 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25192136" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Food Deprivation ; Genetic Code ; Genome/genetics ; Humans ; Intramolecular Transferases/metabolism ; Pseudouridine/*analysis/chemistry/genetics ; RNA, Messenger/*chemistry/metabolism ; RNA, Untranslated/chemistry ; Saccharomyces cerevisiae/cytology/*genetics ; Sequence Analysis, RNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-27
    Description: Primary transcripts of certain microRNA (miRNA) genes are subject to RNA editing that converts adenosine to inosine. However, the importance of miRNA editing remains largely undetermined. Here we report that tissue-specific adenosine-to-inosine editing of miR-376 cluster transcripts leads to predominant expression of edited miR-376 isoform RNAs. One highly edited site is positioned in the middle of the 5'-proximal half "seed" region critical for the hybridization of miRNAs to targets. We provide evidence that the edited miR-376 RNA silences specifically a different set of genes. Repression of phosphoribosyl pyrophosphate synthetase 1, a target of the edited miR-376 RNA and an enzyme involved in the uric-acid synthesis pathway, contributes to tight and tissue-specific regulation of uric-acid levels, revealing a previously unknown role for RNA editing in miRNA-mediated gene silencing.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953418/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawahara, Yukio -- Zinshteyn, Boris -- Sethupathy, Praveen -- Iizasa, Hisashi -- Hatzigeorgiou, Artemis G -- Nishikura, Kazuko -- P01 CA072765/CA/NCI NIH HHS/ -- P01 CA072765-050002/CA/NCI NIH HHS/ -- R01 GM040536/GM/NIGMS NIH HHS/ -- R01 GM040536-16/GM/NIGMS NIH HHS/ -- R01 HL070045/HL/NHLBI NIH HHS/ -- R01 HL070045-04/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2007 Feb 23;315(5815):1137-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA. ykawahara@wistar.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17322061" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Adenosine/*metabolism ; Adenosine Deaminase/genetics/metabolism ; Animals ; Base Sequence ; Brain/metabolism ; HeLa Cells ; Humans ; Inosine/*metabolism ; Liver/metabolism ; Mice ; MicroRNAs/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; Organ Specificity ; Protein-Serine-Threonine Kinases/genetics/metabolism ; *RNA Editing ; *RNA Interference ; RNA-Binding Proteins ; Ribose-Phosphate Pyrophosphokinase/genetics/metabolism ; Uric Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-06
    Description: Upf1 is an SF1-family RNA helicase that is essential for the nonsense-mediated decay (NMD) process in eukaryotes. While Upf1 has been shown to interact with 80S ribosomes, the molecular details of this interaction were unknown. Using purified recombinant proteins and high-throughput sequencing combined with Fe-BABE directed hydroxyl radical probing (HTS-BABE) we have characterized the interaction between Upf1 and the yeast 80S ribosome. We identify the 1C domain of Upf1, an alpha-helical insertion in the RecA helicase core, to be essential for ribosome binding, and determine that the L1 stalk of 25S rRNA is the binding site for Upf1 on the ribosome. Using the cleavage sites identified by hydroxyl radical probing and high-resolution structures of both yeast Upf1 and the human 80S ribosome, we provide a model of a Upf1:80S structure. Our model requires that the L1 stalk adopt an open configuration as adopted by an un-rotated, or classical-state, ribosome. Our results shed light on the interaction between Upf1 and the ribosome, and suggest that Upf1 may specifically engage a classical-state ribosome during translation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science
    Publication Date: 2016-12-01
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...