ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (2,121)
  • Phosphorylation
  • American Association for the Advancement of Science (AAAS)  (3,150)
  • Springer  (52)
  • American Meteorological Society
  • MDPI Publishing
Collection
Keywords
Publisher
  • 101
    Publication Date: 2012-05-15
    Description: Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754843/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tagliabracci, Vincent S -- Engel, James L -- Wen, Jianzhong -- Wiley, Sandra E -- Worby, Carolyn A -- Kinch, Lisa N -- Xiao, Junyu -- Grishin, Nick V -- Dixon, Jack E -- DK018024-37/DK/NIDDK NIH HHS/ -- DK018849-36/DK/NIDDK NIH HHS/ -- GM094575/GM/NIGMS NIH HHS/ -- R01 DK018849/DK/NIDDK NIH HHS/ -- R37 DK018024/DK/NIDDK NIH HHS/ -- T32 CA009523/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1150-3. doi: 10.1126/science.1217817. Epub 2012 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582013" target="_blank"〉PubMed〈/a〉
    Keywords: Abnormalities, Multiple/genetics/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Calcification, Physiologic ; Casein Kinase I ; Casein Kinases/metabolism ; Caseins/*metabolism ; Cattle ; Cell Line, Tumor ; Cleft Palate/genetics/metabolism ; Exophthalmos/genetics/metabolism ; Extracellular Matrix Proteins/chemistry/genetics/*metabolism/secretion ; Glycoproteins/metabolism ; Golgi Apparatus/*enzymology ; HEK293 Cells ; HeLa Cells ; Humans ; Microcephaly/genetics/metabolism ; Milk/enzymology ; Molecular Sequence Data ; Mutation ; Osteopontin ; Osteosclerosis/genetics/metabolism ; Phosphorylation ; Protein Sorting Signals ; Recombinant Fusion Proteins/chemistry/metabolism/secretion ; *Secretory Pathway ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2012-11-10
    Description: Despite more than 30 years of work on the Wnt signaling pathway, the basic mechanism of how the extracellular Wnt signal increases the intracellular concentration of beta-catenin is still contentious. Circumventing much of the detailed biochemistry, we used basic principles of chemical kinetics coupled with quantitative measurements to define the reactions on beta-catenin directly affected by the Wnt signal. We conclude that the core signal transduction mechanism is relatively simple, with only two regulated phosphorylation steps. Their partial inhibition gives rise to the full dynamics of the response and subsequently maintains a steady state in which the concentration of beta-catenin is increased.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hernandez, Ana R -- Klein, Allon M -- Kirschner, Marc W -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1337-40. doi: 10.1126/science.1228734. Epub 2012 Nov 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23138978" target="_blank"〉PubMed〈/a〉
    Keywords: Casein Kinase I/chemistry/metabolism ; Cell Line, Tumor ; Cysteine Proteinase Inhibitors/pharmacology ; Glycogen Synthase Kinase 3/metabolism ; HEK293 Cells ; Humans ; Kinetics ; Leupeptins/pharmacology ; Phosphorylation ; *Signal Transduction ; Wnt Proteins/*metabolism ; Wnt3A Protein/metabolism ; beta Catenin/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2012-01-17
    Description: Painful stimuli activate nociceptive C fibers and induce synaptic long-term potentiation (LTP) at their spinal terminals. LTP at C-fiber synapses represents a cellular model for pain amplification (hyperalgesia) and for a memory trace of pain. mu-Opioid receptor agonists exert a powerful but reversible depression at C-fiber synapses that renders the continuous application of low opioid doses the gold standard in pain therapy. We discovered that brief application of a high opioid dose reversed various forms of activity-dependent LTP at C-fiber synapses. Depotentiation involved Ca(2+)-dependent signaling and normalization of the phosphorylation state of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This also reversed hyperalgesia in behaving animals. Opioids thus not only temporarily dampen pain but may also erase a spinal memory trace of pain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Drdla-Schutting, Ruth -- Benrath, Justus -- Wunderbaldinger, Gabriele -- Sandkuhler, Jurgen -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):235-8. doi: 10.1126/science.1211726.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246779" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/*administration & dosage ; Animals ; Calcium Signaling ; Evoked Potentials ; Hyperalgesia/chemically induced/drug therapy ; Long-Term Potentiation/*drug effects ; Male ; Naloxone/administration & dosage ; Nerve Fibers, Unmyelinated/*drug effects/physiology ; Nociceptive Pain/*drug therapy/physiopathology ; Phosphorylation ; Piperidines/*administration & dosage ; Protein Kinase C/antagonists & inhibitors/metabolism ; Protein Phosphatase 1/antagonists & inhibitors/metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, AMPA/metabolism ; Receptors, Opioid, mu/agonists/metabolism ; Sciatic Nerve/*drug effects/physiology ; Somatostatin/administration & dosage/analogs & derivatives ; Spinal Cord/physiology ; Synapses/*drug effects/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2012-03-17
    Description: In bacteria, ribosomes stalled at the end of truncated messages are rescued by transfer-messenger RNA (tmRNA), a bifunctional molecule that acts as both a transfer RNA (tRNA) and a messenger RNA (mRNA), and SmpB, a small protein that works in concert with tmRNA. Here, we present the crystal structure of a tmRNA fragment, SmpB and elongation factor Tu bound to the ribosome at 3.2 angstroms resolution. The structure shows how SmpB plays the role of both the anticodon loop of tRNA and portions of mRNA to facilitate decoding in the absence of an mRNA codon in the A site of the ribosome and explains why the tmRNA-SmpB system does not interfere with normal translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763467/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3763467/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neubauer, Cajetan -- Gillet, Reynald -- Kelley, Ann C -- Ramakrishnan, V -- 082086/Wellcome Trust/United Kingdom -- 096570/Wellcome Trust/United Kingdom -- MC_U105184332/Medical Research Council/United Kingdom -- U105184332/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 16;335(6074):1366-9. doi: 10.1126/science.1217039.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422985" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon ; Bacterial Proteins/chemistry/metabolism ; Base Sequence ; Crystallography, X-Ray ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Elongation Factor Tu/*chemistry/metabolism ; Protein Biosynthesis ; Protein Conformation ; RNA, Bacterial/*chemistry/*metabolism ; RNA, Messenger/chemistry/metabolism ; RNA, Transfer/chemistry/metabolism ; RNA-Binding Proteins/*chemistry/*metabolism ; Ribosome Subunits, Small, Bacterial/chemistry/metabolism/ultrastructure ; Ribosomes/*chemistry/*metabolism/ultrastructure ; Thermus thermophilus/*chemistry/genetics/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2012-04-28
    Description: In metazoans, cells depend on extracellular growth factors for energy homeostasis. We found that glycogen synthase kinase-3 (GSK3), when deinhibited by default in cells deprived of growth factors, activates acetyltransferase TIP60 through phosphorylating TIP60-Ser(86), which directly acetylates and stimulates the protein kinase ULK1, which is required for autophagy. Cells engineered to express TIP60(S86A) that cannot be phosphorylated by GSK3 could not undergo serum deprivation-induced autophagy. An acetylation-defective mutant of ULK1 failed to rescue autophagy in ULK1(-/-) mouse embryonic fibroblasts. Cells used signaling from GSK3 to TIP60 and ULK1 to regulate autophagy when deprived of serum but not glucose. These findings uncover an activating pathway that integrates protein phosphorylation and acetylation to connect growth factor deprivation to autophagy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, Shu-Yong -- Li, Terytty Yang -- Liu, Qing -- Zhang, Cixiong -- Li, Xiaotong -- Chen, Yan -- Zhang, Shi-Meng -- Lian, Guili -- Liu, Qi -- Ruan, Ka -- Wang, Zhen -- Zhang, Chen-Song -- Chien, Kun-Yi -- Wu, Jiawei -- Li, Qinxi -- Han, Jiahuai -- Lin, Sheng-Cai -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):477-81. doi: 10.1126/science.1217032.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539723" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Autophagy ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Serum-Free ; Glucose/metabolism ; Glycogen Synthase Kinase 3/genetics/*metabolism ; HEK293 Cells ; Histone Acetyltransferases/genetics/*metabolism ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; Intracellular Signaling Peptides and Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Rats ; *Signal Transduction ; Trans-Activators/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2012-06-30
    Description: Influenza A virus (IAV) infection leads to variable and imperfectly understood pathogenicity. We report that segment 3 of the virus contains a second open reading frame ("X-ORF"), accessed via ribosomal frameshifting. The frameshift product, termed PA-X, comprises the endonuclease domain of the viral PA protein with a C-terminal domain encoded by the X-ORF and functions to repress cellular gene expression. PA-X also modulates IAV virulence in a mouse infection model, acting to decrease pathogenicity. Loss of PA-X expression leads to changes in the kinetics of the global host response, which notably includes increases in inflammatory, apoptotic, and T lymphocyte-signaling pathways. Thus, we have identified a previously unknown IAV protein that modulates the host response to infection, a finding with important implications for understanding IAV pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jagger, B W -- Wise, H M -- Kash, J C -- Walters, K-A -- Wills, N M -- Xiao, Y-L -- Dunfee, R L -- Schwartzman, L M -- Ozinsky, A -- Bell, G L -- Dalton, R M -- Lo, A -- Efstathiou, S -- Atkins, J F -- Firth, A E -- Taubenberger, J K -- Digard, P -- 073126/Wellcome Trust/United Kingdom -- 088789/Wellcome Trust/United Kingdom -- G0700815/Medical Research Council/United Kingdom -- G0700815(82260)/Medical Research Council/United Kingdom -- G9800943/Medical Research Council/United Kingdom -- MR/J002232/1/Medical Research Council/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):199-204. doi: 10.1126/science.1222213. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Codon ; Conserved Sequence ; Female ; *Frameshifting, Ribosomal ; Gene Expression Regulation ; Genome, Viral ; HEK293 Cells ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/growth & development/pathogenicity ; Influenza A virus/*genetics/metabolism ; Lung/pathology/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; *Open Reading Frames ; Orthomyxoviridae Infections/genetics/immunology/pathology/*virology ; Protein Interaction Domains and Motifs ; Proteome ; RNA Replicase/chemistry/*genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Viral/genetics/metabolism ; Reassortant Viruses/genetics ; Repressor Proteins/chemistry/*genetics/*metabolism ; Viral Nonstructural Proteins/chemistry/*genetics/*metabolism ; Viral Proteins/biosynthesis/chemistry/*genetics/*metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2012-06-02
    Description: Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Tingting -- Liu, Zixu -- Song, Chuanjun -- Hu, Yunfei -- Han, Zhifu -- She, Ji -- Fan, Fangfang -- Wang, Jiawei -- Jin, Changwen -- Chang, Junbiao -- Zhou, Jian-Min -- Chai, Jijie -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1160-4. doi: 10.1126/science.1218867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22654057" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylglucosamine/chemistry/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/immunology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Chitin/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Phosphorylation ; Plants, Genetically Modified ; Protein Multimerization ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*chemistry/genetics/*metabolism ; Receptors, Pattern Recognition/*chemistry/genetics/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2012-11-01
    Description: Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3507442/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Richard C -- Wei, Yongjie -- An, Zhenyi -- Zou, Zhongju -- Xiao, Guanghua -- Bhagat, Govind -- White, Michael -- Reichelt, Julia -- Levine, Beth -- K08 CA164047/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA071443/CA/NCI NIH HHS/ -- R01 CA084254/CA/NCI NIH HHS/ -- R01 CA109618/CA/NCI NIH HHS/ -- R01 CA129451/CA/NCI NIH HHS/ -- R01 CA84254-S1/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Nov 16;338(6109):956-9. doi: 10.1126/science.1225967. Epub 2012 Oct 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23112296" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis Regulatory Proteins/genetics/*metabolism ; *Autophagy ; Cell Line, Tumor ; Cell Transformation, Neoplastic/genetics/*metabolism ; Fibroblasts/metabolism/pathology ; HeLa Cells ; Humans ; Membrane Proteins/genetics/*metabolism ; Mice ; Phosphorylation ; Proto-Oncogene Proteins c-akt/genetics/*metabolism ; RNA, Small Interfering/genetics ; Rats ; Transduction, Genetic ; Vimentin/genetics ; Xenograft Model Antitumor Assays
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2012-09-01
    Description: Soil microbiota represent one of the ancient evolutionary origins of antibiotic resistance and have been proposed as a reservoir of resistance genes available for exchange with clinical pathogens. Using a high-throughput functional metagenomic approach in conjunction with a pipeline for the de novo assembly of short-read sequence data from functional selections (termed PARFuMS), we provide evidence for recent exchange of antibiotic resistance genes between environmental bacteria and clinical pathogens. We describe multidrug-resistant soil bacteria containing resistance cassettes against five classes of antibiotics (beta-lactams, aminoglycosides, amphenicols, sulfonamides, and tetracyclines) that have perfect nucleotide identity to genes from diverse human pathogens. This identity encompasses noncoding regions as well as multiple mobilization sequences, offering not only evidence of lateral exchange but also a mechanism by which antibiotic resistance disseminates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070369/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Forsberg, Kevin J -- Reyes, Alejandro -- Wang, Bin -- Selleck, Elizabeth M -- Sommer, Morten O A -- Dantas, Gautam -- T32 GM007067/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1107-11. doi: 10.1126/science.1220761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936781" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Anti-Bacterial Agents/*pharmacology ; Bacteria/*drug effects/*genetics/pathogenicity ; Base Sequence ; Drug Resistance, Multiple, Bacterial/*genetics ; High-Throughput Screening Assays ; Humans ; Metagenome/*drug effects/*genetics ; Metagenomics ; Molecular Sequence Data ; *Soil Microbiology ; Sulfonamides/pharmacology ; Tetracyclines/pharmacology ; beta-Lactams/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2012-08-28
    Description: Plants possess arrays of functionally diverse specialized metabolites, many of which are distributed taxonomically. Here, we describe the evolution of a class of substituted alpha-pyrone metabolites in Arabidopsis, which we have named arabidopyrones. The biosynthesis of arabidopyrones requires a cytochrome P450 enzyme (CYP84A4) to generate the catechol-substituted substrate for an extradiol ring-cleavage dioxygenase (AtLigB). Unlike other ring-cleavage-derived plant metabolites made from tyrosine, arabidopyrones are instead derived from phenylalanine through the early steps of phenylpropanoid metabolism. Whereas CYP84A4, an Arabidopsis-specific paralog of the lignin-biosynthetic enzyme CYP84A1, has neofunctionalized relative to its ancestor, AtLigB homologs are widespread among land plants and many bacteria. This study exemplifies the rapid evolution of a biochemical pathway formed by the addition of a new biological activity into an existing metabolic infrastructure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weng, Jing-Ke -- Li, Yi -- Mo, Huaping -- Chapple, Clint -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):960-4. doi: 10.1126/science.1221614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923580" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/enzymology/genetics/*metabolism ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Biosynthetic Pathways ; Catalytic Domain ; Cytochrome P-450 Enzyme System/chemistry/genetics/*metabolism ; Dioxygenases/genetics/metabolism ; Evolution, Molecular ; Gene Duplication ; Genome, Plant ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phenylalanine/metabolism ; Phylogeny ; Plant Stems/metabolism ; Plants, Genetically Modified ; Pyrones/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2012-03-03
    Description: It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trondelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andoya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parducci, Laura -- Jorgensen, Tina -- Tollefsrud, Mari Mette -- Elverland, Ellen -- Alm, Torbjorn -- Fontana, Sonia L -- Bennett, K D -- Haile, James -- Matetovici, Irina -- Suyama, Yoshihisa -- Edwards, Mary E -- Andersen, Kenneth -- Rasmussen, Morten -- Boessenkool, Sanne -- Coissac, Eric -- Brochmann, Christian -- Taberlet, Pierre -- Houmark-Nielsen, Michael -- Larsen, Nicolaj Krog -- Orlando, Ludovic -- Gilbert, M Thomas P -- Kjaer, Kurt H -- Alsos, Inger Greve -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Mar 2;335(6072):1083-6. doi: 10.1126/science.1216043.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22383845" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA, Chloroplast/genetics ; DNA, Mitochondrial/genetics ; *Ecosystem ; Europe ; *Fossils ; Geologic Sediments ; Haplotypes ; *Ice Cover ; Molecular Sequence Data ; Mutation ; Norway ; *Picea/genetics ; *Pinus/genetics ; Scandinavian and Nordic Countries ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2012-10-23
    Description: Growing RNA chains fold cotranscriptionally as they are synthesized by RNA polymerase. Riboswitches, which regulate gene expression by adopting alternative RNA folds, are sensitive to cotranscriptional events. We developed an optical-trapping assay to follow the cotranscriptional folding of a nascent RNA and used it to monitor individual transcripts of the pbuE adenine riboswitch, visualizing distinct folding transitions. We report a particular folding signature for the riboswitch aptamer whose presence directs the gene-regulatory transcription outcome, and we measured the termination frequency as a function of adenine level and tension applied to the RNA. Our results demonstrate that the outcome is kinetically controlled. These experiments furnish a means to observe conformational switching in real time and enable the precise mapping of events during cotranscriptional folding.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496414/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Frieda, Kirsten L -- Block, Steven M -- R37 GM057035/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):397-400. doi: 10.1126/science.1225722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biophysics Program, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23087247" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/*chemistry/metabolism ; Bacillus subtilis/genetics ; Base Sequence ; Kinetics ; Molecular Sequence Data ; *Optical Tweezers ; *RNA Folding ; Riboswitch/*genetics ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2012-03-10
    Description: We have identified tens of thousands of short extrachromosomal circular DNAs (microDNA) in mouse tissues as well as mouse and human cell lines. These microDNAs are 200 to 400 base pairs long, are derived from unique nonrepetitive sequence, and are enriched in the 5'-untranslated regions of genes, exons, and CpG islands. Chromosomal loci that are enriched sources of microDNA in the adult brain are somatically mosaic for microdeletions that appear to arise from the excision of microDNAs. Germline microdeletions identified by the "Thousand Genomes" project may also arise from the excision of microDNAs in the germline lineage. We have thus identified a previously unknown DNA entity in mammalian cells and provide evidence that their generation leaves behind deletions in different genomic loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703515/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shibata, Yoshiyuki -- Kumar, Pankaj -- Layer, Ryan -- Willcox, Smaranda -- Gagan, Jeffrey R -- Griffith, Jack D -- Dutta, Anindya -- ES013773/ES/NIEHS NIH HHS/ -- GM31819/GM/NIGMS NIH HHS/ -- GM84465/GM/NIGMS NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- R01 CA060499/CA/NCI NIH HHS/ -- R01 CA060499-18/CA/NCI NIH HHS/ -- R01 CA60499/CA/NCI NIH HHS/ -- R01 ES013773/ES/NIEHS NIH HHS/ -- R01 GM031819/GM/NIGMS NIH HHS/ -- R01 GM084465/GM/NIGMS NIH HHS/ -- R01 GM084465-04/GM/NIGMS NIH HHS/ -- T32 GM008136/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 6;336(6077):82-6. doi: 10.1126/science.1213307. Epub 2012 Mar 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403181" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions ; Animals ; Base Pairing ; Base Sequence ; Brain/*embryology ; Brain Chemistry ; Cell Line ; Cell Line, Tumor ; *Chromosome Deletion ; Chromosomes, Human/*genetics ; Chromosomes, Mammalian/*genetics ; CpG Islands ; DNA Replication ; *DNA, Circular/analysis/chemistry/isolation & purification/metabolism ; Exons ; Germ Cells/chemistry ; Heart/embryology ; Humans ; Liver/chemistry/embryology ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Molecular Sequence Data ; Polymerase Chain Reaction ; Repetitive Sequences, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-12-15
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2012 Dec 14;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23239709" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/chemistry/genetics/*metabolism ; Base Sequence ; Capsicum/microbiology ; Deoxyribonucleases/chemistry/genetics/*metabolism ; Gene Targeting/*methods ; Genetic Engineering/*methods ; Genome ; Humans ; Malus/microbiology ; Protein Conformation ; Trans-Activators/chemistry/genetics/*metabolism ; Virulence Factors/chemistry/genetics/*metabolism ; Xanthomonas/genetics/*metabolism/pathogenicity ; *Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook-Deegan, Robert -- P50 HG003391/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Nov 9;338(6108):745-7. doi: 10.1126/science.1229854.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA. bob.cd@duke.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23139317" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Dna ; *Genes ; Genes, BRCA1 ; Genes, BRCA2 ; Humans ; Inventions ; Patents as Topic/*legislation & jurisprudence ; *Supreme Court Decisions ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2012-01-17
    Description: Innate immune responses are vital for pathogen defense but can result in septic shock when excessive. A key mediator of septic shock is tumor necrosis factor-alpha (TNFalpha), which is shed from the plasma membrane after cleavage by the TNFalpha convertase (TACE). We report that the rhomboid family member iRhom2 interacted with TACE and regulated TNFalpha shedding. iRhom2 was critical for TACE maturation and trafficking to the cell surface in hematopoietic cells. Gene-targeted iRhom2-deficient mice showed reduced serum TNFalpha in response to lipopolysaccharide (LPS) and could survive a lethal LPS dose. Furthermore, iRhom2-deficient mice failed to control the replication of Listeria monocytogenes. Our study has identified iRhom2 as a regulator of innate immunity that may be an important target for modulating sepsis and pathogen defense.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250273/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McIlwain, David R -- Lang, Philipp A -- Maretzky, Thorsten -- Hamada, Koichi -- Ohishi, Kazuhito -- Maney, Sathish Kumar -- Berger, Thorsten -- Murthy, Aditya -- Duncan, Gordon -- Xu, Haifeng C -- Lang, Karl S -- Haussinger, Dieter -- Wakeham, Andrew -- Itie-Youten, Annick -- Khokha, Rama -- Ohashi, Pamela S -- Blobel, Carl P -- Mak, Tak W -- GM64750/GM/NIGMS NIH HHS/ -- R01 GM064750/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jan 13;335(6065):229-32. doi: 10.1126/science.1214448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Campell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network (UHN), 620 University Avenue, Toronto, Ontario M5G 2C1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22246778" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/*metabolism ; Amino Acid Sequence ; Animals ; B-Lymphocytes/immunology/metabolism ; Base Sequence ; Carrier Proteins/chemistry/genetics/*metabolism ; Cell Line ; Cell Membrane/metabolism ; Gene Deletion ; *Immunity, Innate ; Lipopolysaccharides/*immunology ; Listeria monocytogenes/immunology/physiology ; Listeriosis/*immunology/metabolism/microbiology/pathology ; Macrophages/immunology/metabolism ; Macrophages, Peritoneal/immunology/metabolism/microbiology ; Mice ; Molecular Sequence Data ; Protein Transport ; Shock, Septic/*immunology/metabolism ; Spleen/cytology ; Tumor Necrosis Factor-alpha/blood/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2012-04-28
    Description: Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Couradeau, Estelle -- Benzerara, Karim -- Gerard, Emmanuelle -- Moreira, David -- Bernard, Sylvain -- Brown, Gordon E Jr -- Lopez-Garcia, Purificacion -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):459-62. doi: 10.1126/science.1216171.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Mineralogie et de Physique de la Matiere Condensee, CNRS UMR 7590, Universite Pierre et Marie Curie, Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539718" target="_blank"〉PubMed〈/a〉
    Keywords: Barium/analysis ; Base Sequence ; *Biofilms ; Calcification, Physiologic ; Calcium/analysis ; Calcium Carbonate/*analysis ; Carbonates/*analysis/metabolism ; Chemical Precipitation ; Cyanobacteria/classification/*isolation & purification/*physiology/ultrastructure ; Genes, Bacterial ; Genes, rRNA ; Inclusion Bodies/*chemistry/*ultrastructure ; Lakes/*microbiology ; Magnesium/analysis ; Mexico ; Molecular Sequence Data ; Phylogeny ; Strontium/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2012-08-11
    Description: Cells reuse signaling proteins in multiple pathways, raising the potential for improper cross talk. Scaffold proteins are thought to insulate against such miscommunication by sequestering proteins into distinct physical complexes. We show that the scaffold protein Ste5, which organizes the yeast mating mitogen-activated protein kinase (MAPK) pathway, does not use sequestration to prevent misactivation of the mating response. Instead, Ste5 appears to use a conformation mechanism: Under basal conditions, an intramolecular interaction of the pleckstrin homology (PH) domain with the von Willebrand type A (VWA) domain blocks the ability to coactivate the mating-specific MAPK Fus3. Pheromone-induced membrane binding of Ste5 triggers release of this autoinhibition. Thus, in addition to serving as a conduit guiding kinase communication, Ste5 directly receives input information to decide if and when signal can be transmitted to mating output.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalatan, Jesse G -- Coyle, Scott M -- Rajan, Saravanan -- Sidhu, Sachdev S -- Lim, Wendell A -- MOPS-93725/Canadian Institutes of Health Research/Canada -- P41 RR001614/RR/NCRR NIH HHS/ -- P50 GM081879/GM/NIGMS NIH HHS/ -- PN2 EY016546/EY/NEI NIH HHS/ -- R01 GM055040/GM/NIGMS NIH HHS/ -- R01 GM55040/GM/NIGMS NIH HHS/ -- R01 GM62583/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1218-22. doi: 10.1126/science.1220683. Epub 2012 Aug 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22878499" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/antagonists & ; inhibitors/*chemistry/*metabolism ; Enzyme Activation ; MAP Kinase Kinase Kinases/metabolism ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/metabolism ; Mitogen-Activated Protein Kinases/*metabolism ; Models, Biological ; Phosphorylation ; Protein Conformation ; Protein Interaction Domains and Motifs ; Protein Kinases/metabolism ; Protein Precursors/metabolism ; Saccharomyces cerevisiae/*metabolism/physiology ; Saccharomyces cerevisiae Proteins/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2012-06-30
    Description: In different phases of the transcription cycle, RNA polymerase (Pol) II recruits various factors via its C-terminal domain (CTD), which consists of conserved heptapeptide repeats with the sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7). We show that the CTD of transcribing yeast Pol II is phosphorylated at Tyr(1), in addition to Ser(2), Thr(4), Ser(5), and Ser(7). Tyr(1) phosphorylation stimulates binding of elongation factor Spt6 and impairs recruitment of termination factors Nrd1, Pcf11, and Rtt103. Tyr(1) phosphorylation levels rise downstream of the transcription start site and decrease before the polyadenylation site, largely excluding termination factors from gene bodies. These results show that CTD modifications trigger and block factor recruitment and lead to an extended CTD code that explains transcription cycle coordination on the basis of differential phosphorylation of Tyr(1), Ser(2), and Ser(5).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayer, Andreas -- Heidemann, Martin -- Lidschreiber, Michael -- Schreieck, Amelie -- Sun, Mai -- Hintermair, Corinna -- Kremmer, Elisabeth -- Eick, Dirk -- Cramer, Patrick -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1723-5. doi: 10.1126/science.1219651.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745433" target="_blank"〉PubMed〈/a〉
    Keywords: Catalytic Domain ; Chromatin Immunoprecipitation ; HeLa Cells ; Humans ; Peptide Termination Factors/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; RNA Polymerase II/*metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins/metabolism ; Transcriptional Elongation Factors/metabolism ; Tyrosine/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2012-12-22
    Description: Most mammalian genes produce multiple distinct messenger RNAs through alternative splicing, but the extent of splicing conservation is not clear. To assess tissue-specific transcriptome variation across mammals, we sequenced complementary DNA from nine tissues from four mammals and one bird in biological triplicate, at unprecedented depth. We find that while tissue-specific gene expression programs are largely conserved, alternative splicing is well conserved in only a subset of tissues and is frequently lineage-specific. Thousands of previously unknown, lineage-specific, and conserved alternative exons were identified; widely conserved alternative exons had signatures of binding by MBNL, PTB, RBFOX, STAR, and TIA family splicing factors, implicating them as ancestral mammalian splicing regulators. Our data also indicate that alternative splicing often alters protein phosphorylatability, delimiting the scope of kinase signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568499/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merkin, Jason -- Russell, Caitlin -- Chen, Ping -- Burge, Christopher B -- OD011092/OD/NIH HHS/ -- R01 HG002439/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 21;338(6114):1593-9. doi: 10.1126/science.1228186.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23258891" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Animals ; Biological Evolution ; Cattle ; Chickens ; Conserved Sequence ; DNA, Complementary ; DNA-Binding Proteins/metabolism ; *Evolution, Molecular ; Exons ; Gene Expression Profiling ; *Gene Expression Regulation ; Introns ; Macaca mulatta ; Male ; Mammals/*genetics ; Mice ; Models, Genetic ; Phosphorylation ; Phylogeny ; Protein Isoforms/chemistry/*genetics/metabolism ; Protein Kinases/genetics/metabolism ; RNA Splice Sites ; RNA Splicing ; RNA-Binding Proteins/metabolism ; Rats ; Sequence Analysis, DNA ; *Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2012-08-28
    Description: The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561468/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Previs, M J -- Beck Previs, S -- Gulick, J -- Robbins, J -- Warshaw, D M -- 8P20GM103449/GM/NIGMS NIH HHS/ -- HL007647/HL/NHLBI NIH HHS/ -- HL059408/HL/NHLBI NIH HHS/ -- P01 HL059408/HL/NHLBI NIH HHS/ -- P20 GM103449/GM/NIGMS NIH HHS/ -- R01 HL086728/HL/NHLBI NIH HHS/ -- T32 HL007647/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 7;337(6099):1215-8. doi: 10.1126/science.1223602. Epub 2012 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22923435" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actomyosin/metabolism ; Amino Acid Motifs ; Animals ; Carrier Proteins/chemistry/*metabolism ; Mice ; Mice, Transgenic ; *Myocardial Contraction ; Myocardium/*metabolism/ultrastructure ; Myofibrils/*metabolism ; Myosins/*metabolism ; Phosphorylation ; Proteolysis ; Sarcomeres/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2012-09-01
    Description: Ethylene gas is essential for many developmental processes and stress responses in plants. ETHYLENE INSENSITIVE2 (EIN2), an NRAMP-like integral membrane protein, plays an essential role in ethylene signaling, but its function remains enigmatic. Here we report that phosphorylation-regulated proteolytic processing of EIN2 triggers its endoplasmic reticulum (ER)-to-nucleus translocation. ER-tethered EIN2 shows CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) kinase-dependent phosphorylation. Ethylene triggers dephosphorylation at several sites and proteolytic cleavage at one of these sites, resulting in nuclear translocation of a carboxyl-terminal EIN2 fragment (EIN2-C'). Mutations that mimic EIN2 dephosphorylation, or inactivate CTR1, show constitutive cleavage and nuclear localization of EIN2-C' and EIN3 and EIN3-LIKE1-dependent activation of ethylene responses. These findings uncover a mechanism of subcellular communication whereby ethylene stimulates phosphorylation-dependent cleavage and nuclear movement of the EIN2-C' peptide, linking hormone perception and signaling components in the ER with nuclear-localized transcriptional regulators.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523706/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3523706/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiao, Hong -- Shen, Zhouxin -- Huang, Shao-shan Carol -- Schmitz, Robert J -- Urich, Mark A -- Briggs, Steven P -- Ecker, Joseph R -- F32 HG004830/HG/NHGRI NIH HHS/ -- F32-HG004830/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):390-3. doi: 10.1126/science.1225974. Epub 2012 Aug 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936567" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Arabidopsis/drug effects/*metabolism ; Arabidopsis Proteins/genetics/*metabolism ; Cell Nucleus/*metabolism ; Endoplasmic Reticulum/*metabolism ; Ethylenes/*metabolism/pharmacology ; Gases/metabolism/pharmacology ; Mutation ; Nuclear Localization Signals/genetics/metabolism ; Phosphorylation ; Protein Kinases/metabolism ; Proteolysis ; Receptors, Cell Surface/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2012-03-10
    Description: It is unknown how the composition and structure of DNA within the cell affect spontaneous mutations. Theory suggests that in eukaryotic genomes, nucleosomal DNA undergoes fewer C--〉T mutations because of suppressed cytosine hydrolytic deamination relative to nucleosome-depleted DNA. Comparative genomic analyses and a mutation accumulation experiment showed that nucleosome occupancy nearly eliminated cytosine deamination, resulting in an ~50% decrease of the C--〉T mutation rate in nucleosomal DNA. Furthermore, the rates of G--〉T and A--〉T mutations were also about twofold suppressed by nucleosomes. On the basis of these results, we conclude that nucleosome-dependent mutation spectra affect eukaryotic genome structure and evolution and may have implications for understanding the origin of mutations in cancers and in induced pluripotent stem cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Xiaoshu -- Chen, Zhidong -- Chen, Han -- Su, Zhijian -- Yang, Jianfeng -- Lin, Fangqin -- Shi, Suhua -- He, Xionglei -- New York, N.Y. -- Science. 2012 Mar 9;335(6073):1235-8. doi: 10.1126/science.1217580.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-control, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22403392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Pairing ; Base Sequence ; Caenorhabditis elegans/*genetics ; Cytosine/chemistry/metabolism ; DNA, Fungal/chemistry/genetics ; DNA, Helminth/chemistry/genetics ; DNA, Intergenic ; Deamination ; Genome, Fungal ; Germ Cells ; Models, Genetic ; *Mutation Rate ; Nucleosomes/*chemistry/*physiology ; Oryzias/embryology/*genetics ; *Point Mutation ; Polymorphism, Single Nucleotide ; Saccharomyces/genetics ; Saccharomyces cerevisiae/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2012-07-10
    Description: The bacterial isolate GFAJ-1 has been proposed to substitute arsenic for phosphorus to sustain growth. We have shown that GFAJ-1 is able to grow at low phosphate concentrations (1.7 muM), even in the presence of high concentrations of arsenate (40 mM), but lacks the ability to grow in phosphorus-depleted (〈0.3 muM), arsenate-containing medium. High-resolution mass spectrometry analyses revealed that phosphorylated central metabolites and phosphorylated nucleic acids predominated. A few arsenylated compounds, including C6 sugar arsenates, were detected in extracts of GFAJ-1, when GFAJ-1 was incubated with arsenate, but further experiments showed they formed abiotically. Inductively coupled plasma mass spectrometry confirmed the presence of phosphorus in nucleic acid extracts, while arsenic could not be detected and was below 1 per mil relative to phosphorus. Taken together, we conclude that GFAJ-1 is an arsenate-resistant, but still a phosphate-dependent, bacterium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erb, Tobias J -- Kiefer, Patrick -- Hattendorf, Bodo -- Gunther, Detlef -- Vorholt, Julia A -- New York, N.Y. -- Science. 2012 Jul 27;337(6093):467-70. doi: 10.1126/science.1218455. Epub 2012 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Microbiology, Eidgenossische Technische Hochschule Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland. toerb@ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22773139" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenates/metabolism/*pharmacology ; Arsenic/*analysis ; Culture Media/chemistry ; DNA, Bacterial/chemistry ; Drug Resistance, Bacterial ; Glycolysis ; Halomonadaceae/drug effects/*growth & development/*metabolism ; Hexosephosphates/metabolism ; Hexoses/metabolism ; Mass Spectrometry/methods ; Metabolome ; Nucleotides/metabolism ; Phosphates/analysis/*metabolism ; Phosphorus/analysis ; Phosphorylation ; RNA, Bacterial/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2012-03-17
    Description: The endosomal sorting complex required for transport (ESCRT) machinery plays an evolutionarily conserved role in cytokinetic abscission, the final step of cell division where daughter cells are physically separated. Here, we show that charged multivesicular body (MVB) protein 4C (CHMP4C), a human ESCRT-III subunit, is involved in abscission timing. This function correlated with its differential spatiotemporal distribution during late stages of cytokinesis. Accordingly, CHMP4C functioned in the Aurora B-dependent abscission checkpoint to prevent both premature resolution of intercellular chromosome bridges and accumulation of DNA damage. CHMP4C engaged the chromosomal passenger complex (CPC) via interaction with Borealin, which suggested a model whereby CHMP4C inhibits abscission upon phosphorylation by Aurora B. Thus, the ESCRT machinery may protect against genetic damage by coordinating midbody resolution with the abscission checkpoint.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carlton, Jeremy G -- Caballe, Anna -- Agromayor, Monica -- Kloc, Magdalena -- Martin-Serrano, Juan -- 092429/Z/10/Z/Wellcome Trust/United Kingdom -- 093056/Wellcome Trust/United Kingdom -- G0802777/Medical Research Council/United Kingdom -- WT093056MA/Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):220-5. doi: 10.1126/science.1217180. Epub 2012 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Diseases, King's College London School of Medicine, London, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422861" target="_blank"〉PubMed〈/a〉
    Keywords: Aurora Kinase B ; Aurora Kinases ; Cell Cycle Checkpoints ; Cell Cycle Proteins/metabolism ; Cell Line ; Chromosomes, Human/metabolism ; *Cytokinesis ; DNA Damage ; Endosomal Sorting Complexes Required for Transport/*metabolism ; Endosomes/metabolism ; HeLa Cells ; Histocompatibility Antigens Class I/metabolism ; Humans ; Mitosis ; Phosphorylation ; Protein Transport ; Protein-Serine-Threonine Kinases/*metabolism ; Recombinant Fusion Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2012-09-29
    Description: Mitotic divisions result from the oscillating activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 activity is terminated by the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets cyclin B for destruction. In somatic divisions, the early mitotic inhibitor 1 (Emi1) and the spindle assembly checkpoint (SAC) regulate cell cycle progression by inhibiting the APC/C. Early embryonic divisions lack these APC/C-inhibitory components, which raises the question of how those cycles are controlled. We found that the APC/C-inhibitory activity of XErp1 (also known as Emi2) was essential for early divisions in Xenopus embryos. Loss of XErp1 resulted in untimely destruction of APC/C substrates and embryonic lethality. XErp1's APC/C-inhibitory function was negatively regulated by Cdk1 and positively by protein phosphatase 2A (PP2A). Thus, Cdk1 and PP2A operate at the core of early mitotic cell cycles by antagonistically controlling XErp1 activity, which results in oscillating APC/C activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tischer, Thomas -- Hormanseder, Eva -- Mayer, Thomas U -- New York, N.Y. -- Science. 2012 Oct 26;338(6106):520-4. doi: 10.1126/science.1228394. Epub 2012 Sep 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitatsstr. 10, 78457 Konstanz, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019610" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome ; Animals ; CDC2 Protein Kinase/metabolism ; Embryo, Nonmammalian/*cytology/enzymology ; F-Box Proteins/antagonists & inhibitors/genetics/*metabolism ; Mitosis/genetics/*physiology ; Phosphorylation ; Protein Phosphatase 2/metabolism ; Ubiquitin-Protein Ligase Complexes/antagonists & inhibitors/*metabolism ; Xenopus Proteins/antagonists & inhibitors/genetics/*metabolism ; Xenopus laevis/*embryology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-05-19
    Description: Cells must balance the cost and benefit of protein expression to optimize organismal fitness. The lac operon of the bacterium Escherichia coli has been a model for quantifying the physiological impact of costly protein production and for elucidating the resulting regulatory mechanisms. We report quantitative fitness measurements in 27 redesigned operons that suggested that protein production is not the primary origin of fitness costs. Instead, we discovered that the lac permease activity, which relates linearly to cost, is the major physiological burden to the cell. These findings explain control points in the lac operon that minimize the cost of lac permease activity, not protein expression. Characterizing similar relationships in other systems will be important to map the impact of cost/benefit tradeoffs on cell physiology and regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eames, Matt -- Kortemme, Tanja -- New York, N.Y. -- Science. 2012 May 18;336(6083):911-5. doi: 10.1126/science.1219083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Group in Biophysics, MC 2530, University of California, San Francisco, CA 94158-2330, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22605776" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Biological Transport ; Escherichia coli/*genetics/growth & development/metabolism ; Escherichia coli Proteins/*genetics/*metabolism ; Gene Expression Regulation, Bacterial ; Gene Knockout Techniques ; Genetic Engineering ; Isopropyl Thiogalactoside/metabolism ; *Lac Operon ; Lac Repressors ; Lactose/metabolism ; Models, Biological ; Molecular Sequence Data ; Monosaccharide Transport Proteins/*genetics/*metabolism ; Mutation ; Symporters/*genetics/*metabolism ; beta-Galactosidase/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2012-06-30
    Description: Transposable elements (TEs) are abundant in the human genome, and some are capable of generating new insertions through RNA intermediates. In cancer, the disruption of cellular mechanisms that normally suppress TE activity may facilitate mutagenic retrotranspositions. We performed single-nucleotide resolution analysis of TE insertions in 43 high-coverage whole-genome sequencing data sets from five cancer types. We identified 194 high-confidence somatic TE insertions, as well as thousands of polymorphic TE insertions in matched normal genomes. Somatic insertions were present in epithelial tumors but not in blood or brain cancers. Somatic L1 insertions tend to occur in genes that are commonly mutated in cancer, disrupt the expression of the target genes, and are biased toward regions of cancer-specific DNA hypomethylation, highlighting their potential impact in tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656569/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656569/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eunjung -- Iskow, Rebecca -- Yang, Lixing -- Gokcumen, Omer -- Haseley, Psalm -- Luquette, Lovelace J 3rd -- Lohr, Jens G -- Harris, Christopher C -- Ding, Li -- Wilson, Richard K -- Wheeler, David A -- Gibbs, Richard A -- Kucherlapati, Raju -- Lee, Charles -- Kharchenko, Peter V -- Park, Peter J -- Cancer Genome Atlas Research Network -- F32 AG039979/AG/NIA NIH HHS/ -- F32AG039979/AG/NIA NIH HHS/ -- K25 AG037596/AG/NIA NIH HHS/ -- K25AG037596/AG/NIA NIH HHS/ -- R01 GM082798/GM/NIGMS NIH HHS/ -- R01GM082798/GM/NIGMS NIH HHS/ -- RC1HG005482/HG/NHGRI NIH HHS/ -- T32 CA009172/CA/NCI NIH HHS/ -- U01 HG005725/HG/NHGRI NIH HHS/ -- U01HG005209/HG/NHGRI NIH HHS/ -- U01HG005725/HG/NHGRI NIH HHS/ -- U24 CA144025/CA/NCI NIH HHS/ -- U24CA144025/CA/NCI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2012 Aug 24;337(6097):967-71. doi: 10.1126/science.1222077. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745252" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/*genetics ; DNA Methylation ; Female ; Gene Expression Regulation, Neoplastic ; Genes, Neoplasm ; Genome, Human ; Glioblastoma/*genetics ; Humans ; Long Interspersed Nucleotide Elements ; Male ; Microsatellite Instability ; Molecular Sequence Annotation ; Molecular Sequence Data ; Multiple Myeloma/*genetics ; Mutagenesis, Insertional ; Mutation ; Ovarian Neoplasms/*genetics ; Prostatic Neoplasms/*genetics ; *Retroelements ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2012-04-14
    Description: Withdrawal of nutrients triggers an exit from the cell division cycle, the induction of autophagy, and eventually the activation of cell death pathways. The relation, if any, among these events is not well characterized. We found that starved mouse embryonic fibroblasts lacking the essential autophagy gene product Atg7 failed to undergo cell cycle arrest. Independent of its E1-like enzymatic activity, Atg7 could bind to the tumor suppressor p53 to regulate the transcription of the gene encoding the cell cycle inhibitor p21(CDKN1A). With prolonged metabolic stress, the absence of Atg7 resulted in augmented DNA damage with increased p53-dependent apoptosis. Inhibition of the DNA damage response by deletion of the protein kinase Chk2 partially rescued postnatal lethality in Atg7(-/-) mice. Thus, when nutrients are limited, Atg7 regulates p53-dependent cell cycle and cell death pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721513/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4721513/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, In Hye -- Kawai, Yoshichika -- Fergusson, Maria M -- Rovira, Ilsa I -- Bishop, Alexander J R -- Motoyama, Noboru -- Cao, Liu -- Finkel, Toren -- Z01 HL005012-12/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):225-8. doi: 10.1126/science.1218395.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Medicine, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22499945" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Autophagy ; Cell Cycle ; Cell Cycle Checkpoints ; Cell Line, Tumor ; Cells, Cultured ; Checkpoint Kinase 2 ; Cyclin-Dependent Kinase Inhibitor p21/genetics ; DNA Damage ; Gene Expression Regulation ; Humans ; Mice ; Microtubule-Associated Proteins/genetics/*metabolism ; Phosphorylation ; Promoter Regions, Genetic ; Protein Binding ; Protein Multimerization ; Protein-Serine-Threonine Kinases/genetics ; *Stress, Physiological ; Transcription, Genetic ; Tumor Suppressor Protein p53/*metabolism ; Ubiquitin-Activating Enzymes/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2012-03-31
    Description: Transcription termination is emerging as an important component of gene regulation necessary to partition the genome and minimize transcriptional interference. We have discovered a role for the Arabidopsis RNA silencing enzyme DICER-LIKE 4 (DCL4) in transcription termination of an endogenous Arabidopsis gene, FCA. DCL4 directly associates with FCA chromatin in the 3' region and promotes cleavage of the nascent transcript in a domain downstream of the canonical polyA site. In a dcl4 mutant, the resulting transcriptional read-through triggers an RNA interference-mediated gene silencing of a transgene containing the same 3' region. We conclude that DCL4 promotes transcription termination of the Arabidopsis FCA gene, reducing the amount of aberrant RNA produced from the locus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Fuquan -- Bakht, Saleha -- Dean, Caroline -- BB/D010799/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G01406X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2012 Mar 30;335(6076):1621-3. doi: 10.1126/science.1214402.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22461611" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/*genetics/metabolism ; Base Sequence ; Chromatin/genetics/metabolism ; Chromatin Immunoprecipitation ; *Gene Expression Regulation, Plant ; MADS Domain Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Polyadenylation ; Protein Structure, Tertiary ; RNA Interference ; RNA, Messenger/genetics/metabolism ; RNA, Plant/*genetics/metabolism ; RNA-Binding Proteins/*genetics/metabolism ; Ribonuclease III/chemistry/genetics/*metabolism ; *Transcription, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2012-03-17
    Description: To study the evolution of recombination rates in apes, we developed methodology to construct a fine-scale genetic map from high-throughput sequence data from 10 Western chimpanzees, Pan troglodytes verus. Compared to the human genetic map, broad-scale recombination rates tend to be conserved, but with exceptions, particularly in regions of chromosomal rearrangements and around the site of ancestral fusion in human chromosome 2. At fine scales, chimpanzee recombination is dominated by hotspots, which show no overlap with those of humans even though rates are similarly elevated around CpG islands and decreased within genes. The hotspot-specifying protein PRDM9 shows extensive variation among Western chimpanzees, and there is little evidence that any sequence motifs are enriched in hotspots. The contrasting locations of hotspots provide a natural experiment, which demonstrates the impact of recombination on base composition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532813/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532813/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Auton, Adam -- Fledel-Alon, Adi -- Pfeifer, Susanne -- Venn, Oliver -- Segurel, Laure -- Street, Teresa -- Leffler, Ellen M -- Bowden, Rory -- Aneas, Ivy -- Broxholme, John -- Humburg, Peter -- Iqbal, Zamin -- Lunter, Gerton -- Maller, Julian -- Hernandez, Ryan D -- Melton, Cord -- Venkat, Aarti -- Nobrega, Marcelo A -- Bontrop, Ronald -- Myers, Simon -- Donnelly, Peter -- Przeworski, Molly -- McVean, Gil -- 076113/E/04/Z/Wellcome Trust/United Kingdom -- 086084/Wellcome Trust/United Kingdom -- 086084/Z/08/Z/Wellcome Trust/United Kingdom -- 086786/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 GM83098/GM/NIGMS NIH HHS/ -- R01 HG004428/HG/NHGRI NIH HHS/ -- T32 GM007197/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Apr 13;336(6078):193-8. doi: 10.1126/science.1216872. Epub 2012 Mar 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Centre for Human Genetics, Oxford , UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22422862" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosome Mapping ; Chromosomes, Human, Pair 2/genetics ; Chromosomes, Mammalian/*genetics ; CpG Islands ; Evolution, Molecular ; Female ; Genetic Variation ; Haplotypes ; High-Throughput Nucleotide Sequencing ; Histone-Lysine N-Methyltransferase/genetics ; Humans ; Male ; Pan troglodytes/*genetics ; Polymorphism, Single Nucleotide ; *Recombination, Genetic ; Sequence Analysis, DNA ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2012-09-01
    Description: The classical view of DNA posits that DNA must be stiff below the persistence length [〈150 base pairs (bp)], but recent studies addressing this have yielded contradictory results. We developed a fluorescence-based, protein-free assay for studying the cyclization of single DNA molecules in real time. The assay samples the equilibrium population of a sharply bent, transient species that is entirely suppressed in single-molecule mechanical measurements and is biologically more relevant than the annealed species sampled in the traditional ligase-based assay. The looping rate has a weak length dependence between 67 and 106 bp that cannot be described by the worm-like chain model. Many biologically important protein-DNA interactions that involve looping and bending of DNA below 100 bp likely use this intrinsic bendability of DNA.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565842/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565842/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vafabakhsh, Reza -- Ha, Taekjip -- GM065367/GM/NIGMS NIH HHS/ -- R01 GM065367/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1097-101. doi: 10.1126/science.1224139.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936778" target="_blank"〉PubMed〈/a〉
    Keywords: Avidin/chemistry ; Base Sequence ; Biotin/chemistry ; Cyclization ; DNA, Circular/*chemistry ; Fluorescence ; Fluorescence Resonance Energy Transfer/*methods ; *Nucleic Acid Conformation ; Polyethylene Glycols/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2012-06-30
    Description: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jinek, Martin -- Chylinski, Krzysztof -- Fonfara, Ines -- Hauer, Michael -- Doudna, Jennifer A -- Charpentier, Emmanuelle -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Aug 17;337(6096):816-21. doi: 10.1126/science.1225829. Epub 2012 Jun 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745249" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/*immunology ; Base Sequence ; *DNA Breaks, Double-Stranded ; *DNA Cleavage ; Deoxyribonucleases, Type II Site-Specific/chemistry/genetics/*metabolism ; *Inverted Repeat Sequences ; Molecular Sequence Data ; Nucleic Acid Conformation ; Plasmids/metabolism ; RNA/chemistry/*metabolism ; Streptococcus pyogenes/*enzymology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2012-09-08
    Description: Autism spectrum disorders are a genetically heterogeneous constellation of syndromes characterized by impairments in reciprocal social interaction. Available somatic treatments have limited efficacy. We have identified inactivating mutations in the gene BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) in consanguineous families with autism, epilepsy, and intellectual disability. The encoded protein is responsible for phosphorylation-mediated inactivation of the E1alpha subunit of branched-chain ketoacid dehydrogenase (BCKDH). Patients with homozygous BCKDK mutations display reductions in BCKDK messenger RNA and protein, E1alpha phosphorylation, and plasma branched-chain amino acids. Bckdk knockout mice show abnormal brain amino acid profiles and neurobehavioral deficits that respond to dietary supplementation. Thus, autism presenting with intellectual disability and epilepsy caused by BCKDK mutations represents a potentially treatable syndrome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3704165/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Novarino, Gaia -- El-Fishawy, Paul -- Kayserili, Hulya -- Meguid, Nagwa A -- Scott, Eric M -- Schroth, Jana -- Silhavy, Jennifer L -- Kara, Majdi -- Khalil, Rehab O -- Ben-Omran, Tawfeg -- Ercan-Sencicek, A Gulhan -- Hashish, Adel F -- Sanders, Stephan J -- Gupta, Abha R -- Hashem, Hebatalla S -- Matern, Dietrich -- Gabriel, Stacey -- Sweetman, Larry -- Rahimi, Yasmeen -- Harris, Robert A -- State, Matthew W -- Gleeson, Joseph G -- K08 MH087639/MH/NIMH NIH HHS/ -- K08MH087639/MH/NIMH NIH HHS/ -- P01 HD070494/HD/NICHD NIH HHS/ -- P01HD070494/HD/NICHD NIH HHS/ -- P30 NS047101/NS/NINDS NIH HHS/ -- P30NS047101/NS/NINDS NIH HHS/ -- R01 NS041537/NS/NINDS NIH HHS/ -- R01 NS048453/NS/NINDS NIH HHS/ -- R01NS048453/NS/NINDS NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- RC2 MH089956/MH/NIMH NIH HHS/ -- RC2MH089956/MH/NIMH NIH HHS/ -- T32MH018268/MH/NIMH NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2012 Oct 19;338(6105):394-7. doi: 10.1126/science.1224631. Epub 2012 Sep 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. gnovarino@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22956686" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/*administration & ; dosage/deficiency/*genetics ; Adolescent ; Amino Acids, Branched-Chain/administration & dosage/blood/deficiency ; Animals ; Arginine/genetics ; Autistic Disorder/*diet therapy/enzymology/*genetics ; Base Sequence ; Brain/metabolism ; Child ; Child, Preschool ; Diet ; Epilepsy/*diet therapy/enzymology/*genetics ; Female ; Homozygote ; Humans ; Intellectual Disability/diet therapy/enzymology/genetics ; Male ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Pedigree ; Phosphorylation ; Protein Folding ; Protein Structure, Tertiary ; RNA, Messenger/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-18
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4340476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Franchi, Luigi -- Nunez, Gabriel -- R01 DK091191/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Sep 14;337(6100):1299-300. doi: 10.1126/science.1229010.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22984056" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CARD Signaling Adaptor Proteins/genetics/*metabolism ; Calcium-Binding Proteins/genetics/*metabolism ; Enzyme Activation ; Gram-Negative Bacteria/*immunology ; Gram-Negative Bacterial Infections/enzymology/*immunology ; Humans ; Inflammasomes/*metabolism ; Mice ; Mice, Mutant Strains ; Mutation ; Phosphorylation ; Protein Kinase C-delta/*metabolism ; Serine/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2012-09-29
    Description: Cancer cells accommodate multiple genetic and epigenetic alterations that initially activate intrinsic (cell-autonomous) and extrinsic (immune-mediated) oncosuppressive mechanisms. Only once these barriers to oncogenesis have been overcome can malignant growth proceed unrestrained. Tetraploidization can contribute to oncogenesis because hyperploid cells are genomically unstable. We report that hyperploid cancer cells become immunogenic because of a constitutive endoplasmic reticulum stress response resulting in the aberrant cell surface exposure of calreticulin. Hyperploid, calreticulin-exposing cancer cells readily proliferated in immunodeficient mice and conserved their increased DNA content. In contrast, hyperploid cells injected into immunocompetent mice generated tumors only after a delay, and such tumors exhibited reduced DNA content, endoplasmic reticulum stress, and calreticulin exposure. Our results unveil an immunosurveillance system that imposes immunoselection against hyperploidy in carcinogen- and oncogene-induced cancers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Senovilla, Laura -- Vitale, Ilio -- Martins, Isabelle -- Tailler, Maximilien -- Pailleret, Claire -- Michaud, Mickael -- Galluzzi, Lorenzo -- Adjemian, Sandy -- Kepp, Oliver -- Niso-Santano, Mireia -- Shen, Shensi -- Marino, Guillermo -- Criollo, Alfredo -- Boileve, Alice -- Job, Bastien -- Ladoire, Sylvain -- Ghiringhelli, Francois -- Sistigu, Antonella -- Yamazaki, Takahiro -- Rello-Varona, Santiago -- Locher, Clara -- Poirier-Colame, Vichnou -- Talbot, Monique -- Valent, Alexander -- Berardinelli, Francesco -- Antoccia, Antonio -- Ciccosanti, Fabiola -- Fimia, Gian Maria -- Piacentini, Mauro -- Fueyo, Antonio -- Messina, Nicole L -- Li, Ming -- Chan, Christopher J -- Sigl, Verena -- Pourcher, Guillaume -- Ruckenstuhl, Christoph -- Carmona-Gutierrez, Didac -- Lazar, Vladimir -- Penninger, Josef M -- Madeo, Frank -- Lopez-Otin, Carlos -- Smyth, Mark J -- Zitvogel, Laurence -- Castedo, Maria -- Kroemer, Guido -- New York, N.Y. -- Science. 2012 Sep 28;337(6102):1678-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INSERM, U848, Villejuif, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23019653" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calreticulin/immunology ; Cell Line, Tumor ; Common Variable Immunodeficiency/genetics ; DNA, Neoplasm/analysis/genetics ; Endoplasmic Reticulum Stress/*immunology ; Eukaryotic Initiation Factor-2/metabolism ; Humans ; Immunocompetence ; *Immunologic Surveillance ; Mice ; Mice, Inbred BALB C ; Neoplasms/chemically induced/*genetics/*immunology ; Phosphorylation ; *Ploidies
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2012-05-05
    Description: Germinal centers (GCs) generate memory B and plasma cells, which are essential for long-lived humoral immunity. GC B cells with high-affinity B cell receptors (BCRs) are selectively expanded. To enable this selection, BCRs of such cells are thought to signal differently from those with lower affinity. We show that, surprisingly, most proliferating GC B cells did not demonstrate active BCR signaling. Rather, spontaneous and induced signaling was limited by increased phosphatase activity. Accordingly, both SH2 domain-containing phosphatase-1 (SHP-1) and SH2 domain-containing inositol 5 phosphatase were hyperphosphorylated in GC cells and remained colocalized with BCRs after ligation. Furthermore, SHP-1 was required for GC maintenance. Intriguingly, GC B cells in the cell-cycle G(2) period regained responsiveness to BCR stimulation. These data have implications for how higher-affinity B cells are selected in the GC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777391/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777391/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khalil, Ashraf M -- Cambier, John C -- Shlomchik, Mark J -- AI43603/AI/NIAID NIH HHS/ -- AR44077/AR/NIAMS NIH HHS/ -- R01 AI043603/AI/NIAID NIH HHS/ -- R01 AR044077/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 1;336(6085):1178-81. doi: 10.1126/science.1213368. Epub 2012 May 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22555432" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibody Affinity ; Antigen Presentation ; Antigens/immunology ; Antigens, CD79/metabolism ; B-Lymphocytes/enzymology/*immunology/metabolism ; Calcium/metabolism ; Cell Cycle ; Down-Regulation ; Germinal Center/cytology/*immunology ; Intracellular Signaling Peptides and Proteins/metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred BALB C ; Mice, Transgenic ; Models, Immunological ; Phosphoric Monoester Hydrolases/metabolism ; Phosphorylation ; Protein Tyrosine Phosphatase, Non-Receptor Type 6/*metabolism ; Protein-Tyrosine Kinases/metabolism ; Receptors, Antigen, B-Cell/*immunology/*metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2012-05-05
    Description: Sexual conflict is thought to be a potent force driving the evolution of sexually dimorphic traits. In the water strider Rheumatobates rileyi, we show that elaborated traits on male antennae function to grasp resistant females during premating struggles. Using RNA interference, we uncovered novel roles of the gene distal-less (dll) in generating these male-specific traits. Furthermore, graded reduction of the grasping traits resulted in a graded reduction of mating success in males, thus demonstrating both selection for elaboration of the traits and the role of dll in their evolution. By establishing developmental genetic tools in model systems where sexual selection and conflict are understood, we can begin to reveal how selection can exploit ancient developmental genes to enable the evolution of sexually dimorphic traits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Khila, Abderrahman -- Abouheif, Ehab -- Rowe, Locke -- New York, N.Y. -- Science. 2012 May 4;336(6081):585-9. doi: 10.1126/science.1217258.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22556252" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arthropod Antennae/anatomy & histology/growth & development/*physiology ; Base Sequence ; Biological Evolution ; Female ; Genes, Insect ; *Genetic Fitness ; Heteroptera/anatomy & histology/*genetics/growth & development/*physiology ; Homeodomain Proteins/*genetics/metabolism ; Male ; Molecular Sequence Data ; Phenotype ; RNA Interference ; *Selection, Genetic ; Sex Characteristics ; *Sexual Behavior, Animal ; Transcription Factors/*genetics/metabolism ; Transcriptome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2012-04-28
    Description: Remodeling of immunoglobulin genes by activation-induced deaminase (AID) is required for affinity maturation and class-switch recombination in mature B lymphocytes. In the immunoglobulin heavy chain locus, these processes are predominantly controlled by the 3' cis-regulatory region. We now show that this region is transcribed and undergoes AID-mediated mutation and recombination around phylogenetically conserved switchlike DNA repeats. Such recombination, which we term locus suicide recombination, deletes the whole constant region gene cluster and thus stops expression of the immunoglobulin of the B cell surface, which is critical for B cell survival. The frequency of this event is approaching that of class switching and makes it a potential regulator of B cell homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peron, Sophie -- Laffleur, Brice -- Denis-Lagache, Nicolas -- Cook-Moreau, Jeanne -- Tinguely, Aurelien -- Delpy, Laurent -- Denizot, Yves -- Pinaud, Eric -- Cogne, Michel -- New York, N.Y. -- Science. 2012 May 18;336(6083):931-4. doi: 10.1126/science.1218692. Epub 2012 Apr 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Limoges University, CNRS, 2 rue Marcland, 87025 Limoges Cedex, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; B-Lymphocytes/immunology/*physiology ; Base Sequence ; Cell Line ; Cell Survival ; Cytidine Deaminase/*metabolism ; *Gene Deletion ; *Gene Rearrangement, B-Lymphocyte, Heavy Chain ; *Genes, Immunoglobulin Heavy Chain ; Homeostasis ; Humans ; Immunoglobulin Class Switching ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; *Recombination, Genetic ; Regulatory Sequences, Nucleic Acid ; Repetitive Sequences, Nucleic Acid ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2012-12-12
    Description: Unraveling the intricate interactions between Trypanosoma brucei, the protozoan parasite causing African trypanosomiasis, and the tsetse (Glossina) vector remains a challenge. Metacyclic trypanosomes, which inhabit the tsetse salivary glands, transmit the disease and are produced through a complex differentiation and unknown program. By overexpressing a single RNA-binding protein, TbRBP6, in cultured noninfectious trypanosomes, we recapitulated the developmental stages that have been observed in tsetse, including the generation of infective metacyclic forms expressing the variant surface glycoprotein. Thus, events leading to acquisition of infectivity in the insect vector are now accessible to laboratory investigation, providing an opening for new intervention strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kolev, Nikolay G -- Ramey-Butler, Kiantra -- Cross, George A M -- Ullu, Elisabetta -- Tschudi, Christian -- AI021729/AI/NIAID NIH HHS/ -- AI028798/AI/NIAID NIH HHS/ -- AI043594/AI/NIAID NIH HHS/ -- AI076879/AI/NIAID NIH HHS/ -- R01 AI021729/AI/NIAID NIH HHS/ -- R01 AI043594/AI/NIAID NIH HHS/ -- R21 AI076879/AI/NIAID NIH HHS/ -- R37 AI028798/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Dec 7;338(6112):1352-3. doi: 10.1126/science.1229641.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23224556" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Gene Expression Regulation ; Molecular Sequence Data ; Protozoan Proteins/genetics/*metabolism ; RNA-Binding Proteins/genetics/*metabolism ; Trypanosoma brucei brucei/genetics/*growth & development/*pathogenicity ; Tsetse Flies/*parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2012-04-28
    Description: Few data are available on how quickly free-living microorganisms evolve. We analyzed biofilms collected from a well-defined acid mine drainage system over 9 years to investigate the processes and determine rates of bacterial evolution directly in the environment. Population metagenomic analyses of the dominant primary producer yielded the nucleotide substitution rate, which we used to show that proliferation of a series of recombinant bacterial strains occurred over the past few decades. The ecological success of hybrid bacterial types highlights the role of evolutionary processes in rapid adaptation within natural microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denef, Vincent J -- Banfield, Jillian F -- New York, N.Y. -- Science. 2012 Apr 27;336(6080):462-6. doi: 10.1126/science.1218389.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22539719" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Biological ; Bacteria/*genetics ; Bacterial Physiological Phenomena ; Base Sequence ; *Biofilms ; *Biological Evolution ; California ; *Ecosystem ; Genome, Bacterial ; Genotype ; Hybridization, Genetic ; Hydrogen-Ion Concentration ; Metagenome ; *Mining ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Single Nucleotide ; *Recombination, Genetic ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2012-11-03
    Description: Ribosomal proteins are synthesized in the cytoplasm, before nuclear import and assembly with ribosomal RNA (rRNA). Little is known about coordination of nucleocytoplasmic transport with ribosome assembly. Here, we identify a transport adaptor, symportin 1 (Syo1), that facilitates synchronized coimport of the two 5S-rRNA binding proteins Rpl5 and Rpl11. In vitro studies revealed that Syo1 concomitantly binds Rpl5-Rpl11 and furthermore recruits the import receptor Kap104. The Syo1-Rpl5-Rpl11 import complex is released from Kap104 by RanGTP and can be directly transferred onto the 5S rRNA. Syo1 can shuttle back to the cytoplasm by interaction with phenylalanine-glycine nucleoporins. X-ray crystallography uncovered how the alpha-solenoid symportin accommodates the Rpl5 amino terminus, normally bound to 5S rRNA, in an extended groove. Symportin-mediated coimport of Rpl5-Rpl11 could ensure coordinated and stoichiometric incorporation of these proteins into pre-60S ribosomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kressler, Dieter -- Bange, Gert -- Ogawa, Yutaka -- Stjepanovic, Goran -- Bradatsch, Bettina -- Pratte, Dagmar -- Amlacher, Stefan -- Strauss, Daniela -- Yoneda, Yoshihiro -- Katahira, Jun -- Sinning, Irmgard -- Hurt, Ed -- New York, N.Y. -- Science. 2012 Nov 2;338(6107):666-71. doi: 10.1126/science.1226960.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemie-Zentrum der Universitat Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany. dieter.kressler@unifr.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23118189" target="_blank"〉PubMed〈/a〉
    Keywords: *Active Transport, Cell Nucleus ; Amino Acid Sequence ; Base Sequence ; Cell Nucleus/*metabolism ; Chaetomium/metabolism ; Crystallography, X-Ray ; Fungal Proteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; RNA, Fungal/metabolism ; RNA, Ribosomal, 5S/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Ribosomal Proteins/chemistry/*metabolism ; Ribosomes/*metabolism ; Saccharomyces cerevisiae/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism ; beta Karyopherins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2012-01-10
    Description: TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586824/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586824/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deng, Dong -- Yan, Chuangye -- Pan, Xiaojing -- Mahfouz, Magdy -- Wang, Jiawei -- Zhu, Jian-Kang -- Shi, Yigong -- Yan, Nieng -- R01 GM070795/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 10;335(6069):720-3. doi: 10.1126/science.1215670. Epub 2012 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-Membrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22223738" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/*metabolism ; Base Sequence ; Crystallography, X-Ray ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Processes ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Repetitive Sequences, Amino Acid ; Virulence Factors/*chemistry/*metabolism ; Xanthomonas/chemistry/pathogenicity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2011-11-15
    Description: With its high-energy phosphate bonds, adenosine triphosphate (ATP) is the main intracellular energy carrier. It also functions in most signaling pathways, as a phosphate donor or a precursor for cyclic adenosine monophosphate. We show here that inositol pyrophosphates participate in the control of intracellular ATP concentration. Yeasts devoid of inositol pyrophosphates have dysfunctional mitochondria but, paradoxically, contain four times as much ATP because of increased glycolysis. We demonstrate that inositol pyrophosphates control the activity of the major glycolytic transcription factor GCR1. Thus, inositol pyrophosphates regulate ATP concentration by altering the glycolytic/mitochondrial metabolic ratio. Metabolic reprogramming through inositol pyrophosphates is an evolutionary conserved mechanism that is also preserved in mammalian systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szijgyarto, Zsolt -- Garedew, Assegid -- Azevedo, Cristina -- Saiardi, Adolfo -- G1001704/Medical Research Council/United Kingdom -- MC_U122680443/Medical Research Council/United Kingdom -- PG/10/72/28449/British Heart Foundation/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):802-5. doi: 10.1126/science.1211908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, and Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076377" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Diphosphate/metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/*metabolism ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; *Energy Metabolism ; Gene Expression Regulation, Fungal ; Glucose/metabolism ; Glycolysis/genetics ; Inositol Phosphates/*metabolism ; Mitochondria/metabolism ; Mutation ; NAD/metabolism ; Oxidation-Reduction ; Oxidative Phosphorylation ; Oxygen Consumption ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Transcription Factors/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2011-02-26
    Description: Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a Plasmodium-infected blood meal, mosquitoes were treated with M. anisopliae expressing salivary gland and midgut peptide 1 (SM1), which blocks attachment of sporozoites to salivary glands; a single-chain antibody that agglutinates sporozoites; or scorpine, which is an antimicrobial toxin. These reduced sporozoite counts by 71%, 85%, and 90%, respectively. M. anisopliae expressing scorpine and an [SM1](8):scorpine fusion protein reduced sporozoite counts by 98%, suggesting that Metarhizium-mediated inhibition of Plasmodium development could be a powerful weapon for combating malaria.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4153607/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Weiguo -- Vega-Rodriguez, Joel -- Ghosh, Anil K -- Jacobs-Lorena, Marcelo -- Kang, Angray -- St Leger, Raymond J -- 5R21A1079429-02/PHS HHS/ -- R01 AI031478/AI/NIAID NIH HHS/ -- R21 AI079429/AI/NIAID NIH HHS/ -- R21 AI088033/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1074-7. doi: 10.1126/science.1199115.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, MD 20742, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350178" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anopheles gambiae/*microbiology/*parasitology/physiology ; Antibodies, Protozoan/immunology ; Base Sequence ; Cloning, Molecular ; Defensins/genetics/metabolism ; Feeding Behavior ; Female ; Hemolymph/metabolism/microbiology/parasitology ; Humans ; Insect Vectors/*microbiology/*parasitology/physiology ; Malaria, Falciparum/transmission ; Metarhizium/*genetics/physiology ; Molecular Sequence Data ; Oligopeptides/genetics/metabolism ; Organisms, Genetically Modified ; Pest Control, Biological ; Plasmodium falciparum/*physiology ; Protozoan Proteins/immunology ; Salivary Glands/metabolism/parasitology ; Spores, Fungal/physiology ; Sporozoites/physiology ; Transformation, Genetic ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2011-01-29
    Description: Proper regulation of nuclear factor kappaB (NF-kappaB) transcriptional activity is required for normal lymphocyte function, and deregulated NF-kappaB signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-kappaB-inducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-kappaB signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-kappaB pathway in B lymphoproliferative disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3124150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosebeck, Shaun -- Madden, Lisa -- Jin, Xiaohong -- Gu, Shufang -- Apel, Ingrid J -- Appert, Alex -- Hamoudi, Rifat A -- Noels, Heidi -- Sagaert, Xavier -- Van Loo, Peter -- Baens, Mathijs -- Du, Ming-Qing -- Lucas, Peter C -- McAllister-Lucas, Linda M -- R01 CA124540/CA/NCI NIH HHS/ -- R01 CA124540-04/CA/NCI NIH HHS/ -- R01 HL082914/HL/NHLBI NIH HHS/ -- R01CA124540/CA/NCI NIH HHS/ -- T32-HD07513/HD/NICHD NIH HHS/ -- T32-HL007622-21A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):468-72. doi: 10.1126/science.1198946.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics and Communicable Diseases, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273489" target="_blank"〉PubMed〈/a〉
    Keywords: Apoptosis ; B-Lymphocytes/*metabolism ; Cell Adhesion ; Cell Line ; Cell Line, Tumor ; Gene Expression Regulation, Neoplastic ; Humans ; I-kappa B Kinase/metabolism ; Lymphoma, B-Cell, Marginal Zone/genetics/*metabolism ; NF-kappa B/*metabolism ; NF-kappa B p52 Subunit/metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Proto-Oncogene Proteins/genetics/metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2011-05-21
    Description: Tan et al. (Reports, 25 September 2009, p. 1686) argued that loss of tyrosine residues from proteins in metazoans was driven by positive selection to remove potentially deleterious phosphorylation sites. We challenge this hypothesis, providing evidence that the high guanine-cytosine (GC) content of metazoan genomes was the primary driver in the loss of tyrosine residues.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Zhixi -- Huang, Wei -- Gu, Xun -- New York, N.Y. -- Science. 2011 May 20;332(6032):917; author reply 917. doi: 10.1126/science.1187374.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MOE Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences, Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596977" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Base Composition ; *Biological Evolution ; Choanoflagellata/chemistry/genetics ; Evolution, Molecular ; Fungal Proteins/chemistry ; *Genome ; Phosphorylation ; Protein-Tyrosine Kinases/metabolism ; Proteins/*chemistry ; Protozoan Proteins/chemistry ; Saccharomycetales/chemistry/genetics ; *Selection, Genetic ; Tyrosine/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2011-05-21
    Description: The transmission of information from DNA to RNA is a critical process. We compared RNA sequences from human B cells of 27 individuals to the corresponding DNA sequences from the same individuals and uncovered more than 10,000 exonic sites where the RNA sequences do not match that of the DNA. All 12 possible categories of discordances were observed. These differences were nonrandom as many sites were found in multiple individuals and in different cell types, including primary skin cells and brain tissues. Using mass spectrometry, we detected peptides that are translated from the discordant RNA sequences and thus do not correspond exactly to the DNA sequences. These widespread RNA-DNA differences in the human transcriptome provide a yet unexplored aspect of genome variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Mingyao -- Wang, Isabel X -- Li, Yun -- Bruzel, Alan -- Richards, Allison L -- Toung, Jonathan M -- Cheung, Vivian G -- R01 HG005854/HG/NHGRI NIH HHS/ -- R01 HG005854-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):53-8. doi: 10.1126/science.1207018. Epub 2011 May 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596952" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Aged ; Amino Acid Sequence ; B-Lymphocytes ; Base Sequence ; Cell Line ; Cerebral Cortex/cytology ; DNA/chemistry/*genetics ; Exons ; Expressed Sequence Tags ; Fibroblasts ; Gene Expression Profiling ; *Genetic Variation ; *Genome, Human ; Genotype ; Humans ; Mass Spectrometry ; Middle Aged ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Protein Biosynthesis ; Proteins/chemistry ; Proteome/chemistry ; RNA, Messenger/chemistry/*genetics ; Sequence Analysis, DNA ; Sequence Analysis, RNA ; Skin/cytology ; Untranslated Regions
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2011-03-26
    Description: Axon-dendrite polarization is crucial for neural network wiring and information processing in the brain. Polarization begins with the transformation of a single neurite into an axon and its subsequent rapid extension, which requires coordination of cellular energy status to allow for transport of building materials to support axon growth. We found that activation of the energy-sensing adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway suppressed axon initiation and neuronal polarization. Phosphorylation of the kinesin light chain of the Kif5 motor protein by AMPK disrupted the association of the motor with phosphatidylinositol 3-kinase (PI3K), preventing PI3K targeting to the axonal tip and inhibiting polarization and axon growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3325765/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amato, Stephen -- Liu, Xiuxin -- Zheng, Bin -- Cantley, Lewis -- Rakic, Pasko -- Man, Heng-Ye -- GM41890/GM/NIGMS NIH HHS/ -- GM56203/GM/NIGMS NIH HHS/ -- K99CA133245/CA/NCI NIH HHS/ -- MH07907/MH/NIMH NIH HHS/ -- R00 CA133245/CA/NCI NIH HHS/ -- R01 GM056203/GM/NIGMS NIH HHS/ -- R01 NS014841/NS/NINDS NIH HHS/ -- R01 NS014841-32/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):247-51. doi: 10.1126/science.1201678. Epub 2011 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436401" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Aminoimidazole Carboxamide/analogs & derivatives/pharmacology ; Animals ; Axons/enzymology/*physiology/ultrastructure ; *Cell Polarity/drug effects ; Cells, Cultured ; Hippocampus/cytology/embryology ; Metformin/pharmacology ; Mice ; Microtubule-Associated Proteins/metabolism ; Neurons/cytology/drug effects/enzymology/*physiology ; Phosphatidylinositol 3-Kinase/*metabolism ; Phosphorylation ; Proto-Oncogene Proteins c-akt/metabolism ; Rats ; Recombinant Fusion Proteins/metabolism ; Ribonucleotides/pharmacology ; Signal Transduction ; Tissue Culture Techniques
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2011-06-28
    Description: Centrosomes organize the bipolar mitotic spindle, and centrosomal defects cause chromosome instability. Protein phosphorylation modulates centrosome function, and we provide a comprehensive map of phosphorylation on intact yeast centrosomes (18 proteins). Mass spectrometry was used to identify 297 phosphorylation sites on centrosomes from different cell cycle stages. We observed different modes of phosphoregulation via specific protein kinases, phosphorylation site clustering, and conserved phosphorylated residues. Mutating all eight cyclin-dependent kinase (Cdk)-directed sites within the core component, Spc42, resulted in lethality and reduced centrosomal assembly. Alternatively, mutation of one conserved Cdk site within gamma-tubulin (Tub4-S360D) caused mitotic delay and aberrant anaphase spindle elongation. Our work establishes the extent and complexity of this prominent posttranslational modification in centrosome biology and provides specific examples of phosphorylation control in centrosome function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3825980/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keck, Jamie M -- Jones, Michele H -- Wong, Catherine C L -- Binkley, Jonathan -- Chen, Daici -- Jaspersen, Sue L -- Holinger, Eric P -- Xu, Tao -- Niepel, Mario -- Rout, Michael P -- Vogel, Jackie -- Sidow, Arend -- Yates, John R 3rd -- Winey, Mark -- F32 GM086038/GM/NIGMS NIH HHS/ -- GM51312/GM/NIGMS NIH HHS/ -- MOP-64404/Canadian Institutes of Health Research/Canada -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 GM051312/GM/NIGMS NIH HHS/ -- R01 GM051312-16/GM/NIGMS NIH HHS/ -- R01 GM051312-16S1/GM/NIGMS NIH HHS/ -- R01 GM062427/GM/NIGMS NIH HHS/ -- R01 HG003039/HG/NHGRI NIH HHS/ -- T32 GM008759/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1557-61. doi: 10.1126/science.1205193.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700874" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; CDC2 Protein Kinase/metabolism ; *Cell Cycle ; Centrosome/*metabolism/ultrastructure ; Cytoskeletal Proteins/genetics/metabolism ; Fungal Proteins/chemistry/metabolism ; Fungi/metabolism ; G1 Phase ; Mitosis ; Mutation ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Protein Processing, Post-Translational ; Proteome/*metabolism ; Saccharomyces cerevisiae/cytology/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Spindle Apparatus/metabolism/ultrastructure ; Tubulin/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2011-03-10
    Description: Many biological processes are regulated through the selective dephosphorylation of proteins. Protein serine-threonine phosphatases are assembled from catalytic subunits bound to diverse regulatory subunits that provide substrate specificity and subcellular localization. We describe a small molecule, guanabenz, that bound to a regulatory subunit of protein phosphatase 1, PPP1R15A/GADD34, selectively disrupting the stress-induced dephosphorylation of the alpha subunit of translation initiation factor 2 (eIF2alpha). Without affecting the related PPP1R15B-phosphatase complex and constitutive protein synthesis, guanabenz prolonged eIF2alpha phosphorylation in human stressed cells, adjusting the protein production rates to levels manageable by available chaperones. This favored protein folding and thereby rescued cells from protein misfolding stress. Thus, regulatory subunits of phosphatases are drug targets, a property used here to restore proteostasis in stressed cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsaytler, Pavel -- Harding, Heather P -- Ron, David -- Bertolotti, Anne -- 084812/Wellcome Trust/United Kingdom -- MC_U105185860/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 1;332(6025):91-4. doi: 10.1126/science.1201396. Epub 2011 Mar 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21385720" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic alpha-2 Receptor Agonists/*pharmacology ; Catalytic Domain/drug effects ; Cell Line ; Clonidine/pharmacology ; Endoplasmic Reticulum/drug effects/metabolism ; Enzyme Inhibitors/*pharmacology ; Eukaryotic Initiation Factor-2/metabolism ; Guanabenz/*pharmacology ; HeLa Cells ; Homeostasis ; Humans ; Molecular Chaperones/metabolism ; Phosphorylation ; Protein Biosynthesis/drug effects ; Protein Folding/drug effects ; Protein Phosphatase 1/*antagonists & inhibitors/metabolism ; Protein Subunits/drug effects/metabolism ; Proteins/metabolism ; Stress, Physiological ; Tunicamycin
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2011-10-08
    Description: Gene regulatory circuits can use dynamic, and even stochastic, strategies to respond to environmental conditions. We examined activation of the general stress response mediated by the alternative sigma factor, sigma(B), in individual Bacillus subtilis cells. We observed that energy stress activates sigma(B) in discrete stochastic pulses, with increasing levels of stress leading to higher pulse frequencies. By perturbing and rewiring the endogenous system, we found that this behavior results from three key features of the sigma(B) circuit: an ultrasensitive phosphorylation switch; stochasticity ("noise"), which activates that switch; and a mixed (positive and negative) transcriptional feedback, which can both amplify a pulse and switch it off. Together, these results show how prokaryotes encode signals using stochastic pulse frequency modulation through a compact regulatory architecture.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100694/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100694/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Locke, James C W -- Young, Jonathan W -- Fontes, Michelle -- Hernandez Jimenez, Maria Jesus -- Elowitz, Michael B -- P50 GM068763/GM/NIGMS NIH HHS/ -- R01 GM079771/GM/NIGMS NIH HHS/ -- R01GM079771/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):366-9. doi: 10.1126/science.1208144. Epub 2011 Oct 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Division of Biology and Bioengineering, Broad Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21979936" target="_blank"〉PubMed〈/a〉
    Keywords: Bacillus subtilis/*genetics/metabolism/*physiology ; Bacterial Proteins/genetics/*metabolism ; Carrier Proteins/genetics/metabolism ; Feedback, Physiological ; Gene Expression Regulation, Bacterial ; *Gene Regulatory Networks ; Mycophenolic Acid/pharmacology ; Phosphoric Monoester Hydrolases/genetics/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Sigma Factor/genetics/*metabolism ; Stochastic Processes ; *Stress, Physiological ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2011-04-23
    Description: End-to-end chromosome fusions that occur in the context of telomerase deficiency can trigger genomic duplications. For more than 70 years, these duplications have been attributed solely to breakage-fusion-bridge cycles. To test this hypothesis, we examined end-to-end fusions isolated from Caenorhabditis elegans telomere replication mutants. Genome-level rearrangements revealed fused chromosome ends having interrupted terminal duplications accompanied by template-switching events. These features are very similar to disease-associated duplications of interstitial segments of the human genome. A model termed Fork Stalling and Template Switching has been proposed previously to explain such duplications, where promiscuous replication of large, noncontiguous segments of the genome occurs. Thus, a DNA synthesis-based process may create duplications that seal end-to-end fusions, in the absence of breakage-fusion-bridge cycles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154375/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154375/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lowden, Mia Rochelle -- Flibotte, Stephane -- Moerman, Donald G -- Ahmed, Shawn -- GM066228/GM/NIGMS NIH HHS/ -- GM072150/GM/NIGMS NIH HHS/ -- R01 GM066228/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):468-71. doi: 10.1126/science.1199022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512032" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Caenorhabditis elegans/*genetics/*metabolism ; Chromatids/physiology ; Chromosome Breakpoints ; *Chromosome Duplication ; Chromosomes/*physiology ; *DNA Replication ; DNA, Helminth/*biosynthesis ; Inverted Repeat Sequences ; Models, Genetic ; Polymerase Chain Reaction ; Recombination, Genetic ; Repetitive Sequences, Nucleic Acid ; Telomerase/genetics/metabolism ; Telomere/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2011-06-18
    Description: Innate immune responses are triggered by the activation of pattern-recognition receptors (PRRs). The Arabidopsis PRR FLAGELLIN-SENSING 2 (FLS2) senses bacterial flagellin and initiates immune signaling through association with BAK1. The molecular mechanisms underlying the attenuation of FLS2 activation are largely unknown. We report that flagellin induces recruitment of two closely related U-box E3 ubiquitin ligases, PUB12 and PUB13, to FLS2 receptor complex in Arabidopsis. BAK1 phosphorylates PUB12 and PUB13 and is required for FLS2-PUB12/13 association. PUB12 and PUB13 polyubiquitinate FLS2 and promote flagellin-induced FLS2 degradation, and the pub12 and pub13 mutants displayed elevated immune responses to flagellin treatment. Our study has revealed a unique regulatory circuit of direct ubiquitination and turnover of FLS2 by BAK1-mediated phosphorylation and recruitment of specific E3 ligases for attenuation of immune signaling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3243913/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Dongping -- Lin, Wenwei -- Gao, Xiquan -- Wu, Shujing -- Cheng, Cheng -- Avila, Julian -- Heese, Antje -- Devarenne, Timothy P -- He, Ping -- Shan, Libo -- R01 GM092893/GM/NIGMS NIH HHS/ -- R01 GM092893-02/GM/NIGMS NIH HHS/ -- R01 GM097247/GM/NIGMS NIH HHS/ -- R01GM092893/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1439-42. doi: 10.1126/science.1204903.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680842" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Arabidopsis/genetics/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Molecular Sequence Data ; Mutant Proteins/chemistry/metabolism ; Peptide Fragments/immunology ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Interaction Domains and Motifs ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Pseudomonas syringae/growth & development/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Recombinant Fusion Proteins/metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2011-06-18
    Description: The adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates whole-body and cellular energy balance in response to energy demand and supply. AMPK is an alphabetagamma heterotrimer activated by decreasing concentrations of adenosine triphosphate (ATP) and increasing AMP concentrations. AMPK activation depends on phosphorylation of the alpha catalytic subunit on threonine-172 (Thr(172)) by kinases LKB1 or CaMKKbeta, and this is promoted by AMP binding to the gamma subunit. AMP sustains activity by inhibiting dephosphorylation of alpha-Thr(172), whereas ATP promotes dephosphorylation. Adenosine diphosphate (ADP), like AMP, bound to gamma sites 1 and 3 and stimulated alpha-Thr(172) phosphorylation. However, in contrast to AMP, ADP did not directly activate phosphorylated AMPK. In this way, both ADP/ATP and AMP/ATP ratios contribute to AMPK regulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oakhill, Jonathan S -- Steel, Rohan -- Chen, Zhi-Ping -- Scott, John W -- Ling, Naomi -- Tam, Shanna -- Kemp, Bruce E -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1433-5. doi: 10.1126/science.1200094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, University of Melbourne, 41 Victoria Parade, Fitzroy 3065, Victoria, Australia. joakhill@svi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680840" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adenosine Diphosphate/*metabolism ; Adenosine Monophosphate/*metabolism ; Adenosine Triphosphate/*metabolism ; Animals ; Binding Sites ; COS Cells ; Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism ; Cercopithecus aethiops ; Enzyme Activation ; Myristic Acid/metabolism ; Phosphorylation ; Protein Subunits/chemistry/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Fusion Proteins/metabolism ; Threonine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2011-02-19
    Description: Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)-dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758919/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ataide, Sandro F -- Schmitz, Nikolaus -- Shen, Kuang -- Ke, Ailong -- Shan, Shu-ou -- Doudna, Jennifer A -- Ban, Nenad -- GM078024/GM/NIGMS NIH HHS/ -- R01 GM078024/GM/NIGMS NIH HHS/ -- R01 GM086766/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):881-6. doi: 10.1126/science.1196473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, Eidgenossische Technische Hochschule Zurich (ETH Zurich), Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330537" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*chemistry/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation ; Escherichia coli/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/metabolism ; GTP Phosphohydrolases/chemistry/metabolism ; Guanosine Triphosphate/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Biological ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; Protein Transport ; RNA, Bacterial/*chemistry/metabolism ; Receptors, Cytoplasmic and Nuclear/*chemistry/metabolism ; Ribosomal Proteins/chemistry/metabolism ; Ribosomes/metabolism ; Signal Recognition Particle/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2011-04-02
    Description: Waves of cyclin synthesis and degradation regulate the activity of Cdc2 protein kinase during the cell cycle. Cdc2 inactivation by Wee1B-mediated phosphorylation is necessary for arrest of the oocyte at G2-prophase, but it is unclear whether this regulation functions later during the metaphase-to-anaphase transition. We show that reactivation of a Wee1B pathway triggers the decrease in Cdc2 activity during egg activation. When Wee1B is down-regulated, oocytes fail to form a pronucleus in response to Ca(2+) signals. Calcium-calmodulin-dependent kinase II (CaMKII) activates Wee1B, and CaMKII-driven exit from metaphase II is inhibited by Wee1B down-regulation, demonstrating that exit from metaphase requires not only a proteolytic degradation of cyclin B but also the inhibitory phosphorylation of Cdc2 by Wee1B.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104668/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104668/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oh, Jeong Su -- Susor, Andrej -- Conti, Marco -- GM080527-05/GM/NIGMS NIH HHS/ -- HD052909/HD/NICHD NIH HHS/ -- R01 GM080527/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):462-5. doi: 10.1126/science.1199211. Epub 2011 Mar 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143-0556, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21454751" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CDC2 Protein Kinase/antagonists & inhibitors/metabolism ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism ; Cell Cycle Proteins/genetics/*metabolism ; Cyclin B/genetics/metabolism ; Down-Regulation ; Female ; Gene Knockdown Techniques ; Maturation-Promoting Factor/metabolism ; *Meiosis ; *Metaphase ; Mice ; Mice, Inbred C57BL ; Oocytes/*physiology ; Phosphorylation ; Protein-Tyrosine Kinases/genetics/*metabolism ; RNA, Messenger/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2011-10-15
    Description: A current limitation in nanoparticle superlattice engineering is that the identities of the particles being assembled often determine the structures that can be synthesized. Therefore, specific crystallographic symmetries or lattice parameters can only be achieved using specific nanoparticles as building blocks (and vice versa). We present six design rules that can be used to deliberately prepare nine distinct colloidal crystal structures, with control over lattice parameters on the 25- to 150-nanometer length scale. These design rules outline a strategy to independently adjust each of the relevant crystallographic parameters, including particle size (5 to 60 nanometers), periodicity, and interparticle distance. As such, this work represents an advance in synthesizing tailorable macroscale architectures comprising nanoscale materials in a predictable fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Macfarlane, Robert J -- Lee, Byeongdu -- Jones, Matthew R -- Harris, Nadine -- Schatz, George C -- Mirkin, Chad A -- New York, N.Y. -- Science. 2011 Oct 14;334(6053):204-8. doi: 10.1126/science.1210493.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21998382" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallization ; Crystallography ; DNA/*chemistry ; Engineering ; Metal Nanoparticles/*chemistry ; Microscopy, Electron, Transmission ; Nucleic Acid Hybridization ; Oligonucleotides/chemistry ; Particle Size ; Scattering, Small Angle ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2011-05-14
    Description: Pluripotent cells in the embryo can generate all cell types, but lineage-restricted cells are generally thought to replenish adult tissues. Planarians are flatworms and regenerate from tiny body fragments, a process requiring a population of proliferating cells (neoblasts). Whether regeneration is accomplished by pluripotent cells or by the collective activity of multiple lineage-restricted cell types is unknown. We used ionizing radiation and single-cell transplantation to identify neoblasts that can form large descendant-cell colonies in vivo. These clonogenic neoblasts (cNeoblasts) produce cells that differentiate into neuronal, intestinal, and other known postmitotic cell types and are distributed throughout the body. Single transplanted cNeoblasts restored regeneration in lethally irradiated hosts. We conclude that broadly distributed, adult pluripotent stem cells underlie the remarkable regenerative abilities of planarians.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338249/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338249/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wagner, Daniel E -- Wang, Irving E -- Reddien, Peter W -- R01 GM080639/GM/NIGMS NIH HHS/ -- R01 GM080639-05/GM/NIGMS NIH HHS/ -- R01GM080639/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 13;332(6031):811-6. doi: 10.1126/science.1203983.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology (MIT), Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21566185" target="_blank"〉PubMed〈/a〉
    Keywords: Adult Stem Cells/cytology/*physiology/transplantation ; Animals ; Base Sequence ; Cell Differentiation ; Cell Lineage ; Cell Proliferation ; Cell Separation ; Clone Cells/cytology/physiology ; Genes, Helminth ; Genotype ; Intestines/cytology ; Molecular Sequence Data ; Neurons/cytology ; Planarians/*cytology/genetics/*physiology/radiation effects ; Pluripotent Stem Cells/cytology/*physiology/transplantation ; *Regeneration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Service, Robert F -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1140-1, 1143. doi: 10.1126/science.332.6034.1140.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636754" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA/*chemistry ; *Nanostructures ; *Nanotechnology ; Nuclear Magnetic Resonance, Biomolecular ; *Nucleic Acid Conformation ; Proteins/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2011-02-19
    Description: Meiosis requires that each chromosome find its homologous partner and undergo at least one crossover. X-Y chromosome segregation hinges on efficient crossing-over in a very small region of homology, the pseudoautosomal region (PAR). We find that mouse PAR DNA occupies unusually long chromosome axes, potentially as shorter chromatin loops, predicted to promote double-strand break (DSB) formation. Most PARs show delayed appearance of RAD51/DMC1 foci, which mark DSB ends, and all PARs undergo delayed DSB-mediated homologous pairing. Analysis of Spo11beta isoform-specific transgenic mice revealed that late RAD51/DMC1 foci in the PAR are genetically distinct from both early PAR foci and global foci and that late PAR foci promote efficient X-Y pairing, recombination, and male fertility. Our findings uncover specific mechanisms that surmount the unique challenges of X-Y recombination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3151169/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kauppi, Liisa -- Barchi, Marco -- Baudat, Frederic -- Romanienko, Peter J -- Keeney, Scott -- Jasin, Maria -- R01 HD040916/HD/NICHD NIH HHS/ -- R01 HD040916-01/HD/NICHD NIH HHS/ -- R01 HD040916-10/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):916-20. doi: 10.1126/science.1195774.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330546" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Cycle Proteins/metabolism ; Chromatin/chemistry/metabolism ; *Chromosome Pairing ; Chromosome Segregation ; *Crossing Over, Genetic ; DNA Breaks, Double-Stranded ; Endodeoxyribonucleases/genetics/*metabolism ; Female ; In Situ Hybridization, Fluorescence ; Male ; *Meiosis ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Protein Isoforms ; Rad51 Recombinase/metabolism ; X Chromosome/*physiology ; Y Chromosome/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-02-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kean, Sam -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):530-1. doi: 10.1126/science.331.6017.530.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292952" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biotechnology/*legislation & jurisprudence ; *Genes ; Genetic Testing/*legislation & jurisprudence ; *Genome, Human ; Human Genome Project ; Humans ; Patents as Topic/*legislation & jurisprudence ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cowman, Alan F -- Tonkin, Christopher J -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):409-10. doi: 10.1126/science.1201692.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia. cowman@wehi.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273475" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, Protozoan/*metabolism ; Cell Division ; Cell Membrane/metabolism ; Membrane Proteins/metabolism ; Phosphorylation ; Protozoan Proteins/*metabolism ; Signal Transduction ; Toxoplasma/cytology/growth & development/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Fumin -- Lemmon, Mark A -- New York, N.Y. -- Science. 2011 May 27;332(6033):1043-4. doi: 10.1126/science.1208063.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, and Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617065" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Animals ; Binding Sites ; Catalytic Domain ; Cell Membrane/enzymology ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases/*metabolism ; Humans ; *MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase Kinases/*metabolism ; Mutation ; Phosphorylation ; Protein Conformation ; Protein Kinases/chemistry/genetics/*metabolism ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/*metabolism ; Proto-Oncogene Proteins c-raf/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2011-06-28
    Description: The ribonuclease (RNase) H class of enzymes degrades the RNA component of RNA:DNA hybrids and is important in nucleic acid metabolism. RNase H2 is specialized to remove single ribonucleotides [ribonucleoside monophosphates (rNMPs)] from duplex DNA, and its absence in budding yeast has been associated with the accumulation of deletions within short tandem repeats. Here, we demonstrate that rNMP-associated deletion formation requires the activity of Top1, a topoisomerase that relaxes supercoils by reversibly nicking duplex DNA. The reported studies extend the role of Top1 to include the processing of rNMPs in genomic DNA into irreversible single-strand breaks, an activity that can have distinct mutagenic consequences and may be relevant to human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380281/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380281/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Nayun -- Huang, Shar-yin N -- Williams, Jessica S -- Li, Yue C -- Clark, Alan B -- Cho, Jang-Eun -- Kunkel, Thomas A -- Pommier, Yves -- Jinks-Robertson, Sue -- R01 GM038464/GM/NIGMS NIH HHS/ -- R01 GM093197/GM/NIGMS NIH HHS/ -- R01 GM38464/GM/NIGMS NIH HHS/ -- R01 GM93197/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 24;332(6037):1561-4. doi: 10.1126/science.1205016.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21700875" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Transport Systems, Basic/genetics ; Base Sequence ; Camptothecin/pharmacology ; Canavanine/pharmacology ; DNA Breaks ; DNA Topoisomerases, Type I/*metabolism ; DNA, Fungal/chemistry/*metabolism ; DNA, Single-Stranded/metabolism ; Microsatellite Repeats ; Molecular Sequence Data ; *Mutagenesis ; Nucleic Acid Conformation ; Ribonuclease H/genetics/metabolism ; Ribonucleotides/*metabolism ; Saccharomyces cerevisiae/enzymology/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; *Sequence Deletion ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cuervo, Ana Maria -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1392-3. doi: 10.1126/science.1208607.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA. ana-maria.cuervo@einstein.yu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680833" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; *Autophagy ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/*metabolism ; Cell Nucleus/metabolism ; Cytosol/metabolism ; Humans ; Lysosomes/*metabolism ; Mice ; Mitogen-Activated Protein Kinase 1/metabolism ; Phagosomes/metabolism ; Phosphorylation ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2011-04-23
    Description: Genetic regulation of mammalian heart size is poorly understood. Hippo signaling represents an organ-size control pathway in Drosophila, where it also inhibits cell proliferation and promotes apoptosis in imaginal discs. To determine whether Hippo signaling controls mammalian heart size, we inactivated Hippo pathway components in the developing mouse heart. Hippo-deficient embryos had overgrown hearts with elevated cardiomyocyte proliferation. Gene expression profiling and chromatin immunoprecipitation revealed that Hippo signaling negatively regulates a subset of Wnt target genes. Genetic interaction studies indicated that beta-catenin heterozygosity suppressed the Hippo cardiomyocyte overgrowth phenotype. Furthermore, the Hippo effector Yap interacts with beta-catenin on Sox2 and Snai2 genes. These data uncover a nuclear interaction between Hippo and Wnt signaling that restricts cardiomyocyte proliferation and controls heart size.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133743/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133743/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heallen, Todd -- Zhang, Min -- Wang, Jun -- Bonilla-Claudio, Margarita -- Klysik, Ela -- Johnson, Randy L -- Martin, James F -- R01 DE012324/DE/NIDCR NIH HHS/ -- R01 DE012324-12/DE/NIDCR NIH HHS/ -- R01 HD052785/HD/NICHD NIH HHS/ -- R01 HD052785-05/HD/NICHD NIH HHS/ -- R01 HD060579/HD/NICHD NIH HHS/ -- R01 HD060579-02/HD/NICHD NIH HHS/ -- R01 HL093484/HL/NHLBI NIH HHS/ -- R01 HL093484-01A1/HL/NHLBI NIH HHS/ -- R01HD052785/HD/NICHD NIH HHS/ -- R01HD060579/HD/NICHD NIH HHS/ -- T32 DE15355-04/DE/NIDCR NIH HHS/ -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):458-61. doi: 10.1126/science.1199010.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512031" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Cardiomegaly/metabolism ; Cell Cycle Proteins/genetics/metabolism ; Cell Nucleus/metabolism ; Cell Proliferation ; Chromatin Immunoprecipitation ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Heart/*anatomy & histology/embryology ; Mice ; Mice, Transgenic ; Myocardium/cytology ; Myocytes, Cardiac/*cytology/*metabolism ; Organ Size ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; SOXB1 Transcription Factors/genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Wnt Proteins/*metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarus, Michael -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):181-2. doi: 10.1126/science.1205379.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA. michael.yarus@colorado.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474742" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Directed Molecular Evolution ; Nucleic Acid Conformation ; Protein Biosynthesis ; RNA/*chemistry/metabolism ; RNA Replicase/*chemistry/*metabolism ; RNA, Catalytic/*chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2011-06-02
    Description: Members of the gammaretroviruses--such as murine leukemia viruses (MLVs), most notably XMRV [xenotropic murine leukemia virus (X-MLV)-related virus--have been reported to be present in the blood of patients with chronic fatigue syndrome (CFS). We evaluated blood samples from 61 patients with CFS from a single clinical practice, 43 of whom had previously been identified as XMRV-positive. Our analysis included polymerase chain reaction and reverse transcription polymerase chain reaction procedures for detection of viral nucleic acids and assays for detection of infectious virus and virus-specific antibodies. We found no evidence of XMRV or other MLVs in these blood samples. In addition, we found that these gammaretroviruses were strongly (X-MLV) or partially (XMRV) susceptible to inactivation by sera from CFS patients and healthy controls, which suggested that establishment of a successful MLV infection in humans would be unlikely. Consistent with previous reports, we detected MLV sequences in commercial laboratory reagents. Our results indicate that previous evidence linking XMRV and MLVs to CFS is likely attributable to laboratory contamination.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Knox, Konstance -- Carrigan, Donald -- Simmons, Graham -- Teque, Fernando -- Zhou, Yanchen -- Hackett, John Jr -- Qiu, Xiaoxing -- Luk, Ka-Cheung -- Schochetman, Gerald -- Knox, Allyn -- Kogelnik, Andreas M -- Levy, Jay A -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):94-7. doi: 10.1126/science.1204963. Epub 2011 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wisconsin Viral Research Group, Milwaukee, WI 53226, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21628393" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Aged ; Antibodies, Viral/blood ; Base Sequence ; Blood/*virology ; Child ; Child, Preschool ; Complement System Proteins/immunology ; DNA Contamination ; DNA, Viral/blood ; Drug Contamination ; Fatigue Syndrome, Chronic/blood/immunology/*virology ; Female ; Humans ; Indicators and Reagents ; Leukemia Virus, Murine/genetics/isolation & purification ; Leukocytes, Mononuclear/*virology ; Male ; Middle Aged ; Molecular Sequence Data ; Polymerase Chain Reaction ; Retroviridae Infections/diagnosis/*virology ; Xenotropic murine leukemia virus-related virus/genetics/immunology/*isolation & ; purification ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2011-08-13
    Description: Antibody VRC01 is a human immunoglobulin that neutralizes about 90% of HIV-1 isolates. To understand how such broadly neutralizing antibodies develop, we used x-ray crystallography and 454 pyrosequencing to characterize additional VRC01-like antibodies from HIV-1-infected individuals. Crystal structures revealed a convergent mode of binding for diverse antibodies to the same CD4-binding-site epitope. A functional genomics analysis of expressed heavy and light chains revealed common pathways of antibody-heavy chain maturation, confined to the IGHV1-2*02 lineage, involving dozens of somatic changes, and capable of pairing with different light chains. Broadly neutralizing HIV-1 immunity associated with VRC01-like antibodies thus involves the evolution of antibodies to a highly affinity-matured state required to recognize an invariant viral structure, with lineages defined from thousands of sequences providing a genetic roadmap of their development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3516815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Xueling -- Zhou, Tongqing -- Zhu, Jiang -- Zhang, Baoshan -- Georgiev, Ivelin -- Wang, Charlene -- Chen, Xuejun -- Longo, Nancy S -- Louder, Mark -- McKee, Krisha -- O'Dell, Sijy -- Perfetto, Stephen -- Schmidt, Stephen D -- Shi, Wei -- Wu, Lan -- Yang, Yongping -- Yang, Zhi-Yong -- Yang, Zhongjia -- Zhang, Zhenhai -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Simek, Melissa -- Burton, Dennis R -- Koff, Wayne C -- Doria-Rose, Nicole A -- Connors, Mark -- NISC Comparative Sequencing Program -- Mullikin, James C -- Nabel, Gary J -- Roederer, Mario -- Shapiro, Lawrence -- Kwong, Peter D -- Mascola, John R -- 5U19 AI 067854-06/AI/NIAID NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 16;333(6049):1593-602. doi: 10.1126/science.1207532. Epub 2011 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21835983" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines ; Amino Acid Sequence ; Antibodies, Neutralizing/*chemistry/genetics/*immunology/isolation & purification ; Antibody Affinity ; Antibody Specificity ; Antigens, CD4/metabolism ; Base Sequence ; Binding Sites ; Binding Sites, Antibody ; Complementarity Determining Regions/genetics ; Crystallography, X-Ray ; Epitopes ; *Evolution, Molecular ; Genes, Immunoglobulin Heavy Chain ; HIV Antibodies/*chemistry/genetics/*immunology/isolation & purification ; HIV Envelope Protein gp120/chemistry/*immunology/metabolism ; HIV Infections/immunology ; HIV-1/chemistry/*immunology ; High-Throughput Nucleotide Sequencing ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology ; Immunoglobulin Heavy Chains/chemistry/immunology ; Immunoglobulin J-Chains/genetics ; Immunoglobulin Light Chains/chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2011-01-06
    Description: Self-incompatibility (SI)--intraspecific pollen recognition systems that allow plants to avoid inbreeding--in the Solanaceae (the nightshade family) is controlled by a polymorphic S locus where "self" pollen is rejected on pistils with matching S alleles. In contrast, unilateral interspecific incompatibility (UI) prevents hybridization between related species, most commonly when the pollen donor is self-compatible (SC) and the recipient is SI. We observed that in Solanum, a pollen-expressed Cullin1 gene with high similarity to Petunia SI factors interacts genetically with a gene at or near the S locus to control UI. Cultivated tomato and related red- or orange-fruited species (all SC) exhibit the same loss-of-function mutation in this gene, whereas the green-fruited species (mostly SI) contain a functional allele; hence, similar biochemical mechanisms underlie the rejection of both "self" and interspecific pollen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Wentao -- Chetelat, Roger T -- New York, N.Y. -- Science. 2010 Dec 24;330(6012):1827-30. doi: 10.1126/science.1197908.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Sciences, University of California, Davis, CA 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205670" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Base Sequence ; Crosses, Genetic ; Cullin Proteins/*genetics/metabolism ; Flowers/physiology ; *Genes, Plant ; Hybridization, Genetic ; Introns ; Lycopersicon esculentum/*genetics/*physiology ; Molecular Sequence Data ; Plant Proteins/*genetics/metabolism ; Plants, Genetically Modified ; Pollen/*genetics/physiology ; Pollination ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Ribonucleases/genetics/metabolism ; Sequence Deletion ; Solanum/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2011-02-12
    Description: The Gram-negative bacterium Neisseria meningitidis asymptomatically colonizes the throat of 10 to 30% of the human population, but throat colonization can also act as the port of entry to the blood (septicemia) and then the brain (meningitis). Colonization is mediated by filamentous organelles referred to as type IV pili, which allow the formation of bacterial aggregates associated with host cells. We found that proliferation of N. meningitidis in contact with host cells increased the transcription of a bacterial gene encoding a transferase that adds phosphoglycerol onto type IV pili. This unusual posttranslational modification specifically released type IV pili-dependent contacts between bacteria. In turn, this regulated detachment process allowed propagation of the bacterium to new colonization sites and also migration across the epithelium, a prerequisite for dissemination and invasive disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chamot-Rooke, Julia -- Mikaty, Guillain -- Malosse, Christian -- Soyer, Magali -- Dumont, Audrey -- Gault, Joseph -- Imhaus, Anne-Flore -- Martin, Patricia -- Trellet, Mikael -- Clary, Guilhem -- Chafey, Philippe -- Camoin, Luc -- Nilges, Michael -- Nassif, Xavier -- Dumenil, Guillaume -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):778-82. doi: 10.1126/science.1200729.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ecole Polytechnique, Laboratoire des Mecanismes Reactionnels, Palaiseau F-91128, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311024" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Adhesion ; Cell Line, Tumor ; Epithelial Cells/microbiology ; Fimbriae Proteins/chemistry/*metabolism ; Fimbriae, Bacterial/chemistry/*metabolism ; Gene Expression Regulation, Bacterial ; Glycerol/metabolism ; Humans ; Models, Molecular ; Neisseria meningitidis/genetics/growth & development/*pathogenicity ; Phosphorylation ; Phosphotransferases/*genetics/*metabolism ; *Protein Processing, Post-Translational ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2011-01-06
    Description: Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030664/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Egan, Daniel F -- Shackelford, David B -- Mihaylova, Maria M -- Gelino, Sara -- Kohnz, Rebecca A -- Mair, William -- Vasquez, Debbie S -- Joshi, Aashish -- Gwinn, Dana M -- Taylor, Rebecca -- Asara, John M -- Fitzpatrick, James -- Dillin, Andrew -- Viollet, Benoit -- Kundu, Mondira -- Hansen, Malene -- Shaw, Reuben J -- 1P01CA120964/CA/NCI NIH HHS/ -- 1P01CA120964-01A/CA/NCI NIH HHS/ -- 5P30CA006516-43/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P01 CA120964-05/CA/NCI NIH HHS/ -- P30 CA006516/CA/NCI NIH HHS/ -- P30 CA006516-43/CA/NCI NIH HHS/ -- P30CA014195/CA/NCI NIH HHS/ -- R01 DK080425/DK/NIDDK NIH HHS/ -- R01 DK080425-04/DK/NIDDK NIH HHS/ -- R01 DK080425-05/DK/NIDDK NIH HHS/ -- T32 CA009370/CA/NCI NIH HHS/ -- T32 CA009370-29/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):456-61. doi: 10.1126/science.1196371. Epub 2010 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular and Cell Biology Laboratory, Dulbecco Center for Cancer Research, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21205641" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Caenorhabditis elegans/metabolism ; Caenorhabditis elegans Proteins/genetics/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Energy Metabolism ; Hepatocytes/metabolism ; Humans ; Insulin/metabolism ; Intracellular Signaling Peptides and Proteins/chemistry/genetics/*metabolism ; Liver/metabolism ; Metformin/pharmacology ; Mice ; Mitochondria, Liver/metabolism/ultrastructure ; Phenformin/pharmacology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/genetics/*metabolism ; Signal Transduction ; Transcription Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2011-05-21
    Description: Near the 5' end of most eukaryotic genes, nucleosomes form highly regular arrays that begin at canonical distances from the transcriptional start site. Determinants of this and other aspects of genomic nucleosome organization have been ascribed to statistical positioning, intrinsically DNA-encoded positioning, or some aspect of transcription initiation. Here, we provide evidence for a different explanation. Biochemical reconstitution of proper nucleosome positioning, spacing, and occupancy levels was achieved across the 5' ends of most yeast genes by adenosine triphosphate-dependent trans-acting factors. These transcription-independent activities override DNA-intrinsic positioning and maintain uniform spacing at the 5' ends of genes even at low nucleosome densities. Thus, an active, nonstatistical nucleosome packing mechanism creates chromatin organizing centers at the 5' ends of genes where important regulatory elements reside.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Zhenhai -- Wippo, Christian J -- Wal, Megha -- Ward, Elissa -- Korber, Philipp -- Pugh, B Franklin -- HG004160/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596991" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/*metabolism ; Base Sequence ; Chromatin Assembly and Disassembly ; Computational Biology ; DNA, Fungal/chemistry/genetics ; *Genes, Fungal ; *Genome, Fungal ; Histones/metabolism ; Nucleosomes/*genetics/*metabolism ; Poly dA-dT/analysis ; Saccharomyces cerevisiae/genetics ; Trans-Activators/genetics/metabolism ; Transcription Initiation Site ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2011-07-19
    Description: During early lung development, airway tubes change shape. Tube length increases more than circumference as a large proportion of lung epithelial cells divide parallel to the airway longitudinal axis. We show that this bias is lost in mutants with increased extracellular signal-regulated kinase 1 (ERK1) and ERK2 activity, revealing a link between the ERK1/2 signaling pathway and the control of mitotic spindle orientation. Using a mathematical model, we demonstrate that change in airway shape can occur as a function of spindle angle distribution determined by ERK1/2 signaling, independent of effects on cell proliferation or cell size and shape. We identify sprouty genes, which encode negative regulators of fibroblast growth factor 10 (FGF10)-mediated RAS-regulated ERK1/2 signaling, as essential for controlling airway shape change during development through an effect on mitotic spindle orientation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tang, Nan -- Marshall, Wallace F -- McMahon, Martin -- Metzger, Ross J -- Martin, Gail R -- 5T32HL007185/HL/NHLBI NIH HHS/ -- R01 CA131201/CA/NCI NIH HHS/ -- R01 CA131261/CA/NCI NIH HHS/ -- R01 CA78711/CA/NCI NIH HHS/ -- R01 DE17744/DE/NIDCR NIH HHS/ -- R01 GM077004/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):342-5. doi: 10.1126/science.1204831.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy, University of California, San Francisco, CA 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764747" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Animals ; Cell Polarity ; Cell Proliferation ; Cell Shape ; Cell Size ; Epithelial Cells/cytology ; Fibroblast Growth Factor 10/genetics/metabolism ; Intracellular Signaling Peptides and Proteins ; Lung/cytology/*embryology/metabolism ; *MAP Kinase Signaling System ; Membrane Proteins/genetics/metabolism ; Mice ; Mice, Knockout ; Mitogen-Activated Protein Kinase 1/*metabolism ; Mitogen-Activated Protein Kinase 3/*metabolism ; Mitosis ; Models, Biological ; *Morphogenesis ; Mutation ; Organogenesis ; Phosphoproteins/genetics/metabolism ; Phosphorylation ; Proto-Oncogene Proteins p21(ras)/genetics/*metabolism ; Respiratory Mucosa/cytology/*embryology ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2011-11-05
    Description: The RNA polymerase II (RNAP II) largest subunit contains a C-terminal domain (CTD) with up to 52 Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) consensus repeats. Serines 2, 5, and 7 are known to be phosphorylated, and these modifications help to orchestrate the interplay between transcription and processing of messenger RNA (mRNA) precursors. Here, we provide evidence that phosphorylation of CTD Thr(4) residues is required specifically for histone mRNA 3' end processing, functioning to facilitate recruitment of 3' processing factors to histone genes. Like Ser(2), Thr(4) phosphorylation requires the CTD kinase CDK9 and is evolutionarily conserved from yeast to human. Our data thus illustrate how a CTD modification can play a highly specific role in facilitating efficient gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678764/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678764/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsin, Jing-Ping -- Sheth, Amit -- Manley, James L -- R01 GM028983/GM/NIGMS NIH HHS/ -- R01 GM28983/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 4;334(6056):683-6. doi: 10.1126/science.1206034.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Columbia University, New York, NY 10027, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22053051" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Line ; Cell Survival ; Chickens ; Cleavage And Polyadenylation Specificity Factor/metabolism ; Cyclin-Dependent Kinase 9/metabolism ; Histones/*genetics ; Humans ; Molecular Sequence Data ; Nuclear Proteins/metabolism ; Phosphorylation ; *RNA 3' End Processing ; RNA Polymerase II/chemistry/*metabolism ; RNA, Messenger/*metabolism ; Threonine/*metabolism ; mRNA Cleavage and Polyadenylation Factors/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2011-06-11
    Description: The mammalian target of rapamycin (mTOR) protein kinase is a master growth promoter that nucleates two complexes, mTORC1 and mTORC2. Despite the diverse processes controlled by mTOR, few substrates are known. We defined the mTOR-regulated phosphoproteome by quantitative mass spectrometry and characterized the primary sequence motif specificity of mTOR using positional scanning peptide libraries. We found that the phosphorylation response to insulin is largely mTOR dependent and that mTOR exhibits a unique preference for proline, hydrophobic, and aromatic residues at the +1 position. The adaptor protein Grb10 was identified as an mTORC1 substrate that mediates the inhibition of phosphoinositide 3-kinase typical of cells lacking tuberous sclerosis complex 2 (TSC2), a tumor suppressor and negative regulator of mTORC1. Our work clarifies how mTORC1 inhibits growth factor signaling and opens new areas of investigation in mTOR biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177140/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177140/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hsu, Peggy P -- Kang, Seong A -- Rameseder, Jonathan -- Zhang, Yi -- Ottina, Kathleen A -- Lim, Daniel -- Peterson, Timothy R -- Choi, Yongmun -- Gray, Nathanael S -- Yaffe, Michael B -- Marto, Jarrod A -- Sabatini, David M -- AI47389/AI/NIAID NIH HHS/ -- CA103866/CA/NCI NIH HHS/ -- CA112967/CA/NCI NIH HHS/ -- ES015339/ES/NIEHS NIH HHS/ -- GM68762/GM/NIGMS NIH HHS/ -- R01 CA103866/CA/NCI NIH HHS/ -- R01 CA103866-09/CA/NCI NIH HHS/ -- R01 CA129105/CA/NCI NIH HHS/ -- R01 CA129105-05/CA/NCI NIH HHS/ -- R37 AI047389/AI/NIAID NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1317-22. doi: 10.1126/science.1199498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659604" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; GRB10 Adaptor Protein/*metabolism ; Humans ; Insulin/metabolism ; Intercellular Signaling Peptides and Proteins/*metabolism ; Mass Spectrometry ; Mice ; Multiprotein Complexes ; Naphthyridines/pharmacology ; Phosphoproteins/metabolism ; Phosphorylation ; Proteins/*metabolism ; Proteome/metabolism ; *Signal Transduction ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-21
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390253/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390253/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zoncu, Roberto -- Sabatini, David M -- R01 CA103866/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 May 20;332(6032):923-5. doi: 10.1126/science.1207552.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21596981" target="_blank"〉PubMed〈/a〉
    Keywords: *Autophagy ; *Cell Aging ; Cytoplasmic Vesicles/*metabolism/ultrastructure ; Endoplasmic Reticulum/metabolism/ultrastructure ; Genes, ras ; Golgi Apparatus/metabolism/ultrastructure ; Humans ; Interleukins/secretion ; Intracellular Signaling Peptides and Proteins/metabolism ; Multiprotein Complexes ; Phagosomes/metabolism/ultrastructure ; Phosphorylation ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism/*secretion ; Secretory Pathway ; TOR Serine-Threonine Kinases ; ras Proteins/metabolism ; trans-Golgi Network/metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2011-02-26
    Description: Understanding the organization of a bacterial cell requires the elucidation of the mechanisms by which proteins localize to particular subcellular sites. Thus far, such mechanisms have been suggested to rely on embedded features of the localized proteins. Here, we report that certain messenger RNAs (mRNAs) in Escherichia coli are targeted to the future destination of their encoded proteins, cytoplasm, poles, or inner membrane in a translation-independent manner. Cis-acting sequences within the transmembrane-coding sequence of the membrane proteins are necessary and sufficient for mRNA targeting to the membrane. In contrast to the view that transcription and translation are coupled in bacteria, our results show that, subsequent to their synthesis, certain mRNAs are capable of migrating to particular domains in the cell where their future protein products are required.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nevo-Dinur, Keren -- Nussbaum-Shochat, Anat -- Ben-Yehuda, Sigal -- Amster-Choder, Orna -- New York, N.Y. -- Science. 2011 Feb 25;331(6020):1081-4. doi: 10.1126/science.1195691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Post Office Box 12272, Jerusalem 91120, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350180" target="_blank"〉PubMed〈/a〉
    Keywords: Aminoglycosides/pharmacology ; Bacterial Proteins/genetics/metabolism ; Base Sequence ; Cell Membrane/*metabolism ; Chloramphenicol/pharmacology ; Chloramphenicol O-Acetyltransferase/genetics/metabolism ; Cytoplasm/metabolism ; Escherichia coli K12/*genetics/*metabolism ; Escherichia coli Proteins/genetics/*metabolism ; Genes, Bacterial ; Membrane Proteins/genetics/*metabolism ; Monosaccharide Transport Proteins/genetics/metabolism ; Nucleic Acid Conformation ; Operon ; Protein Biosynthesis/drug effects ; Protein Kinases/genetics/metabolism ; Protein Transport ; RNA, Bacterial/chemistry/genetics/*metabolism ; RNA, Messenger/chemistry/genetics/*metabolism ; RNA-Binding Proteins/genetics/metabolism ; Symporters/genetics/metabolism ; Transcription, Genetic/drug effects ; beta-Glucosidase/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2011-10-01
    Description: Various types of chromosomal aberrations, including numerical (aneuploidy) and structural (e.g., translocations, deletions), are commonly found in human tumors and are linked to tumorigenesis. Aneuploidy is a direct consequence of chromosome segregation errors in mitosis, whereas structural aberrations are caused by improperly repaired DNA breaks. Here, we demonstrate that chromosome segregation errors can also result in structural chromosome aberrations. Chromosomes that missegregate are frequently damaged during cytokinesis, triggering a DNA double-strand break response in the respective daughter cells involving ATM, Chk2, and p53. We show that these double-strand breaks can lead to unbalanced translocations in the daughter cells. Our data show that segregation errors can cause translocations and provide insights into the role of whole-chromosome instability in tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janssen, Aniek -- van der Burg, Marja -- Szuhai, Karoly -- Kops, Geert J P L -- Medema, Rene H -- 242617/European Research Council/International -- New York, N.Y. -- Science. 2011 Sep 30;333(6051):1895-8. doi: 10.1126/science.1210214.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology and Cancer Genomics Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21960636" target="_blank"〉PubMed〈/a〉
    Keywords: Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/antagonists & inhibitors/metabolism ; Cell Line ; Cell Line, Tumor ; Checkpoint Kinase 2 ; *Chromosomal Instability ; *Chromosome Aberrations ; *Chromosome Segregation ; Cytokinesis ; *DNA Breaks, Double-Stranded ; DNA-Binding Proteins/metabolism ; Histones/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Neoplasms/*genetics ; Phosphorylation ; Protein Kinase Inhibitors/pharmacology ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Protein-Tyrosine Kinases ; Pyrimidines/pharmacology ; Thiones/pharmacology ; *Translocation, Genetic ; Tumor Suppressor Protein p53/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2011-02-19
    Description: During pregnancy, progesterone inhibits the growth-promoting actions of estrogen in the uterus. However, the mechanism for this is not clear. The attenuation of estrogen-mediated proliferation of the uterine epithelium by progesterone is a prerequisite for successful implantation. Our study reveals that progesterone-induced expression of the basic helix-loop-helix transcription factor Hand2 in the uterine stroma suppresses the production of several fibroblast growth factors (FGFs) that act as paracrine mediators of mitogenic effects of estrogen on the epithelium. In mouse uteri lacking Hand2, continued induction of these FGFs in the stroma maintains epithelial proliferation and stimulates estrogen-induced pathways, resulting in impaired implantation. Thus, Hand2 is a critical regulator of the uterine stromal-epithelial communication that directs proper steroid regulation conducive for the establishment of pregnancy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320855/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320855/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Quanxi -- Kannan, Athilakshmi -- DeMayo, Francesco J -- Lydon, John P -- Cooke, Paul S -- Yamagishi, Hiroyuki -- Srivastava, Deepak -- Bagchi, Milan K -- Bagchi, Indrani C -- U54 HD055787-01A1/HD/NICHD NIH HHS/ -- U54HD055787/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 18;331(6019):912-6. doi: 10.1126/science.1197454.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Comparative Biosciences, University of Illinois Urbana/Champaign, Urbana, IL 61820, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21330545" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/*genetics/*metabolism ; Cell Proliferation ; Embryo Implantation/*physiology ; Endometrium/drug effects/*metabolism ; Epithelial Cells/cytology/drug effects/metabolism ; Epithelium/metabolism ; Estradiol/metabolism ; Estrogen Receptor alpha/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Female ; Fibroblast Growth Factors/genetics/*metabolism ; Gene Expression Profiling ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mifepristone/pharmacology ; Mucin-1/metabolism ; Phosphorylation ; Pregnancy ; Progesterone/antagonists & inhibitors/*metabolism/pharmacology ; Receptors, Fibroblast Growth Factor/metabolism ; Receptors, Progesterone/metabolism ; *Signal Transduction ; Stromal Cells/cytology/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2011-01-15
    Description: Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Although this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and adenosine triphosphate (ATP) are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ratio of ATP to adenosine diphosphate (ADP). When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator, and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rust, Michael J -- Golden, Susan S -- O'Shea, Erin K -- GM62419/GM/NIGMS NIH HHS/ -- R01 GM062419/GM/NIGMS NIH HHS/ -- R01 GM062419-08/GM/NIGMS NIH HHS/ -- R01 GM062419-09/GM/NIGMS NIH HHS/ -- R01 GM062419-09S1/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):220-3. doi: 10.1126/science.1197243.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233390" target="_blank"〉PubMed〈/a〉
    Keywords: ATP Synthetase Complexes/antagonists & inhibitors/metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Bacterial Proteins/antagonists & inhibitors/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; Circadian Rhythm Signaling Peptides and Proteins/antagonists & ; inhibitors/metabolism ; Darkness ; *Energy Metabolism ; *Light ; Models, Biological ; Phosphorylation ; Synechococcus/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2011-07-19
    Description: Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the ~300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each protein has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Joo, Woo -- Xu, Guozhou -- Persky, Nicole S -- Smogorzewska, Agata -- Rudge, Derek G -- Buzovetsky, Olga -- Elledge, Stephen J -- Pavletich, Nikola P -- R01 GM044664/GM/NIGMS NIH HHS/ -- R01 GM044664-10/GM/NIGMS NIH HHS/ -- R37 GM044664/GM/NIGMS NIH HHS/ -- T32 CA009216/CA/NCI NIH HHS/ -- T32 CA009216-32/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Jul 15;333(6040):312-6. doi: 10.1126/science.1205805.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764741" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; *DNA Repair ; DNA, Single-Stranded/chemistry/metabolism ; Fanconi Anemia/genetics ; Fanconi Anemia Complementation Group D2 Protein/*chemistry/metabolism ; Fanconi Anemia Complementation Group Proteins/*chemistry/metabolism ; Hydrophobic and Hydrophilic Interactions ; Mice ; Models, Molecular ; Molecular Sequence Data ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Static Electricity ; Ubiquitin/chemistry ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-04-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schneider, Michael D -- New York, N.Y. -- Science. 2011 Apr 22;332(6028):426-7. doi: 10.1126/science.1205972.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK. m.d.schneider@imperial.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21512022" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; Animals ; Cell Cycle Proteins/genetics/metabolism ; *Cell Proliferation ; Gene Expression Regulation, Developmental ; Heart/anatomy & histology/embryology/growth & development ; Mice ; Myocardium/cytology/metabolism ; Myocytes, Cardiac/*cytology/*metabolism ; Organ Size ; Phosphoproteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; *Signal Transduction ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neill, Luke A J -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1386-7. doi: 10.1126/science.1208448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland. laoneill@tcd.ie〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680829" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/*immunology/metabolism/microbiology ; Arabidopsis Proteins/chemistry/genetics/*metabolism ; Flagellin/*immunology ; *Immunity, Innate ; Mutant Proteins/chemistry/metabolism ; Mutation ; Phosphorylation ; Plant Diseases/*immunology/microbiology ; Protein Kinases/chemistry/*metabolism ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Pseudomonas/immunology ; Receptors, Pattern Recognition/chemistry/*metabolism ; Signal Transduction ; Ubiquitin-Protein Ligases/chemistry/genetics/*metabolism ; Ubiquitinated Proteins/metabolism ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2011-05-28
    Description: Autophagy is a cellular catabolic process that relies on the cooperation of autophagosomes and lysosomes. During starvation, the cell expands both compartments to enhance degradation processes. We found that starvation activates a transcriptional program that controls major steps of the autophagic pathway, including autophagosome formation, autophagosome-lysosome fusion, and substrate degradation. The transcription factor EB (TFEB), a master gene for lysosomal biogenesis, coordinated this program by driving expression of autophagy and lysosomal genes. Nuclear localization and activity of TFEB were regulated by serine phosphorylation mediated by the extracellular signal-regulated kinase 2, whose activity was tuned by the levels of extracellular nutrients. Thus, a mitogen-activated protein kinase-dependent mechanism regulates autophagy by controlling the biogenesis and partnership of two distinct cellular organelles.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638014/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638014/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Settembre, Carmine -- Di Malta, Chiara -- Polito, Vinicia Assunta -- Garcia Arencibia, Moises -- Vetrini, Francesco -- Erdin, Serkan -- Erdin, Serpil Uckac -- Huynh, Tuong -- Medina, Diego -- Colella, Pasqualina -- Sardiello, Marco -- Rubinsztein, David C -- Ballabio, Andrea -- 250154/European Research Council/International -- 5 P30 HD024064/HD/NICHD NIH HHS/ -- G0600194/Medical Research Council/United Kingdom -- P30 HD024064/HD/NICHD NIH HHS/ -- R01 NS078072/NS/NINDS NIH HHS/ -- TGM11CB6/Telethon/Italy -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1429-33. doi: 10.1126/science.1204592. Epub 2011 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Telethon Institute of Genetics and Medicine (TIGEM), Via Pietro Castellino 111, 80131 Naples, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617040" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; *Autophagy ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics/*metabolism ; COS Cells ; Cell Nucleus/*metabolism ; Cells, Cultured ; Cercopithecus aethiops ; Cytoplasm/metabolism ; Gene Expression Regulation ; HeLa Cells ; Humans ; Liver/metabolism ; Lysosomes/*metabolism ; MAP Kinase Signaling System ; Mice ; Mice, Transgenic ; Microtubule-Associated Proteins/metabolism ; Mitogen-Activated Protein Kinase 1/metabolism ; Phagosomes/metabolism ; Phosphorylation ; RNA Interference ; Transcription, Genetic ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2011-02-05
    Description: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529199/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Colbourne, John K -- Pfrender, Michael E -- Gilbert, Donald -- Thomas, W Kelley -- Tucker, Abraham -- Oakley, Todd H -- Tokishita, Shinichi -- Aerts, Andrea -- Arnold, Georg J -- Basu, Malay Kumar -- Bauer, Darren J -- Caceres, Carla E -- Carmel, Liran -- Casola, Claudio -- Choi, Jeong-Hyeon -- Detter, John C -- Dong, Qunfeng -- Dusheyko, Serge -- Eads, Brian D -- Frohlich, Thomas -- Geiler-Samerotte, Kerry A -- Gerlach, Daniel -- Hatcher, Phil -- Jogdeo, Sanjuro -- Krijgsveld, Jeroen -- Kriventseva, Evgenia V -- Kultz, Dietmar -- Laforsch, Christian -- Lindquist, Erika -- Lopez, Jacqueline -- Manak, J Robert -- Muller, Jean -- Pangilinan, Jasmyn -- Patwardhan, Rupali P -- Pitluck, Samuel -- Pritham, Ellen J -- Rechtsteiner, Andreas -- Rho, Mina -- Rogozin, Igor B -- Sakarya, Onur -- Salamov, Asaf -- Schaack, Sarah -- Shapiro, Harris -- Shiga, Yasuhiro -- Skalitzky, Courtney -- Smith, Zachary -- Souvorov, Alexander -- Sung, Way -- Tang, Zuojian -- Tsuchiya, Dai -- Tu, Hank -- Vos, Harmjan -- Wang, Mei -- Wolf, Yuri I -- Yamagata, Hideo -- Yamada, Takuji -- Ye, Yuzhen -- Shaw, Joseph R -- Andrews, Justen -- Crease, Teresa J -- Tang, Haixu -- Lucas, Susan M -- Robertson, Hugh M -- Bork, Peer -- Koonin, Eugene V -- Zdobnov, Evgeny M -- Grigoriev, Igor V -- Lynch, Michael -- Boore, Jeffrey L -- P42 ES004699/ES/NIEHS NIH HHS/ -- P42 ES004699-25/ES/NIEHS NIH HHS/ -- P42ES004699/ES/NIEHS NIH HHS/ -- R01 ES019324/ES/NIEHS NIH HHS/ -- R24 GM078274/GM/NIGMS NIH HHS/ -- R24 GM078274-01A1/GM/NIGMS NIH HHS/ -- R24GM07827401/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Feb 4;331(6017):555-61. doi: 10.1126/science.1197761.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, IN 47405, USA. jcolbour@indiana.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21292972" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological ; Amino Acid Sequence ; Animals ; Base Sequence ; Chromosome Mapping ; Daphnia/*genetics/physiology ; *Ecosystem ; Environment ; Evolution, Molecular ; Gene Conversion ; Gene Duplication ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation ; Genes ; Genes, Duplicate ; *Genome ; Metabolic Networks and Pathways/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Multigene Family ; Phylogeny ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2011-05-10
    Description: Flow cytometry is an essential tool for dissecting the functional complexity of hematopoiesis. We used single-cell "mass cytometry" to examine healthy human bone marrow, measuring 34 parameters simultaneously in single cells (binding of 31 antibodies, viability, DNA content, and relative cell size). The signaling behavior of cell subsets spanning a defined hematopoietic hierarchy was monitored with 18 simultaneous markers of functional signaling states perturbed by a set of ex vivo stimuli and inhibitors. The data set allowed for an algorithmically driven assembly of related cell types defined by surface antigen expression, providing a superimposable map of cell signaling responses in combination with drug inhibition. Visualized in this manner, the analysis revealed previously unappreciated instances of both precise signaling responses that were bounded within conventionally defined cell subsets and more continuous phosphorylation responses that crossed cell population boundaries in unexpected manners yet tracked closely with cellular phenotype. Collectively, such single-cell analyses provide system-wide views of immune signaling in healthy human hematopoiesis, against which drug action and disease can be compared for mechanistic studies and pharmacologic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273988/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273988/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bendall, Sean C -- Simonds, Erin F -- Qiu, Peng -- Amir, El-ad D -- Krutzik, Peter O -- Finck, Rachel -- Bruggner, Robert V -- Melamed, Rachel -- Trejo, Angelica -- Ornatsky, Olga I -- Balderas, Robert S -- Plevritis, Sylvia K -- Sachs, Karen -- Pe'er, Dana -- Tanner, Scott D -- Nolan, Garry P -- 1R01CA130826/CA/NCI NIH HHS/ -- 272200700038C/PHS HHS/ -- 5U54 CA143907/CA/NCI NIH HHS/ -- HHSN268201000034C/HV/NHLBI NIH HHS/ -- N0I-HV-00242/HV/NHLBI NIH HHS/ -- P01 CA034233/CA/NCI NIH HHS/ -- PN2 EY018228/EY/NEI NIH HHS/ -- R01 CA130826/CA/NCI NIH HHS/ -- R01 CA130826-04/CA/NCI NIH HHS/ -- RB2-01592/PHS HHS/ -- U19 AI057229/AI/NIAID NIH HHS/ -- U54 CA149145/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2011 May 6;332(6030):687-96. doi: 10.1126/science.1198704.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21551058" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Antibodies ; Antigens, Surface/analysis ; B-Lymphocytes/drug effects/immunology/metabolism ; Bone Marrow Cells/cytology/*drug effects/*immunology/metabolism ; Cytokines/metabolism ; Dasatinib ; Flow Cytometry/*methods ; Hematopoiesis ; Humans ; Immunophenotyping ; Lanthanoid Series Elements ; Leukocytes, Mononuclear/drug effects/immunology/metabolism ; Lymphocyte Activation ; Lymphocyte Subsets/*drug effects/*immunology/metabolism ; Mass Spectrometry ; Phosphorylation ; Protein Kinase Inhibitors/pharmacology ; Protein-Tyrosine Kinases/antagonists & inhibitors ; Pyrimidines/*pharmacology ; *Signal Transduction/drug effects ; Single-Cell Analysis/*methods ; T-Lymphocytes/drug effects/immunology/metabolism ; Thiazoles/*pharmacology ; Transition Elements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-05-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2011 May 27;332(6033):1030. doi: 10.1126/science.332.6033.1030-a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617054" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cattle/*genetics ; Chromosome Duplication ; Chromosome Mapping ; DNA, Circular/*genetics ; Hair Color/*genetics ; Proto-Oncogene Proteins c-kit/*genetics ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2011-05-28
    Description: Selective autophagy can be mediated via receptor molecules that link specific cargoes to the autophagosomal membranes decorated by ubiquitin-like microtubule-associated protein light chain 3 (LC3) modifiers. Although several autophagy receptors have been identified, little is known about mechanisms controlling their functions in vivo. In this work, we found that phosphorylation of an autophagy receptor, optineurin, promoted selective autophagy of ubiquitin-coated cytosolic Salmonella enterica. The protein kinase TANK binding kinase 1 (TBK1) phosphorylated optineurin on serine-177, enhancing LC3 binding affinity and autophagic clearance of cytosolic Salmonella. Conversely, ubiquitin- or LC3-binding optineurin mutants and silencing of optineurin or TBK1 impaired Salmonella autophagy, resulting in increased intracellular bacterial proliferation. We propose that phosphorylation of autophagy receptors might be a general mechanism for regulation of cargo-selective autophagy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wild, Philipp -- Farhan, Hesso -- McEwan, David G -- Wagner, Sebastian -- Rogov, Vladimir V -- Brady, Nathan R -- Richter, Benjamin -- Korac, Jelena -- Waidmann, Oliver -- Choudhary, Chunaram -- Dotsch, Volker -- Bumann, Dirk -- Dikic, Ivan -- 250241/European Research Council/International -- New York, N.Y. -- Science. 2011 Jul 8;333(6039):228-33. doi: 10.1126/science.1205405. Epub 2011 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Frankfurt Institute for Molecular Life Sciences and Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt (Main), Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21617041" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; *Autophagy ; Cell Line, Tumor ; Cytosol/*microbiology ; HeLa Cells ; Humans ; Immunity, Innate ; Microtubule-Associated Proteins/metabolism ; Models, Biological ; Nuclear Proteins/chemistry/metabolism ; Phosphorylation ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein-Serine-Threonine Kinases/metabolism ; RNA Interference ; Salmonella typhimurium/*growth & development/immunology ; Transcription Factor TFIIIA/chemistry/genetics/*metabolism ; Ubiquitin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2011-11-15
    Description: The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] adds CCA to the 3' ends of transfer RNAs (tRNAs), a critical step in tRNA biogenesis that generates the amino acid attachment site. We found that the CCA-adding enzyme plays a key role in tRNA quality control by selectively marking structurally unstable tRNAs and tRNA-like small RNAs for degradation. Instead of adding CCA to the 3' ends of these transcripts, CCA-adding enzymes from all three kingdoms of life add CCACCA. In addition, hypomodified mature tRNAs are subjected to CCACCA addition as part of a rapid tRNA decay pathway in vivo. We conjecture that CCACCA addition is a universal mechanism for controlling tRNA levels and preventing errors in translation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273417/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273417/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilusz, Jeremy E -- Whipple, Joseph M -- Phizicky, Eric M -- Sharp, Phillip A -- 5T32-GM068411/GM/NIGMS NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30 CA014051-38/CA/NCI NIH HHS/ -- P30-CA14051/CA/NCI NIH HHS/ -- R01 CA133404/CA/NCI NIH HHS/ -- R01 CA133404-05/CA/NCI NIH HHS/ -- R01 GM034277/GM/NIGMS NIH HHS/ -- R01 GM034277-28/GM/NIGMS NIH HHS/ -- R01 GM052347/GM/NIGMS NIH HHS/ -- R01 GM052347-16/GM/NIGMS NIH HHS/ -- R01-CA133404/CA/NCI NIH HHS/ -- R01-GM34277/GM/NIGMS NIH HHS/ -- R01-GM52347/GM/NIGMS NIH HHS/ -- T32 GM068411/GM/NIGMS NIH HHS/ -- T32 GM068411-08/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):817-21. doi: 10.1126/science.1213671.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. wilusz@mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076379" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Archaeal Proteins/metabolism ; Base Sequence ; Escherichia coli Proteins/metabolism ; Fungal Proteins/chemistry/metabolism ; Humans ; Mice ; Nucleic Acid Conformation ; Polyadenylation ; *RNA 3' End Processing ; RNA Nucleotidyltransferases/*metabolism ; *RNA Stability ; RNA, Fungal/chemistry/metabolism ; RNA, Transfer/chemistry/genetics/*metabolism ; RNA, Transfer, Ser/chemistry/metabolism ; RNA, Untranslated/chemistry/genetics/metabolism ; Saccharomyces cerevisiae/chemistry/genetics/metabolism ; Sulfolobus/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2011-06-04
    Description: To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qian, Lulu -- Winfree, Erik -- New York, N.Y. -- Science. 2011 Jun 3;332(6034):1196-201. doi: 10.1126/science.1200520.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21636773" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Computer Simulation ; *Computers, Molecular ; DNA/*chemistry/*metabolism ; DNA, Single-Stranded/*chemistry/*metabolism ; Logic ; Nucleic Acid Conformation ; *Nucleic Acid Hybridization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2011-04-09
    Description: A critical event in the origin of life is thought to have been the emergence of an RNA molecule capable of replicating a primordial RNA "genome." Here we describe the evolution and engineering of an RNA polymerase ribozyme capable of synthesizing RNAs of up to 95 nucleotides in length. To overcome its sequence dependence, we recombined traits evolved separately in different ribozyme lineages. This yielded a more general polymerase ribozyme that was able to synthesize a wider spectrum of RNA sequences, as we demonstrate by the accurate synthesis of an enzymatically active RNA, a hammerhead endonuclease ribozyme. This recapitulates a central aspect of an RNA-based genetic system: the RNA-catalyzed synthesis of an active ribozyme from an RNA template.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wochner, Aniela -- Attwater, James -- Coulson, Alan -- Holliger, Philipp -- MC_U105178804/Medical Research Council/United Kingdom -- MC_US_A024_0014/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 8;332(6026):209-12. doi: 10.1126/science.1200752.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474753" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biocatalysis ; Directed Molecular Evolution ; Genetic Engineering ; Mutation ; Nucleic Acid Conformation ; RNA/*chemistry/genetics/metabolism ; RNA Replicase/*chemistry/genetics/*metabolism ; RNA, Catalytic/*chemistry/genetics/*metabolism ; Selection, Genetic ; Templates, Genetic ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bland, Michelle L -- Birnbaum, Morris J -- P01 DK049210/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Jun 17;332(6036):1387-8. doi: 10.1126/science.1208444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21680830" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adenosine Diphosphate/*metabolism ; Adenosine Monophosphate/metabolism ; Adenosine Triphosphate/metabolism ; *Energy Metabolism ; Models, Biological ; Phosphorylation ; Protein Subunits/chemistry/metabolism ; Signal Transduction ; *Stress, Physiological
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2011-03-26
    Description: Fibroblast growth factor (FGF) 19 is an enterokine synthesized and released when bile acids are taken up into the ileum. We show that FGF19 stimulates hepatic protein and glycogen synthesis but does not induce lipogenesis. The effects of FGF19 are independent of the activity of either insulin or the protein kinase Akt and, instead, are mediated through a mitogen-activated protein kinase signaling pathway that activates components of the protein translation machinery and stimulates glycogen synthase activity. Mice lacking FGF15 (the mouse FGF19 ortholog) fail to properly maintain blood concentrations of glucose and normal postprandial amounts of liver glycogen. FGF19 treatment restored the loss of glycogen in diabetic animals lacking insulin. Thus, FGF19 activates a physiologically important, insulin-independent endocrine pathway that regulates hepatic protein and glycogen metabolism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076083/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076083/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kir, Serkan -- Beddow, Sara A -- Samuel, Varman T -- Miller, Paul -- Previs, Stephen F -- Suino-Powell, Kelly -- Xu, H Eric -- Shulman, Gerald I -- Kliewer, Steven A -- Mangelsdorf, David J -- DK40936/DK/NIDDK NIH HHS/ -- DK62434/DK/NIDDK NIH HHS/ -- DK67158/DK/NIDDK NIH HHS/ -- R01 DK040936/DK/NIDDK NIH HHS/ -- R01 DK040936-23/DK/NIDDK NIH HHS/ -- R01 DK067158/DK/NIDDK NIH HHS/ -- R01 DK067158-09/DK/NIDDK NIH HHS/ -- R24 DK085638/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- U19 DK062434-10/DK/NIDDK NIH HHS/ -- U24 DK059635/DK/NIDDK NIH HHS/ -- U24 DK059635-05/DK/NIDDK NIH HHS/ -- U24 DK076169/DK/NIDDK NIH HHS/ -- U24 DK076169-05/DK/NIDDK NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Mar 25;331(6024):1621-4. doi: 10.1126/science.1198363.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21436455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/metabolism ; Diabetes Mellitus, Experimental/metabolism ; Eukaryotic Initiation Factors/metabolism ; Fibroblast Growth Factors/*metabolism/*pharmacology ; Glucose/metabolism ; Glycogen Synthase/metabolism ; Glycogen Synthase Kinase 3/metabolism ; Hep G2 Cells ; Humans ; Insulin/*metabolism/pharmacology ; Liver/drug effects/*metabolism ; Liver Glycogen/*biosynthesis ; MAP Kinase Signaling System ; Male ; Mice ; Mice, Inbred C57BL ; Phosphorylation ; *Protein Biosynthesis ; Proto-Oncogene Proteins c-akt/metabolism ; Ribosomal Protein S6/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-01-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hardie, D Grahame -- New York, N.Y. -- Science. 2011 Jan 28;331(6016):410-1. doi: 10.1126/science.1201691.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉College of Life Sciences, University of Dundee, Scotland DD1 5EH, UK. d.g.hardie@dundee.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21273476" target="_blank"〉PubMed〈/a〉
    Keywords: 14-3-3 Proteins/metabolism ; AMP-Activated Protein Kinases/*metabolism ; Adaptor Proteins, Signal Transducing/metabolism ; Animals ; *Autophagy ; Cell Survival ; Energy Metabolism ; Evolution, Molecular ; Glucose/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/*metabolism ; Mice ; Mutant Proteins/metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/*metabolism ; Saccharomyces cerevisiae/physiology ; Signal Transduction ; Stress, Physiological ; TOR Serine-Threonine Kinases/antagonists & inhibitors/metabolism ; Tumor Suppressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2011-11-05
    Description: Protein synthesis in all organisms is catalyzed by ribosomes. In comparison to their prokaryotic counterparts, eukaryotic ribosomes are considerably larger and are subject to more complex regulation. The large ribosomal subunit (60S) catalyzes peptide bond formation and contains the nascent polypeptide exit tunnel. We present the structure of the 60S ribosomal subunit from Tetrahymena thermophila in complex with eukaryotic initiation factor 6 (eIF6), cocrystallized with the antibiotic cycloheximide (a eukaryotic-specific inhibitor of protein synthesis), at a resolution of 3.5 angstroms. The structure illustrates the complex functional architecture of the eukaryotic 60S subunit, which comprises an intricate network of interactions between eukaryotic-specific ribosomal protein features and RNA expansion segments. It reveals the roles of eukaryotic ribosomal protein elements in the stabilization of the active site and the extent of eukaryotic-specific differences in other functional regions of the subunit. Furthermore, it elucidates the molecular basis of the interaction with eIF6 and provides a structural framework for further studies of ribosome-associated diseases and the role of the 60S subunit in the initiation of protein synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klinge, Sebastian -- Voigts-Hoffmann, Felix -- Leibundgut, Marc -- Arpagaus, Sofia -- Ban, Nenad -- New York, N.Y. -- Science. 2011 Nov 18;334(6058):941-8. doi: 10.1126/science.1211204. Epub 2011 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22052974" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/metabolism ; Base Sequence ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Cycloheximide/metabolism ; Eukaryotic Initiation Factors/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Peptide Chain Initiation, Translational ; Protein Conformation ; Protein Structure, Secondary ; Protozoan Proteins/chemistry/metabolism ; RNA, Protozoan/chemistry/metabolism ; RNA, Ribosomal/chemistry/metabolism ; RNA, Ribosomal, 5.8S/chemistry/metabolism ; Ribosomal Proteins/*chemistry/metabolism ; Ribosome Subunits, Large, Eukaryotic/*chemistry/metabolism/ultrastructure ; Tetrahymena thermophila/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-06-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yea, Sung Su -- Fruman, David A -- New York, N.Y. -- Science. 2011 Jun 10;332(6035):1270-1. doi: 10.1126/science.1208071.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, College of Medicine, Inje University, Busan 614-735, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21659593" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibiotics, Antineoplastic/pharmacology ; GRB10 Adaptor Protein/*metabolism ; Humans ; Insulin/metabolism ; Mice ; Phosphorylation ; Protein Kinase Inhibitors/pharmacology ; *Signal Transduction ; Sirolimus/pharmacology ; Substrate Specificity ; TOR Serine-Threonine Kinases/antagonists & inhibitors/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2011-11-26
    Description: Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584687/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Soon, Fen-Fen -- Ng, Ley-Moy -- Zhou, X Edward -- West, Graham M -- Kovach, Amanda -- Tan, M H Eileen -- Suino-Powell, Kelly M -- He, Yuanzheng -- Xu, Yong -- Chalmers, Michael J -- Brunzelle, Joseph S -- Zhang, Huiming -- Yang, Huaiyu -- Jiang, Hualiang -- Li, Jun -- Yong, Eu-Leong -- Cutler, Sean -- Zhu, Jian-Kang -- Griffin, Patrick R -- Melcher, Karsten -- Xu, H Eric -- GM084041/GM/NIGMS NIH HHS/ -- R01 GM059138/GM/NIGMS NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2012 Jan 6;335(6064):85-8. doi: 10.1126/science.1215106. Epub 2011 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116026" target="_blank"〉PubMed〈/a〉
    Keywords: Abscisic Acid/chemistry/*metabolism ; Amino Acid Sequence ; Arabidopsis/chemistry/*metabolism ; Arabidopsis Proteins/antagonists & inhibitors/*chemistry/*metabolism ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Models, Molecular ; *Molecular Mimicry ; Molecular Sequence Data ; Phosphoprotein Phosphatases/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/antagonists & inhibitors/*chemistry/*metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2010-01-02
    Description: Meiotic recombination events cluster into narrow segments of the genome, defined as hotspots. Here, we demonstrate that a major player for hotspot specification is the Prdm9 gene. First, two mouse strains that differ in hotspot usage are polymorphic for the zinc finger DNA binding array of PRDM9. Second, the human consensus PRDM9 allele is predicted to recognize the 13-mer motif enriched at human hotspots; this DNA binding specificity is verified by in vitro studies. Third, allelic variants of PRDM9 zinc fingers are significantly associated with variability in genome-wide hotspot usage among humans. Our results provide a molecular basis for the distribution of meiotic recombination in mammals, in which the binding of PRDM9 to specific DNA sequences targets the initiation of recombination at specific locations in the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295902/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baudat, F -- Buard, J -- Grey, C -- Fledel-Alon, A -- Ober, C -- Przeworski, M -- Coop, G -- de Massy, B -- 03S1/PHS HHS/ -- GM83098/GM/NIGMS NIH HHS/ -- HD21244/HD/NICHD NIH HHS/ -- HL085197/HL/NHLBI NIH HHS/ -- R01 GM083098/GM/NIGMS NIH HHS/ -- R01 HD021244/HD/NICHD NIH HHS/ -- R01 HL085197/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):836-40. doi: 10.1126/science.1183439. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Genetique Humaine, UPR1142, CNRS, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044539" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; DNA/chemistry/metabolism ; DNA Breaks, Double-Stranded ; DNA-Binding Proteins/chemistry/genetics/metabolism ; Genome ; Genome, Human ; Genotype ; Histone-Lysine N-Methyltransferase/chemistry/*genetics/*metabolism ; Humans ; Meiosis/*genetics ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Phenotype ; *Recombination, Genetic ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...