ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-21
    Description: We describe a single RNA sequence that can assume either of two ribozyme folds and catalyze the two respective reactions. The two ribozyme folds share no evolutionary history and are completely different, with no base pairs (and probably no hydrogen bonds) in common. Minor variants of this sequence are highly active for one or the other reaction, and can be accessed from prototype ribozymes through a series of neutral mutations. Thus, in the course of evolution, new RNA folds could arise from preexisting folds, without the need to carry inactive intermediate sequences. This raises the possibility that biological RNAs having no structural or functional similarity might share a common ancestry. Furthermore, functional and structural divergence might, in some cases, precede rather than follow gene duplication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schultes, E A -- Bartel, D P -- New York, N.Y. -- Science. 2000 Jul 21;289(5478):448-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10903205" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Catalysis ; Evolution, Molecular ; Gene Duplication ; Hepatitis Delta Virus/enzymology/genetics ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Point Mutation ; RNA/metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-19
    Description: The RNA world hypothesis regarding the early evolution of life relies on the premise that some RNA sequences can catalyze RNA replication. In support of this conjecture, we describe here an RNA molecule that catalyzes the type of polymerization needed for RNA replication. The ribozyme uses nucleoside triphosphates and the coding information of an RNA template to extend an RNA primer by the successive addition of up to 14 nucleotides-more than a complete turn of an RNA helix. Its polymerization activity is general in terms of the sequence and the length of the primer and template RNAs, provided that the 3' terminus of the primer pairs with the template. Its polymerization is also quite accurate: when primers extended by 11 nucleotides were cloned and sequenced, 1088 of 1100 sequenced nucleotides matched the template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Johnston, W K -- Unrau, P J -- Lawrence, M S -- Glasner, M E -- Bartel, D P -- New York, N.Y. -- Science. 2001 May 18;292(5520):1319-25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11358999" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Conserved Sequence/genetics ; Directed Molecular Evolution ; Molecular Sequence Data ; Mutagenesis/genetics ; Nucleic Acid Conformation ; RNA/*biosynthesis/genetics ; RNA Replicase/chemistry/genetics/*metabolism ; RNA, Catalytic/chemistry/genetics/*metabolism ; Sequence Analysis, RNA ; Substrate Specificity ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-10-27
    Description: Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, N C -- Lim, L P -- Weinstein, E G -- Bartel, D P -- New York, N.Y. -- Science. 2001 Oct 26;294(5543):858-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11679671" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blotting, Northern ; Caenorhabditis elegans/*genetics ; Cloning, Molecular ; Conserved Sequence ; Endoribonucleases/metabolism ; *Gene Expression Regulation ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Genome ; Humans ; Molecular Sequence Data ; Multigene Family ; Nucleic Acid Conformation ; RNA Precursors/genetics/metabolism ; RNA, Helminth/*chemistry/*genetics/physiology ; RNA, Untranslated/chemistry/*genetics/physiology ; Ribonuclease III ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reinhart, Brenda J -- Bartel, David P -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1831. Epub 2002 Aug 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12193644" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Centromere/*chemistry ; Cloning, Molecular ; Gene Expression Regulation, Fungal ; Gene Silencing ; Heterochromatin/*chemistry ; MicroRNAs ; Protein Biosynthesis ; RNA, Antisense/*chemistry/metabolism ; RNA, Double-Stranded/metabolism ; RNA, Fungal/chemistry/genetics/metabolism ; RNA, Small Interfering ; RNA, Untranslated/*chemistry/metabolism ; Repetitive Sequences, Nucleic Acid ; Schizosaccharomyces/*genetics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-10-03
    Description: In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs (miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi-interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis (starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small-RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica (sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small-RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grimson, Andrew -- Srivastava, Mansi -- Fahey, Bryony -- Woodcroft, Ben J -- Chiang, H Rosaria -- King, Nicole -- Degnan, Bernard M -- Rokhsar, Daniel S -- Bartel, David P -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Oct 30;455(7217):1193-7. doi: 10.1038/nature07415. Epub 2008 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18830242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Eukaryotic Cells/metabolism ; *Evolution, Molecular ; Gene Expression Regulation ; Humans ; MicroRNAs/*genetics ; Phylogeny ; RNA, Small Interfering/*genetics ; Sea Anemones/*genetics ; Sequence Analysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-09
    Description: In contrast to microRNAs and Piwi-associated RNAs, short interfering RNAs (siRNAs) are seemingly dispensable for host-directed gene regulation in Drosophila. This notion is based on the fact that mutants lacking the core siRNA-generating enzyme Dicer-2 or the predominant siRNA effector Argonaute 2 are viable, fertile and of relatively normal morphology. Moreover, endogenous Drosophila siRNAs have not yet been identified. Here we report that siRNAs derived from long hairpin RNA genes (hpRNAs) programme Slicer complexes that can repress endogenous target transcripts. The Drosophila hpRNA pathway is a hybrid mechanism that combines canonical RNA interference factors (Dicer-2, Hen1 (known as CG12367) and Argonaute 2) with a canonical microRNA factor (Loquacious) to generate approximately 21-nucleotide siRNAs. These novel regulatory RNAs reveal unexpected complexity in the sorting of small RNAs, and open a window onto the biological usage of endogenous RNA interference in Drosophila.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735555/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735555/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okamura, Katsutomo -- Chung, Wei-Jen -- Ruby, J Graham -- Guo, Huili -- Bartel, David P -- Lai, Eric C -- GM067031/GM/NIGMS NIH HHS/ -- GM083300/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031-01/GM/NIGMS NIH HHS/ -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01 GM083300-01/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jun 5;453(7196):803-6. doi: 10.1038/nature07015. Epub 2008 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sloan-Kettering Institute, Department of Developmental Biology, 521 Rockefeller Research Laboratories, 1275 York Avenue, Box 252, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18463630" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/enzymology/*genetics/metabolism ; Methyltransferases/metabolism ; MicroRNAs/biosynthesis/genetics/metabolism ; *Nucleic Acid Conformation ; RNA Helicases/genetics/metabolism ; *RNA Interference ; RNA, Double-Stranded/chemistry/genetics/*metabolism ; RNA, Small Interfering/biosynthesis/genetics/*metabolism ; RNA-Binding Proteins/genetics/metabolism ; RNA-Induced Silencing Complex/genetics/metabolism ; Ribonuclease III
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-08-01
    Description: MicroRNAs are endogenous approximately 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3' untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745094/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745094/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baek, Daehyun -- Villen, Judit -- Shin, Chanseok -- Camargo, Fernando D -- Gygi, Steven P -- Bartel, David P -- R01 GM067031/GM/NIGMS NIH HHS/ -- R01 HG003456/HG/NHGRI NIH HHS/ -- R01 HG003456-04A1/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Sep 4;455(7209):64-71. doi: 10.1038/nature07242. Epub 2008 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18668037" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gene Expression Regulation ; HeLa Cells ; Humans ; Isotope Labeling ; Male ; Mice ; MicroRNAs/*genetics/*metabolism ; Neutrophils/metabolism ; Oligonucleotide Array Sequence Analysis ; *Protein Biosynthesis ; Proteomics ; Transfection
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-06-17
    Description: Small noncoding RNAs regulate processes essential for cell growth and development, including mRNA degradation, translational repression, and transcriptional gene silencing (TGS). During a search for candidate mammalian factors for TGS, we purified a complex that contains small RNAs and Riwi, the rat homolog to human Piwi. The RNAs, frequently 29 to 30 nucleotides in length, are called Piwi-interacting RNAs (piRNAs), 94% of which map to 100 defined (〈 or = 101 kb) genomic regions. Within these regions, the piRNAs generally distribute across only one genomic strand or distribute on two strands but in a divergent, nonoverlapping manner. Preparations of piRNA complex (piRC) contain rRecQ1, which is homologous to qde-3 from Neurospora, a gene implicated in silencing pathways. Piwi has been genetically linked to TGS in flies, and slicer activity cofractionates with the purified complex. These results are consistent with a gene-silencing role for piRC in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lau, Nelson C -- Seto, Anita G -- Kim, Jinkuk -- Kuramochi-Miyagawa, Satomi -- Nakano, Toru -- Bartel, David P -- Kingston, Robert E -- New York, N.Y. -- Science. 2006 Jul 21;313(5785):363-7. Epub 2006 Jun 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778019" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/isolation & purification/metabolism ; Animals ; Chromosomes, Mammalian ; Conserved Sequence ; DNA Helicases/isolation & purification/metabolism ; Gene Library ; Genome ; Male ; Mice ; Proteins/isolation & purification/*metabolism ; *RNA Interference ; RNA, Untranslated/chemistry/genetics/isolation & purification/*metabolism ; Rats ; Rats, Sprague-Dawley ; RecQ Helicases ; Ribonucleoproteins/chemistry/isolation & purification/*metabolism ; Testis/*chemistry ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-09-12
    Description: RNA interference (RNAi), a gene-silencing pathway triggered by double-stranded RNA, is conserved in diverse eukaryotic species but has been lost in the model budding yeast Saccharomyces cerevisiae. Here, we show that RNAi is present in other budding yeast species, including Saccharomyces castellii and Candida albicans. These species use noncanonical Dicer proteins to generate small interfering RNAs, which mostly correspond to transposable elements and Y' subtelomeric repeats. In S. castellii, RNAi mutants are viable but have excess Y' messenger RNA levels. In S. cerevisiae, introducing Dicer and Argonaute of S. castellii restores RNAi, and the reconstituted pathway silences endogenous retrotransposons. These results identify a previously unknown class of Dicer proteins, bring the tool of RNAi to the study of budding yeasts, and bring the tools of budding yeast to the study of RNAi.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drinnenberg, Ines A -- Weinberg, David E -- Xie, Kathleen T -- Mower, Jeffrey P -- Wolfe, Kenneth H -- Fink, Gerald R -- Bartel, David P -- GM0305010/GM/NIGMS NIH HHS/ -- GM040266/GM/NIGMS NIH HHS/ -- GM067031/GM/NIGMS NIH HHS/ -- R01 GM067031/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Oct 23;326(5952):544-50. doi: 10.1126/science.1176945. Epub 2009 Sep 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745116" target="_blank"〉PubMed〈/a〉
    Keywords: Fungal Proteins/genetics/metabolism ; Gene Expression Profiling ; Genes, Fungal ; Genetic Loci ; Mutation ; Open Reading Frames ; *RNA Interference ; RNA, Double-Stranded/genetics/metabolism ; RNA, Fungal/genetics/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Small Interfering/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Retroelements ; Ribonuclease III/genetics/metabolism ; Saccharomyces/*genetics/metabolism ; Saccharomyces cerevisiae/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Saccharomycetales/*genetics/metabolism ; Sequence Analysis, RNA ; Transcription, Genetic ; Transformation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-08
    Description: Primordial organisms of the putative RNA world would have required polymerase ribozymes able to replicate RNA. Known ribozymes with polymerase activity best approximating that needed for RNA replication contain at their catalytic core the class I RNA ligase, an artificial ribozyme with a catalytic rate among the fastest of known ribozymes. Here we present the 3.0 angstrom crystal structure of this ligase. The architecture resembles a tripod, its three legs converging near the ligation junction. Interacting with this tripod scaffold through a series of 10 minor-groove interactions (including two A-minor triads) is the unpaired segment that contributes to and organizes the active site. A cytosine nucleobase and two backbone phosphates abut the ligation junction; their location suggests a model for catalysis resembling that of proteinaceous polymerases.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978776/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shechner, David M -- Grant, Robert A -- Bagby, Sarah C -- Koldobskaya, Yelena -- Piccirilli, Joseph A -- Bartel, David P -- GM61835/GM/NIGMS NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1271-5. doi: 10.1126/science.1174676.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965478" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Catalysis ; Catalytic Domain ; Crystallization ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Magnesium/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Polynucleotide Ligases/chemistry/metabolism ; RNA, Catalytic/*chemistry/metabolism ; Ribonucleotides/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...