ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-04-12
    Description: Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981145/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981145/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tam, Oliver H -- Aravin, Alexei A -- Stein, Paula -- Girard, Angelique -- Murchison, Elizabeth P -- Cheloufi, Sihem -- Hodges, Emily -- Anger, Martin -- Sachidanandam, Ravi -- Schultz, Richard M -- Hannon, Gregory J -- P01 CA013106-34/CA/NCI NIH HHS/ -- R01 GM062534/GM/NIGMS NIH HHS/ -- R01 GM062534-07/GM/NIGMS NIH HHS/ -- R01 GM062534-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 May 22;453(7194):534-8. doi: 10.1038/nature06904. Epub 2008 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18404147" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Computational Biology ; DNA Transposable Elements/genetics ; Female ; Gene Expression Regulation, Developmental ; Gene Library ; Mice ; Oocytes/*metabolism ; Pseudogenes/*genetics ; *RNA Interference ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/*genetics ; Ribonuclease III/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-21
    Description: Nearly half of the mammalian genome is composed of repeated sequences. In Drosophila, Piwi proteins exert control over transposons. However, mammalian Piwi proteins, MIWI and MILI, partner with Piwi-interacting RNAs (piRNAs) that are depleted of repeat sequences, which raises questions about a role for mammalian Piwi's in transposon control. A search for murine small RNAs that might program Piwi proteins for transposon suppression revealed developmentally regulated piRNA loci, some of which resemble transposon master control loci of Drosophila. We also find evidence of an adaptive amplification loop in which MILI catalyzes the formation of piRNA 5' ends. Mili mutants derepress LINE-1 (L1) and intracisternal A particle and lose DNA methylation of L1 elements, demonstrating an evolutionarily conserved role for PIWI proteins in transposon suppression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Sachidanandam, Ravi -- Girard, Angelique -- Fejes-Toth, Katalin -- Hannon, Gregory J -- New York, N.Y. -- Science. 2007 May 4;316(5825):744-7. Epub 2007 Apr 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Howard Hughes Medical Institute (HHMI), 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17446352" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; Animals ; Argonaute Proteins ; Cluster Analysis ; Computational Biology ; DNA Methylation ; Genes, Intracisternal A-Particle ; Long Interspersed Nucleotide Elements ; Male ; Meiosis ; Mice ; Mutation ; Proteins/*metabolism ; RNA, Antisense/genetics/metabolism ; RNA, Untranslated/*genetics/metabolism ; *Retroelements ; Reverse Transcriptase Polymerase Chain Reaction ; Short Interspersed Nucleotide Elements ; Spermatocytes/cytology/*metabolism ; Spermatogenesis ; *Suppression, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-11-03
    Description: Increasingly complex networks of small RNAs act through RNA-interference (RNAi) pathways to regulate gene expression, to mediate antiviral responses, to organize chromosomal domains, and to restrain the spread of selfish genetic elements. Historically, RNAi has been defined as a response to double-stranded RNA. However, some small RNA species may not arise from double-stranded RNA precursors. Yet, like microRNAs and small interfering RNAs, such species guide Argonaute proteins to silencing targets through complementary base-pairing. Silencing can be achieved by corecruitment of accessory factors or through the activity of Argonaute itself, which often has endonucleolytic activity. As a specific and adaptive regulatory system, RNAi is used throughout eukarya, which indicates a long evolutionary history. A likely function of RNAi throughout that history is to protect the genome from both pathogenic and parasitic invaders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aravin, Alexei A -- Hannon, Gregory J -- Brennecke, Julius -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):761-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975059" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Biological ; Animals ; Argonaute Proteins ; Base Sequence ; *DNA Transposable Elements ; Drosophila Proteins ; Evolution, Molecular ; Gene Silencing ; Molecular Sequence Data ; Proteins/genetics/physiology ; *RNA, Small Interfering ; RNA-Binding Proteins/genetics/*physiology ; RNA-Induced Silencing Complex
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-11-29
    Description: In plants and mammals, small RNAs indirectly mediate epigenetic inheritance by specifying cytosine methylation. We found that small RNAs themselves serve as vectors for epigenetic information. Crosses between Drosophila strains that differ in the presence of a particular transposon can produce sterile progeny, a phenomenon called hybrid dysgenesis. This phenotype manifests itself only if the transposon is paternally inherited, suggesting maternal transmission of a factor that maintains fertility. In both P- and I-element-mediated hybrid dysgenesis models, daughters show a markedly different content of Piwi-interacting RNAs (piRNAs) targeting each element, depending on their parents of origin. Such differences persist from fertilization through adulthood. This indicates that maternally deposited piRNAs are important for mounting an effective silencing response and that a lack of maternal piRNA inheritance underlies hybrid dysgenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805124/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805124/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brennecke, Julius -- Malone, Colin D -- Aravin, Alexei A -- Sachidanandam, Ravi -- Stark, Alexander -- Hannon, Gregory J -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Nov 28;322(5906):1387-92. doi: 10.1126/science.1165171.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory (CSHL), 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19039138" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Crosses, Genetic ; *DNA Transposable Elements ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/physiology ; *Epigenesis, Genetic ; Female ; Fertility ; Hybridization, Genetic ; Male ; Ovary/metabolism ; Peptide Initiation Factors/genetics/metabolism ; *RNA Interference ; RNA, Small Interfering/*genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...